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Criteria for the trivial solution of differential
algebraic equations with small nonlinearities to be
asymptotically stable

Roswitha Marz, Humboldt-Universitat Berlin

Abstract

Differential algebraic equations consisting of a constant coefficient linear part
and a small nonlinearity are considered. Conditions that enable linearizations to
work well are discussed. In particular, for index-2 differential algebraic equations
there results a kind of Perron-Theorem that sounds as clear as its classical model
except for the expensive proofs.

1 Introduction

This paper deals with the question whether the zero-solution of the equation
Ax'(t) + Bx(t) + h(2'(t), z(t),t) = 0 (1.1)

is asymptotically stable in the sense of Lyapunov. Equation (1.1) consists of a lin-
ear part characterized by the constant matrix-coefficients A, B € L(IR™) and a small
nonlinearity described by the function h : D x [0,00) — IR™, D C IR™ x IR™ open,
0 €D,

h(0,0,¢) =0, t € [0,00).

The zero-function solves (1.1) trivially, i.e. the origin represents a stationary solution
of (1.1).

The leading coefficient matrix A is not necessarily nonsingular, but if A is so, equation
(1.1) represents a regular ordinary differential equation (ODE). For singular matrices
A, there are differential-algebraic equations (DAEs) under consideration. The matrix
pencil {A, B} is assumed to be regular, i.e. the polynomial p()\) := det(AA + B) does
not vanish identically. By o{A, B} and ind{A, B} we denote the finite spectrum and
the Kronecker index of the pencil {A, B}, respectively. Recall that o{A, B} is the set
of the roots of p(A).

The given function h is continuous together with its partial Jacobians h!,, h!.. Moreover,
h is small in the following sense. To each ¢ > 0, there is a d(¢) > 0 such that |z| < d(¢),
lyl < d(e), t € [0, 00) yield

P (y, 2, ) <&, |y (y, 2, t)| <. (1.2)
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Clearly, (1.1) covers the well-understood case of regular explicit ODEs
@'(t) = Ba(t) + g(=(t).1) (1.3)

by A = —I, h(y,z,t) = g(x,t). The pencil {—I, B} is always regular, further
ind{—I1,B} = 0, o{—I,B} = o(B). In this case Perron’s Theorem (e.g. [1], [2])
applies immediately. Hence, if 0{A, B} belongs to @, then the trivial solution is
asymptotically stable in the sense of Lyapunov.

Does this assertion hold true also in more general cases? If so, to what extend does
it hold? Answers should be of great interest, since they constitute the background of
further stability considerations via linearization and tracing back linear parts to the
constant coefficient case.

Although the classical stability results formed by Poincaré, Perron and Lyapunov (e.g.
[1], [2]) date back more than hundred years, the respective theory for DAEs is rather
in its infancy.

For so-called transferable DAEs (1.1), in [3] the stability question is reduced to that for
an inherent regular ODE relative to a certain invariant subspace. Unfortunately, this
inherent state equation is not attainable in practice. On the other hand, criteria by
linearization are expected to enable also practical determinations. For autonomous low
index DAEs, stability via linearization is considered e.g. in [4], [5], [6]. Unlike regular
ODEs nonautonomous DAEs involve nontrivial new difficulties in comparison with
autonomous ones. A Lyapunov stability criterion for nonautonomous index-1 DAEs
(1.1) is proved in [7]. However, even for autonomous DAEs (1.1) with ind{A, B} > 1,
this index may become an irrelevant detail of (1.1), that is, linearization does not work
in those cases (e.g. [4] and Section 2 below).

If the matrix A is nonsingular, then, applying the Implicit Function Theorem, we can

transform (1.1) into

7' (t) = —A 'Ba(t) + g(x(t),t). (1.4)
The pencil {A, B} is regular, ind{A, B} = 0, c{A, B} = 0(—A™'B). Again by stan-
dard arguments, 0{A, B} C @'~ yields the asymptotical stability of the trivial solution.
Now, let us turn to the more interesting case of A being singular.

To make sure that Az’(¢) in (1.1) may be considered as a somewhat leading term in
general, we assume the inclusion

N :=ker A C ker hl, (y,z,t), (y,z,t) € D x [0,00) (1.5)

to be satisfied. Note that (1.5) holds for trivial reasons if h(y, z,t) does not depend at
all on its first argument. Due to condition (1.5) only those components of z'(t) occur
in the nonlinear part of (1.1) that are already involved in the leading term Ax'(t).

Next, denote by P € L(IR™) any projector matrix along N that is P> = P, ker P = N.
Then @ := I — P projects onto the nullspace N, hence A = A(P + Q) = AP.
It is easily checked that (1.5) implies the identity

h(y,z,t) = h(Py, z,t) (1.6)
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and vice versa. This suggests to reformulate equation (1.1) more precisely as
A(Pz)'(t) + Bx(t) + h((Px)'(t), z(t),t) = 0. (1.7)

In the following we indicate equation (1.1) as a shorter notation of (1.7). Naturally,
now we should ask for solutions of (1.1) that belong to the class

Cy={z(-)eC: Px() e C'}.

Only those components of the unknown function are expected to be from C! whose
derivatives are really involved in (1.1). For the other components continuity will do.
At this place it should be mentioned that both the class C} and the formulation
(1.7) are invariant of the special choice of the projector P. For nonsingular A, we
have trivially N = ker A = {0}, P = I, thus C} = C'. However, if A is singular,
im P C IR™ becomes a proper subspace, and C}; is a larger class than C! in fact.

Example: Consider the two-dimensional system

o (t) + z1(t) + a(t)z, (1) = 0, )
To(t) + B(t)x1 () + y(t)w2(t)® = 0, (1.9)

with continuous, uniformly bounded on [0, 00) scalar functions a(-), 8(-), v(-). Obvi-
ously, all the above assumptions on h are satisfied. In particular, (1.5) holds due to
h!, = 0. Further, we have

A =diag(1,0), B=1I, det(M+B)=A+1, ind{4,B}=1,

and P = diag(1,0) is a possible choice. The respective class C} consists of all con-
tinuous functions z(-) = (21(-), z2(-))*, the first component of which is continuously
differentiable.

System (1.8), (1.9) shows once more that, looking for C! solutions instead of those
from C};, would necessitate more smoothness of the function h. However, in view of
applications, we try for lower smoothness conditions if possible.

It is evident that the regular ODE (1.8) for () can be treated again by standard argu-
ments. Its zero-solution is stable. The constraint equation (1.9) determines the second
component in dependence of the first one, and z1(t) — 0 (t — o0) yields z5(t) — 0
(t — o00).

Obviously, to cover all neighbouring solutions of the trivial one in the complete system
(1.8), (1.9) we should vary only the initial data of the first component. Observe that
o{A,B} = {—1} C @ and that the trivial solution is asymptotically stable in this
modified sense. a

The example discussed above demonstrates an important peculiarity of DAEs. One has
to deal with constraints like (1.9), but also with so-called hidden ones (cf. §2 below).
Naturally, the initial values g := z(to) of solutions satisfy all relevant constraints, i.e.,
xo is consistent at ty. However, how to state initial value problems? Formulations like
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z(ty) = 2°, 2% € IR™ is consistent at ty, are nice but unfit for practical use. In general,
one has no idea on how the constraints look like. On the other hand, simply stating

z(ty) = 2° € R™

would yield unsolvable problems. In the following, we try to pick up and fix the free
integration constants involved by means of a certain projector matrix I € L(/R™) that
can be computed practically in terms of A, B. We state

Mz (ty) = Ha°, 2’ € R", (1.10)

as initial condition.

Note that, in case of nonsingular A, we obtain again II = I, of course. In example
(1.8), (1.9) the choice of II = P = diag(1,0) is convenient. II depends on the pencil
{A, B} in general, and on its index in particular.

Definition: The zero-solution of (1.1) is stable in the sense of Lyapunov if there is a
certain projector I € L(IR™) and, for each ¢ty > 0

(i) a value 7 > 0 can be found such that the initial value problem (1.1), (1.10) with
0 1 - 0
> by b0 ) )
[TIz°| < 7 has a C'y-solution z(-, z°,ty) defined at least on [tg, 00), and further

(i) a value o(n) > 0 to each 0 < i < 7 can be found so that |[Iz°| < o(n) yields
lz(t, 2%, ty)| < m for t > to.

The trivial solution of (1.1) is asymptotically stable in the sense of Lyapunov if it is
stable and, for all sufficiently small |I1z°], it holds that

z(t, 2% tg) — 0 (t — o00).

No doubt, this is a straightforward generalization of the classical notion for regular
ODEs which is recovered by II = I. As mentioned before, a respective stability result
for (1.1) with an index-1 pencil {4, B} is given in [7]. It says that o{A, B} C @~
implies the trivial solution to be asymptotically stable, whereby II = P is chosen. In
particular, this assertion applies to the special system (1.7), (1.8) and confirms the
stability behaviour we discussed before.

It should be mentioned that, in the above Lyapunov stability notion, the projector
matrix IT € L(IR™) can be replaced by any matrix C' € L(IR™) with the only property
ker C' = kerIl. This fact can be realized easily by using the relations C' = C1I,
[T =TIC*C, where Ct € L(IR™) indicates the Moore-Penrose inverse of C'. Hence, in
particular, Lyapunov stability does not depend on the special choice of the projector
I1, the only relevant characteristic feature is its nullspace, but that is fully determined
by the DAE itself.

One might expect that, in general, 0{A, B} C @' yields the trivial solution to be
asymptotically stable. In Section 2, this tentative, somewhat coarse conjecture, is
discussed by means of examples. After that, we derive the main result of the present
paper (Theorem 3.3, Section 3), a stability criterion for the index 2 case. Section 4
contains the detailed proofs.



2 A tentative conjecture and counterexamples

The good experience with regular ODEs and index-1 DAEs of the form (1.1), which
corresponds to matrix pencils {A, B} of index zero or one, gives rise to the tentative
conjecture that the origin is an asymptotically stable stationary point if 0{A, B} C T'"".
We know this to become true for ind{ A, B} < 1. Thereby, we have ker IT = ker A.

If the nonlinearity in (1.1) disappears, i.e., h(y, z, t) = 0, the above conjecture also holds
true. The projector II projects along the infinite eigenspace of the matrix pencil { A, B}.
As shown in [8], if ind{A, B} = k, the projector II can be constructed by a special
matrix chain as [I = PyP; --- P,_1, where Ag := A, By := B, A1 := A; + B;(I — P),
P; € L(IR™) projects along ker A;, B;y1 := B;P;, i > 1. Then, equation

Ax'(t) + Bz(t) =0
can be reduced to

PyPy -+ P12 (t) + PoPy -+ Po_1 A ' Bao(t) = 0,
([— PUPk,l)x(t) = 0,

while 0{A, B} consist of exactly those eigenvalues of PyP; - -+ P,_1 A, ' B whose associ-
ated eigenspaces belong to im Py - -+ Py_1.

Unfortunately, our conjecture is wrong if there are nonlinearities in (1.1), even in the
case of ind{A, B} = 2.

Example 1 Given the autonomous system

Ty —x9 =0,
x; — x5 =0,
! —
Ty — axrs = 0,
£4—$2+l’3:0,

(2.1)

which can be rewritten in compact form (1.1) by

1000 0—-1 00 0
~loooo 11 0 00 | B
A=10010l" B=l0 0 _aol® Mupzt)= 0

0000 0-1 11 0

a € IR is a parameter.
This special function h satisfies all conditions we agreed upon in Section 1. Choosing
P = diag{1,0,1,0} we consider

o O O =
_ o O
o = O O
o O O



Since A; is singular, we know that ind{A, B} > 1. Further, we realize that
{z € R*: 2 €ker A}, BPz € im A;} = {0}.

Consequently (cf. [9]), the matrix pencil {A, B} has index 2. Furthermore, p(\) =
det(AA + B) = A — «, thus o{A, B} = {a}. For a < 0, our conjecture promises
asymptotical stability for the origin. However, taking a look at the flow-picture in the
(71, 22)-plan we can realize immediately that the solutions move away from the origin.
Hence, our conjecture is wrong.

x1

o)

|

As we shall see below, the problem with Example 1 is that linearization does not work
in this case. The DAE (2.1) does not represent an index-2 DAE although we have
ind{A, B} = 2. System (2.1) is rather a singular index-1 DAE having a singularity at
ro = 0. In Section 3 below we shall formulate convenient structural conditions that
enable linearization and exclude this kind of singularities.

Our next example makes clear that even if linearization works and ind{A, B} = 2,
additional smoothness and boundedness conditions for h have to be satisfied.

Example 2 Given the DAE
.%',2 +x = 0,
Ty + q(t)z3 =0, (2.2)
xh — axrs =0,

which can be described in terms of (1.1) as

010 10 0 0
A=[000|, B=[01 0], h(y,z,t)=| q(t)z3
001 00 —« 0

In (2.2), @ < 0 indicates a parameter and ¢(t) is a continuous, uniformly bounded,
scalar function. Again, all conditions for A given in Section 1 are fulfilled. Moreover,
we derive that ind{A, B} =2, o{A, B} = {a}.

On the other hand, the last two equations of (2.2) yield

z3(t) = e*w3(0),
To(t) = —q(t)e**z5(0)2.



Considering the first equation from (2.2), i.e. x; = —z}, we learn that continuity of
the function ¢(-) is not adequate for this problem. To obtain just a continuous solution
component r; we have to demand that ¢(-) is C*. Then we derive

1(t) = (¢ (t) + 2aq(t)) e z3(0)". (2.3)

An appropriate projector to state the initial condition (1.10) is II = diag{0,0, 1}.
Obviously, IT = P = diag{0, 1, 1} would not do in this case.

As far as the asymptotical behaviour of ¢ — oo is concerned, there are no problems
with the solution components zs(-), z3(-). However, to make sure that o{A, B} C @'~
yields also z;(t) — 0 (t — o0), we have to demand the uniform boundedness of ¢'(¢)
additionally. In terms of the function A, our additional assumptions mean that h has
continuous partial derivatives hj, hy,, too. Further, the relation

h:(0,0,t) =0, t €0,00) (2.4)
as well as the inequality
|hi (0, 2,t)| < c|z| for small |z|

with a certain constant c¢ are given. Considering this additional regularity and small-
ness of the function h, now o{A, B} = {a} C @ implies the zero-solution to be
asymptotically stable. This simple fact will be confirmed once more by Theorem 3.3
below. O

We know the above conjecture to be somewhat coarse. To improve it, one has to add

— structural conditions that guarantee linearization to work, but also

— more regularity and smallness conditions for the nonlinearity h.

3 A positive result for the case ind{A, B} =2

In this part we study equation (1.1) with an index-2 matrix pencil {A, B}. For that
case, we shall verify our improved conjecture (cf. Section 2) and give precise formula-
tions of all additional assumptions needed, respectively.

For more clarity, we recall the standard assumptions used in Section 1 and indicate
them as (A).

Assumption (A):
(i) h: D x [0,00) = IR™, D C IR™ x IR™ open,
0D, h(0,0,t)=0 for tel0,00),

h is continuous together with its partial Jacobians hl,, h!.



(ii) To each small ¢ > 0, a d(¢) > 0 can be found such that |z| < d(g), |z'| < d(e)
yield
bl (', xz,t)] <e, |h(z' 2, t)|<e

uniformly for all ¢ € [0, c0).

(iii) {A, B} is a regular matrix pencil.

(iv) N :=ker A C ker hl, (2, z,t) for all (2',z,t) € D x [0, 00).

Further, let us formulate certain additional smoothness and smallness conditions as

suggested by Example 2 in §2.

Assumption (B):

(i) The function h defined by h(z,t) = (I — AAT)h(0,2,t) has also continuous

partial derivatives h}, h,, hl_.

(ii) h.(0,t) = 0 for all t € [0, c0).

(iii) A constant x can be found so that, with d(¢) from (A), |z| < d(¢e) yields

A" (x,t)] < ke for all t € [0,00).

(iv) R!,(z,t) is uniformly bounded by a constant & > 0.

For the special DAE (2.2) it holds that AA* = diag{1,0,1}, h(z,t) = (0, q(t)22,0)T.
If the function ¢(-) and its derivative ¢'(t) are uniformly bounded as discussed in Ex-
ample 2 (§2), then this special h fulfils (B).

The following matrices and subspaces will be used below (cf. [9]):
N :=kerA, S:={z€ R":Bz¢cimA},

QeL(R™), Q*=Q, imQ=N, P:=1-Q,

Ay = A+ BQ,

Ny :=ker A;, S;:={z€ R™:BPz € im A},

Q1 € L(R™), Q7 =Q1, imQy =Ny, Pr:=1-0Q,

Ay = A1 + BPQq,

VeL(R™, V2=V, imV=NnS, U:=I1—V.

It is well-known that the pencil {A, B} has index 2 if and only if A, is nonsingular
but A, A; are singular (e.g. [9]). Moreover, if {A, B} has index 2, we can use the
decomposition IR™ = N; & S;. Hence, a convenient choice of the projector ) is given
by this decomposition. In the following we agree to have, more precisely, im ()1 = Ny,
ker ()1 = S1, and consequently (e.g. [3], [9]),

Q1= Q1A;'BP = Q1A;'B,  Q1Q = 0. (3.1)
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The relations (3.1) lead to

(PP)*=PP, (PQi)* = PQ,
1427114213]_]37 A;lB:Angppl—i—Ql—i—Q

Scaling equation (1.1) by A,*! yields
(PPz)' (t) — QQi(PQz)'(t) + Ay ' BPPia(t) + Quz(t) + Qu(t)

(3.2)
+ATh((PPx)' (t) + (PQiz)' (1), x(t),t) = 0.
We decompose
r=Pr+Qr=PPix+ PQix+Qr =u+v+w,

and decouple (3.2) into the system

u'(t) + PP A  Bu(t) + PP Ay h( "(t) + o' (t), u(t) +v(t) + w(t),t) =0, (3.3)
v(t) + PQuAy h(u/(8) +v'(1), u(t) +v(t) +w(t),t) = 0,
—QQuv'(t) + w(t )+ PQ1A; Bu(t)
+QPL A h(u (t) + o' (t), u(t) + v(t) + w(t),t) = 0. (3.5)
Because of im Q@Q; = N NS the latter equation (3.5) splits up further into

Uw(t) + UQA, Bu(t) + UQA, *h(u'(t) + v'(t), u(t) + v(t) +w(t),t) = 0, (3.6)
—QQu'(t) + Vw(t) + VQPL Ay Bu(t)

+VQPL AT h(u () + ' (1), u(t) + v(t) +w(t),t) = 0. (3.7)

If the nonlinearity h disappears, equation (3.3) simplifies to a regular explicit linear
ODE for u(-) that has the invariant subspace im PP;. (3.4) realizes v(t) = 0, hence it
results that z(t) = u(t) + w(t) = (I — PQiA;'B)u(t) = (I — PQ,Ay'BPP,)PPu(t).
Note that .., == (I — PQA;'BPP;)PP; is also a projector. It holds that ker [1.,, =
ker PP, = N & N;. Further, im Il.,, represents the finite eigenspace of the matrix
pencil (cf. [8]), while the vectors Uw correspond to that part of the infinite eigenspace

that has simple structure. The vectors Vw and v form the respective part for Jordan
blocks of order 2.

In [10] we find the relation
im A = ker((PQ; + UQ)A3"), (3.8)
which will become very helpful to realize the appropriate structural conditions below.
Lemma 3.1 Given (A), ind{A, B} = 2. Additionally, let
im hly (2, z,t) Cim A for (o', z,t) € D x [0,00). (3.9)
Then the identity
(PQ1+UQ)A ' h(y, z,t) = (PQy + UQ) A, (I — AAT)h(0, z,t) (3.10)

18 valid.



Proof: Due to (3.9) we have

1
(PQy +UQ)A (h(z,y,t) — h(0, 2,1)) / PQy + UQ)A3 R, (sy,z, t)yds = 0.
0

On the other hand, (3.8) implies

(PQ1 +UQ)At = (PQ, +UQ)A M (I — AAT).
]

Note that condition (3.9) further specifies the possible structure of (1.1). By Lemma 3.1,
the equations (3.4) and (3.6) are much simpler now, namely

v(t) + PQLAS ' h(u(t) + v(t) +w(t), t)
Uw(t) + UQA; ' Bu(t) + UQAF ' h(u(t) + v(t) + w(t),t)

We put them together compactly to
y(t) + UQA;'BPPi2(t) + (PQy + UQ)A; *h(y(t) + (PP + VQ)z(t),t) =0, (3.11)
where
y:=v+Uw, z:=u+Vuw. (3.12)

Clearly, if x(-) satisfies the original DAE (1.1), then (3.11) is satisfied by y(-) =
PQiz(-) + UQx(-) and z2(-) = PPix(-) + VQx(-).

Equation (3.11) suggests to realize y as a function of z and ¢ by applying the Implicit
Function Theorem.

Lemma 3.2 Let (A), (B) as well as (3.9) be given, ind{A, B} = 2. Then, for suf-
ficiently small € > 0 and the corresponding 6(¢) > 0 from (A), there is a uniquely
determined function f : D(e) x [0,00) — R™,

D(e) = {z € R™: (1+2lUQA;' BP|)|(PP, + VQ)z| < $i(e)}
satisfying

(i) f(z,t) + (PQ1 + UQ)AT h(f(z,t) + (PP, +VQ)z,t) + UQA;'BPP,z = 0,
z € D(e), t €[0,00).

(ii) f is continuous and has continuous partial derivatives fL, fI.. fi, fl.

(iii) It holds that

f(0,8) =0, f/(0,¢)=0, f.(0,t)=—-UQA;'BPP;,
(PQ1+UQ)f(2t) = f(2.t) = fF(PP, +VQ)zt), z€D(e), te€l0,00).
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For the proof we refer to Section 4 below.

Lemma 3.2 enables us to rewrite (3.11) locally equivalently as

y(t) = flu(t) + Vw(t),t)
and, in more detail, as

v(t) = Py(t) = Pf(u(t) + Vw(t),t), (3.13)
Vu(t) = Qy(t) = Qf (u(t) + Vw(t), t).

Considering once more equation (3.5) we know that '() is needed. Our concept of
C3-solvability means in terms of the decomposition used that u(-) = PPix(-), v(-) =
PQqz(+) are from C* and w(-) = Qz(-) is just continuous. The idea is now to further
specify the structure of (1.1) by supposing that

Pf(z,t) = Pf(PPz,t), z€D(e), te]0,00) (3.14)

or, equivalently, Pf!(z,t)VQ = 0. In other words, f!(z,t) is forced to map N & N;
into N. By this we meet the natural smoothness of the solution, and we are allowed
then to differentiate equation (3.13) with respect to t. We derive

V'(t) = Pfl(u(t), t)u'(t) + Pf(u(t),t). (3.15)

Now, expressions for v(t), v'(t), Uw(t) in terms of u(t), «'(t), Vw(t) are available.
Inserting them into the equations (3.3) and (3.7), there results a system

u'(t) = —PPA; Bu(t) + o(u'(t),u(t), Vw(t), t),
Vw(t) = ¢(u'(t), u(t), Vu(t), 1)

that could be transformed locally into a system that reads

u'(t) = —PPA Bu(t) + g(u(t),t), (3.16)
Vw(t) = k(u(t),t). (3.17)

Together with
v(t) + Uw(t) = f(u(t) + Vw(t),t) (3.18)

provided by Lemma 3.2, we arrive at a local decoupling of (1.1). If x(-,2° ty) solves
the initial value problem for (1.1) and the initial condition

PPx(ty) = PPa®, 2° € R™, (3.19)

with sufficiently small |[PPyz°|, then u(-) = PPyz(-,2° ty) satisfies the regular ODE
(3.16), but also

U(to) == PPll'O.
Moreover, the components v(-) = PQyz(-, 2% ty) and w(-) = Qz(-,2°, t,) satisfy (3.17),
(3.18). The resulting idea is to use such decouplings to construct all neighbouring
solutions of the zero-solution.
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Let us recall once more the structural conditions used for (1.1) and denote them by

(C).
Assumption (C):
(i) im Al (', z,t) Cim A, (2, z,t) € D x [0, 00).
(ii) fl(z,t) maps N @ Ny into N for z € D(e), t € [0, 00).

Now, we are ready to formulate our main result that sounds as clear as its classical
model.

Theorem 3.3 Given the Assumptions (A), (B), (C) andind{A, B}=2, c{A, B} CT".
Then the trivial solution of (1.1) is asymptotically stable in the sense of Lyapunov with
IT:= PP;.

The proof will be carried out in Section 4.

Remarks:

1) Theorem 3.3 generalizes the results for autonomous DAEs in [2]. This is not as
trivial as one might think when coming from the regular ODE case.

2) The nullspace ker(PP;) = N @ N; is nothing else but the infinite eigenspace of
the pencil {A, B}. Instead of PP; for stating the initial conditions we can use
any matrix C' that has the kernel N & Nj.

3) Concerning condition (C), it is somewhat difficult to check its second part in
practice. The function y = f(z,t) is only implicitly given by the equation

y+UQA;*BPPz + (PQ 4+ UQ)A; *h(y + (PP, +VQ)z,t) = 0. (3.20)

We close this section by providing sufficient criteria for (C)(ii) to be valid, which are
given in terms of the original data of (1.1). For different index-2 DAEs those criteria
are proposed in [4] and [10], respectively.

Lemma 3.4 Let (A), (B) as well as (C)(i) be given, ind{A, B} = 2. Then each of the
following 4 conditions implies condition (C)(ii) to be satisfied:

h
{z € R™: Bz+ hl,(y,z,t)z € im A} NN = {2z € R" : Bz € im A} N N for
(y,z,t) € D x [0,00).

12



The proof is given in Section 4.

Although criterion (iv) related to certain subspaces looks somewhat strange, it seems
to be very useful in practice, e.g. in circuit simulation ([11]).

Systems in Hessenberg form are often of special interest, that is

zy + Buixy + Biara + g1(21, 22,t) = 0, (3.21)
Boyzy + g2(z1,t) = 0 (3.22)

System (3.21), (3.22) is a Hessenberg form equation of size 2 if By; By is assumed to
be nonsingular. With A = diag(/,0), AA" = diag(7,0) we find

Hart) = (92(9?17t)>’

further N = {(2) eER™: 2z = 0} and thus h(z,t) = h(Pz,t).
Applying Lemma 3.4(i) we conclude the following assertion.

Corollary 3.5 Condition (C) is valid in case of Hessenberg form equations (1.1) of
size 2.

4 Proofs

Proof of Lemma 3.2:

Let the conditions (A) and (B) be satisfied, further ind{A, B} = 2. The structural
condition (C)(i) (which is the same as relation (3.9)) is also assumed to be valid. Since
Ay is a constant nonsingular matrix, the smallness conditions (A)(ii), (B)(iii) apply
also to Ay'h, A7*h. Hence, there is a 6(g) > 0 to each small e > 0 such that |z| < d(e),
ly| < d(e), t € [0,00) yield

|A51h;/(y,$,t)| S €,
A (y, 2, t)] < e, (4.1)
AT Ry (y, @, t)] < ke

Because of
A h(y, x,t) = AH{h(y,x,t) — h(0,0,1)}

1
= [{AS o (sy. 52, )y + Ay e (sy, sz, tya}ds
0

and

1
A3 Ry, 1) = A (g, 0) = By(0,0)} = [ 3B (s, ads,
0

13



from (4.1) it follows immediately that
A3 Ry, 2. )] < e(lyl + [2]) (42)

and .
| A5 hi(, )| < wela] (4.3)

hold true for |z| < d(¢g), |y| < d(e), t € [0,00). Consider the function (cf. (3.11))

F(y,z,t) == —(PQ1 +UQ)A;'h(y + (PP, + VQ)z,t) — UQA;'BPP,z
= —(PQ1 +UQ)A'R(0,y + (PP, +VQ)z,t) — UQA,'BP(PP, + VQ)z

mapping from IR™ x IR™ x IR into IR™. Denote r; := |PQ; + UQ| and choose & small
enough to realize 2k1e < 1. Then, F' is well-defined on B(e) x Dy(e) x [0, 00), where

1
Be) = {ye R": |y < 50,
1
Dy(e) = {z € R™: |PPiz+VQz| < 5(5(5)}.
More precisely, for all y, 5 € B(e), z € Dy(e), t € [0,00), we have

F(0,0,t) =0,
F(y,2,t) — F(5,2,1)] < mely — g,
F(y,2,8)] < racly + (PP, + VQ)2| + [UQA; \BP| |PPyz + V Q2

1 1
< 5lyl+ 5(1+20UQA, ' BP|)| PPz + VQz|
Form the set D(e) C Dy(e),
1
D(e) = {z € R™: (1 +2|UQA;'BP|)|PPz + VQz| < 55(5)},

such that for each fixed z € D(e), t € [0,00), F(-,2z,t) maps the closed ball B(e)

into itself. Since F'(-, z,t) is contractive with ex; < % due to Banach’s Fixed Point
Theorem, there is a uniquely determined function

f:D(e) x [0,00) — B(e) € R™
such that, for all z € D(e), t € [0, 00),
f(z,t) = F(f(z,1), 2t

)
FO. =0, 1f(0] < 55(6),
(PQI + UQ)f(Z,t) = f(zvt) = f((PPI + VQ)th)

(4.4)

hold true.
By the Implicit Function Theorem, the smoothness of F' is passed on to the function
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f. Since F'is continuous together with its partial derivatives F, F}, F}, F, , F,, F,
FII

", FlLo(cf. (A), (B)), the implicitly given function f is also continuous and possesses

continuous partial derivatives f., f/, fI' | fI. Further with

Fi(y,z,t) = —(PQi + UQ) Ay 'R, (y + (PP, + VQ)z, 1)
we have

F}(0,0,t) =0,
|Fé(y,z,t)| S k1€,

hence the matrix I — F}(y, z,t) remains nonsingular uniformly for y € B(e), z € D(e),
t € [0,00). The relations

f:0,t) = ~UQA;'BPP1,  f{(0,t) =0, t€[0,00)
are obtained immediately by differentiating (4.4) and considering

F!(0,0,t) = ~-UQA,'BPP,, F/(0,0,t) = 0.
O

Next we derive some further properties of the function f to be used in the proof of
Theorem 3.3 below.

Corollary 4.1 With k3 := |P||PPi+VQ+UQA5'BPPy], forallz € D(e), t € [0,00),
it holds that

fi(z0)] < o w0(e), (4.5)
PAz 0] < 7o (4.6)
f;,t(ovt) = 0. (47)

Moreover, there are constants k4, ks such that |fI.(z,t)| < kg4 and
|fl(z,t)] <ers for ze€D(e), tel0,00). (4.8)

Proof: First of all we have

1
I—F' 7L <
(= Fyly2.0) 7 < g

for all y € B(e), z € D(¢), t € [0,00). From f{ = (I — F,)"'F{ and (4.3) we conclude

ER1

@8] < T wlf () + (PP +VQ)2| < O(e).
1

1-— 1—er
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From f! = (I-F!)"'\F! = —(I-F!) " (PQi+UQ) Ay * i, (PP+V Q) —(I-F!)"'UQA; ' BP P,

we obtain

|fl(z,t) + UQA;'BPPy| <

< T (PQi+UQ)AT'R.(f(2,t) + (PP+VQ)z, t){PP,+VQ—-UQA;*BPP,}|
- 1
< \PP 4+ VQ - UQA;'BPP,
1 —ekKy
hence,

|Pfiz0)] = [P(fi(z,t) + UQA, ' BPPy)| <

€K1|PP1+VQ+UQA518PP1| <
1 — ek 1 —ery

ER1

S |P| R3.

Since f. = (PQ1+UQ)f. = fL(PPL+VQ) and (PP, +VQ)(PQ1+UQ) = 0, we may
express the second derivative f, simply as

fl.=—F) 'F..

Due to (B)(iv), F?, is uniformly bounded, therefore f, is so, too.
Finally, using the above arguments once more we find the expression

flo = (I=F)) "{Ffl+Fi}
= —(I - E))™(PQ: + UQ)A;* W {PP, + VQ — f.}.

In particular, 27,(0,t) = 0 (cf. (4.1)) leads now to f(0,t) = 0. Moreover, we may
estimate
K1
1 — ek
< Kj - €.

|f7i(z, 1) ke(|PPL+VQ[+[fi(2,1)])

IN

|

Let us stress once more that, if a C}-function z(-) in the neighbourhood of the origin
solves the DAE (1.1), then it satisfies also the identity

(PQ1+UQ)x(t) = f(PPL+VQ)x(t),1).
With the denotations u := PPz, v := PQ,z, w = Qz this reads
v(t) + Uw(t) = f(u(t) + Vw(t),t).
In particular, it holds that
v(t) = Pf(u(t) + Vw(t),t).

Now, the structural condition (C)(ii) casts the nullspace component out from the func-
tion P f such that

v(t) = Pf(u(t),t) (4.9)
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results. Differentiating yields the expression
v(t) = Pf(u(t), )u'(t) + Pfi(u(t), ). (4.10)
Rewrite equation (1.1) scaled by A,*, that is equation (3.2), as

PP/ (t) + Ay'BPPx(t) + (I — PP)x(t) + QQu(PQyx)(t)
—QQ1(PQ1x)(t) + Ay h(PP2' () + (PQ1(z)'(t), x(t),t) = 0. (4.11)

This formulation suggests to replace the terms PQqz, (PQ1x) by means of (4.9) and
(4.10), respectively. Then we arrive at the DAE

PP (t) + A;'BPPyx(t) + (I — PP)x(t) + H(2'(t),z(t),t) = 0, (4.12)

where the nonlinearity H is introduced as the following map from IR™ x IR™ x IR into
R™:
H(z' z,t) == A'h(PPi’ + Pfl(x,t)PPyx’ + Pfl(x,t),z,t)
—QQ1{Pf.(x,t)PPix’ + Pf(x,t) — Pf(x,t)}.

Recall that Pf(z,t) = Pf(PPu,t) due to (C)(ii). For t € [0,00), [PPia'| < $4(c).
PPz € D(e) the inequalities (4.5), (4.6) yield the estimation

|PPiz’ + Pfi(z,t)PPia’ + Pfi(x,1)] <

1 ER1
)
<30+

— (ks + 2IP}e) 50(e) < 5(e)

supposed ¢ is chosen small enough to realize

ER1 1
2|Plk) <1 < —. 4.13
(g + 2P S 1 e < (4.13)

By this, the function H is well-defined for |[PPia’| < 34(c), |z| < d(¢), PPiz € D(e),
t €10, 00).

Lemma 4.2 Given a regular index-2 matriz pencil { A, B}, A:= PP, B:= A;'BPP,+
(I — PPy). Then, {A, B} is a reqular pencil of index 1 the finite spectrum of which
coincides with that of {A, B}, i.e.,

o{A, B} = 0{A, B}.

Proof: Obviously, Az = 0, Bz € im A imply z = 0, i.e., {4, B} is regular and
ind{A, B} = 1. Consider (A + B)z = 0, or equivalently,

(MF'A+AT'B)2 =0, ie.,
(AMPP, — QQy) + A;'BPP, + Q) + Q)z = 0. (4.14)
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Multiplying by PQ; gives PQ1z = 0, further QQ1z = QQ1PQ1z = 0. Thus (4.14)
simplifies to
APPz + A,'BPP 2z 4+ Qz = 0.

On the other hand, starting with

(M +B)z=0, ie.,
APP,z + A;'BPPyz 4+ PQz + Qz = 0,

we also find that PQ);z = 0 has to be true. O

At this place let us mention that the eigenvectors associated to finite eigenvalues have
the property z = PPz + Qz = (I — QP,Ay"BP)PP;z, and im(I — QP,A;*BP)PP,
represents the finite eigenspace that has dimension dimimPP; = m—dim N—dim NNS.

Proof of Theorem 3.3:

As we have shown above, each small C}-solution of (1.1) satisfies (4.12). On the
contrary, if z(-) is a Cy-solution of (4.12), by multiplying by (PQ; + UQ) we find the
relation

(PQy + UQ)x(t) + (PQy + UQ) Ay h(x(t), t) + UQA;*BPPa(t) = 0
to be satisfied, hence
(PQ1+UQ)z(t) = f(PP+UQ)x(t),1)
and due to the structural condition (C)(ii)

PQ.x(t) = Pf(PPix(t),t)

1), (4.15)
(PQ1x)'(t) = PfL(PPx(t),t)(PPx) (t) + Pf(PPx(t),t).

Then, we have

H(a'(t), x(t),t) = Ay'h(PPia'(t) + PQua'(t), 2(t), 1) — Q@i {PQu2’(t) — PQux(t)}
= Ay 'h(2'(t), 2(t),t) — QQua'(t) + QQux(t).

Inserting this expression into (4.12) we obtain (4.11), i.e., each small C} solution of
(4.12) satisfies the original DAE (1.1).

The function H has a priori the property N @& Ny = ker PP, C ker H., (', x,t) such
that the identity
H(2',xz,t) = H(PP2', x,t)

is valid. Naturally, the solutions of (4.12) belong to the class

Chon, :={z € C: PPz € C'},
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which is larger than Cy = {z € C : PPix € C', PQx € C'}. From this point
of view, the solutions of (1.1) seem to be smoother than those of (4.12). However,
the representation (4.15) shows clearly that due to the smoothness of f, which results
from (A), (B), (C), each solutions of (4.12) has a continuously differentiable component
PQ.z(t), too, i.e. each solution of (4.12) has Cj-regularity. Consequently, (1.1) and
(4.12) are equivalent.

Now we show that the respective stability result for the index-1 case ([7], Lemma 4.1)
applies to equation (4.12).

By construction, it holds that

H(0,0,t) =0, t €0,00).
H is continuous with continuous derivatives
H!, = AW {PP, + Pf.PP,} — QQ,Pf. PP (4.16)

and
H), = AW, {Pfl,PPix’PP + Pf PP} + A; '},
(4.17)
—QO{Pfl,PPx'PP, + Pf{,PP, — Pf.PPi}.

It remains to show that the nonlinearity H is small in the sense of (A)(ii).

In the following, if we apply the inequalities (4.1), we choose d(g) small enough such
that d(e) < e becomes true. Fore > 0 satisfying (4.13) and |PPyz'| < %5(5), lz] < d(e),
PPz € D(e), t € [0,00), we find

ER1 ER1

) +1QQ|
— €Ky 1 —eKy
< e(|PPi| + k3 + 21| QQ1]) = 1€,

[y (2! 2, t)] < e(|PPy] + s < e,

L 1 1 €K1
|H. (2, 2z, t)| < e+ €|P|(n4 : 5(5(6)4-6/{5) + |QQ1|(I€4§(5(€)+€I€5) + |QQ1|I€31_€H1
1 1
< 5(1 +5|P|(’f4 ' + “5) + |QQ1|(H4 '3 + 55) + [QQ1 k3 - 2)
< cqe.

The condition PP,z € D(¢) means (1 + 2|UQP,A;' BP|)|PPyx| < %(5(8). If PP, =0,
it is satisfied trivially for all z € IR™. Denote §*(¢) := %5(5) if PP, = 0, but otherwise
5 (e) = min{L, (1 + 2{UQPLA; ' BP) " |PP,| "} - %5(5).

Then, with ¢ := max{cy, c2}, the inequalities
|H., (', z,t)] < ce, |H. (2,2, t)] < ce
are fulfilled for all
|PPyz'| < 6%(e), |z] < 6%(e), te€]0,00).
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Now, [8], Lemma 4.1 applies to (4.12). Since 0{A, B} C @~ by Lemma 4.2 above, the
trivial solution of (4.12) is asymptotically stable. Thereby, we can put II = PP;. In
any case, Il has to have the nullspace ker Il = N & N, which represents the infinite
eigenspace of the index-1 pencil {4, B} as well as the index-2 pencil {4, B}. a

Proof of Lemma 3.4:
(i) Recall that for the projectors V € L(IR™) onto N NS = imQQ; we have QV =V,
V@ = QVQ. The property h(z,t) = h(Pz,t) simplifies equation (3.20) to

y=—(PQ1 4+ UQ)A;*h(Py+ PP,z,t) — UQA;*BP Pz,

that means, the function y = f(z,t) implicitly given by (3.20) depends on PPz only,
le.
f(Z,t) = f(Pplzvt)v

thus Pf(z,t) = Pf(PPz,t).
(ii) Since h(z,t) — h((I — VQ)z,t) belongs to im A we may use the identity

(PQ1+UQ)Ay h(z.t) = (PQ1 + UQ) Ay h((PPL + PQy + UQ)x. t).
Now, (3.20) reads

y=—(PQy +UQ)A;'h((PP, + PQ, +UQ)y + PPiz,t) — UQA; ' BPP,z.

Again it results that f(z,¢t) = f(PP;z,t) holds a priori.

(il) h(z,t) — h(Pz,t) € im A, yields PQ A7 h(z,t) = PQiA7'h(Pz,t), hence
PQ1A'R, = PQA'H.P.
Multiplying the equation for f!

fi = =(PQu+ UQA AL, + (PP +VQ)}
by P we obtain
Pfl==PQiA; "W {f. + (PPL +VQ)} = —PQA; W {Pf. + PP},
Consequently, we have
Pfl(z,t) = Pfl(z,t)PP;.
(iv) Denote w := VQz and compute

1
h(z',x,t) — h(z', (I = VQ)x,t) = /h'x(x',x — (1 = s)w, t)dsw.
0

Because of we NNS, NNS=NnN{ze€ R":Bz+hl(z',x — (1 —s)w,t)z € im A}
we know that also

Bw + hl(z',xr — (1 — s)w,t)w € im A, s € [0,1],
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is fulfilled. Therefore

hence

h(z',z,t) — h(z', (I = VQ)x,t) + BVQz € im A,

Because of (PQ; +UQ)A;'BVQ = 0 we may conclude

(PQ1+ UQ)A7 ' h(z,t) = (PQ1 + UQ)A7 ' h((I - VQ)z,t)

and finally use the same arguments as we did for (ii). 0
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