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Abstract

In this work, self-organization in semiconductor lasers with ultra-short optical
feedback is investigated. Exploiting dc currents to tune the relevant feedback
parameters, we have experimentally prepared and studied a number of novel
nonlinear dynamical scenarios.

Two different types of self-sustaining intensity-pulsations are detected de-
pending on strength and phase of the feedback. One type of pulsations is
emerging in a Hopf-bifurcation from relaxation oscillations. These oscilla-
tions become undamped due to dispersive self-Q switching. The second type
of pulsations is a beating of distinct compound-cavity modes. It is also born
in a Hopf bifurcation. These findings represent experimental evidence for
theoretical predictions. A supplementary mode and stability analysis agrees
well with measurements.

Coexistence of mode beating and relaxation oscillations gives rise to the
break-up of regular pulsations into chaotic emission via a quasi-periodic route
to chaos. The sudden destruction of chaos is indicative of a boundary crisis
scenario, in which we see a discontinuous disappearance of an attractor. The
existence of chaotic saddles underlying transient chaotic dynamics which ap-
pears behind boundary crisis is experimentally verified. It is experimentally
demonstrated that an excitation of chaotic transients is closely related to
a conventional excitability. The experiment is supplemented by numerical
simulations.

The influence of external Gaussian noise close to the onset of sub- and
super-critical Hopf bifurcations is studied. Noise-induced oscillations appear
as a noisy precursor with Lorentzian shape peak in the power spectrum. The
coherence factor defined by the product of height and quality factor exhibits
non-monotonic behavior with a distinct maximum at a certain noise intensity
for both types of Hopf bifurcations, demonstrating coherence resonance. Be-
sides these similarities, the measurements reveal also qualitative differences
between the two cases. Whereas the width of the noise induced peak in-
creases monotonically with noise intensity for the supercritical bifurcation, it
traverses a pronounced minimum in the subcritical case. The experimental
findings are examined in terms of general model for the noise driven motion
close to bifurcations.
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Zusammenfassung

In dieser Arbeit wird die Selbstorganisation in Halbleiterlasern mit ul-
trakurzer optischer Rückkopplung untersucht. Es wurden eine Vielzahl neuer
nichtlinearer dynamischer Szenarien experimentell präpariert und untersucht,
wobei die Steuerung der relevanten Rückkopplungsparameter über Injekti-
onsströme erfolgt.

Zwei verschiedene Typen von selbsterhaltenden Intensitätspulsationen
wurden abhängig von der Phase und der Stärke der Rückkopplung gefunden.
Ein Pulsationstyp entsteht in einer Hopf-Bifurkation aus gedämpften Rela-
xationsoszillationen. Diese Oszillationen werden durch dispersives Selbst-Q-
Schalten entdämpft. Beim zweiten Pulsationstyp handelt es sich um Schwe-
bungs Oszillationen zweier verschiedener konkurrierender Moden der Ge-
samtkavität. Sie werden ebenfalls in einer Hopf-Bifurkation geboren. Diese
Ergebnisse repräsentieren experimentelle Beweise für theoretische Vorhersa-
gen. Eine zusätzlich durchgeführte Moden- und Stabilitätsanalyse zeigt gute
übereinstimmung mit den Messergebnissen.

Die Koexistenz von Schwebungsoszillationen und Relaxationsoszillatio-
nen führt zum übergang von regulären Pulsationen in chaotische Emission
über eine quasiperiodische Route zum Chaos. Ein plötzlicher Untergang des
Chaos deutet auf ein Randbedingungs-Krisen-Szenario hin, wo wir ein uns-
tetiges Verschwinden eines Attraktors beobachten. Die Existenz chaotischer
Sättel, die transienten chaotischen Dynamiken nach einer Randbedingungs-
krise zugrunde liegen, wird experimentell verifiziert. Es wird experimentell
demonstriert, das̈s die Erregung von chaotischen Transienten eng verwandt
mit konventioneller Erregbarkeit ist. Dabei werden die Experimente durch
numerische Simulationen ergänzt.

Es wird der Einflußexternen Gaussschen Rauschens nahe von sub- und su-
perkritischen Hopf-Bifurkationen untersucht. Rausch-induzierte Schwingun-
gen tauchen als verrauschte Vorläufer in Form von lorentzförmigen Spitzen
im Powerspektrum auf. Der Kohärenzfaktor, definiert durch das Produkt
aus Höhe der Spitze und Qualitätsfaktor, zeigt für beide Typen von Hopf-
Bifurkationen ein nichtmonotones Verhalten mit einem ausgeprägten Maxi-
mum bei einer bestimmten Rauschintensität. Damit wird Kohärenzresonanz
experimentell demonstriert. Die Messungen zeigen neben diesen übereinstim-
mungen auch qualitative Unterschiede zwischen den beiden Fällen. Während
die Breite des rauschinduzierten Vorläufers im Falle der superkritischen Bifur-
kation monoton wächst, durchläuft sie im subkritischen Fall ein ausgeprägtes
Minimum. Die experimentellen Ergebnisse werden mittels eines allgemeinen



Modells für rauschgetriebene Bewegungen in der Nähe von Bifurkationen
untersucht.

Schlagwörter:
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Chapter 1

Introduction

Self-organization refers to a process in which the internal organization of
a system increases spontaneously without being imprinted by an outside
source. There exists a vast number of examples of self-organization in physics,
chemistry, and biology. The laser is a paradigm of self-organization in open
systems [Hak83a]. When the atoms of the laser material are excited or
"pumped" from outside, they emit light waves. If the laser atoms are pumped
only weakly by external sources, the laser acts as an ordinary lamp. The
atoms independently of each other emit wavetracks with random phases. If
the pumping is further increased, suddenly within a very sharp transition re-
gion the linewidth of the laser light may become of the order of one cycle per
second so that the phase of the field remains correlated on the macroscopic
scale.

Feedback may change dramatically the dynamics of systems. A num-
ber of new ordering effects can occur [Goo89]. Prominent examples of such
systems are laser with delayed optical feedback when an external mirror is
placed at a distance from the laser and reflects a part of the output back
into the device. Most of the research regarding delayed optical feedback to
date aims at feedback lengths from many meters down to a few centimeters.
Feedback setups with these external cavity lengths are interesting because
of the very complex and irregular dynamics they can provide. A practical
application is the generation of chaotic optical signals for encrypted com-
munication [Oht02]. Very recently, the regime of short feedback delay has
attracted much attention due to the nontrivial dynamics [HFEG01]. A char-
acteristic phenomenon in the short cavity regime is the occurrence of regular
and irregular pulse packages [HFE+03].

This thesis investigates the novel regime of ultrashort feedback delay. It is
achieved when semiconductor laser and feedback part are integrated on a sin-
gle chip, both with the same length dimensions of a few hundred micrometers
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only. An outstanding feature of these devices is that the feedback parameters
can be tuned by the injection currents. It has been shown that the phase
space can be tailored by change of these injection currents [BBK+04; Bau05].
My work is dedicated to the investigation of self-organization processes in
such devices, also exploiting external regular and stochastic perturbations.
In Chapter 2, I experimentally verify that undamped relaxation oscillations
(ROs) and mode beating (MB) oscillations are the generic pulsation types
for the laser with ultra-short optical feedback. Also is shown that both types
of pulsation appear in a Hopf bifurcation [UBB+04; UBOBH04]. Chapter 3
is devoted to the appearance of chaotic dynamics. The quasi-periodic route
to chaos, which results in a high-dimensional torus-like chaotic attractor is
detected. Furthermore, a sudden destruction of chaotic motion is experi-
mentally and numerically observed. A global bifurcation, a boundary crisis
(BC), is responsible for the destruction of the chaotic attractor.

Chapter 4 combines two nonlinear dynamical phenomena, excitability
and chaotic transients, treated so far only separately. Excitability means
that the response of a system on external perturbations is "all" or "none" de-
pending on whether the strength of the stimulus is above or below a critical
threshold. Prominent examples of excitable systems are the spiking of neu-
rons [Hod47], the cardiac muscle [Mur93], the dynamics of life populations
[CB99], or nonlinear chemical reactions [ZZ70]. On the other hand chaotic
transients (CT), usually appearing behind BC, are long episodes of chaotic
behavior which end eventually at an attractor that is usually not chaotic.
In my experiments, high-dimensional CT are excited by short optical pulses.
The excitation of the CT exhibits a distinct threshold as well as a refractory
time and, sufficiently far from the boundary crisis, the standard response of
excitable systems is observed [UKR+06].

In Chapter 5, I study the impact of external stochastic perturbation on
the dynamics of the laser, close to a Hopf bifurcation. Noise induces os-
cillations near an onset of a bifurcation [EHRSG86; Wie85]. The regular-
ity of these oscillations can be improved, and coherence resonance [PK97;
GDNH93; NSS97] is detected. The noise improves the signal-to-noise ratio
[GDNH93; NSS97]. However, while the existence of an optimum noise level
is a common feature for both types of Hopf bifurcations, the physics behind
the resonance effect is qualitatively different. In the supercritical Hopf bifur-
cation, the damping is a monotonic function of the amplitude and, hence, of
the noise. The subcritical case is distinguished by a nonmonotonic relation
between the local damping and the noise intensity. These results are pub-
lished in [UWFH+05; KLGZ06]. Finally, Chapter 6 summarizes my thesis
with conclusions.



Chapter 2

The regime of ultrashort
optical feedback

2.1 Introduction
The single-mode laser is a paradigm of self-organization in dissipative sys-
tems [Hak83a]. At threshold it undergoes a transition from incoherent to
coherent emission. One optical mode becomes undamped here in a Hopf bi-
furcation. Its contribution to the optical field is harmonically oscillating and
dominates beyond threshold, giving rise to high coherence. Distributed feed-
back (DFB) semiconductor lasers come close to this ideal [CWP98]. They
exhibit continuous wave (CW) single mode emission up to high pump cur-
rents. Upon a perturbation, the intensity returns back to the stationary CW
value with well damped relaxation oscillations (RO). Optical feedback can
destabilize the CW state [LK80]. Phenomena like self-sustaining intensity
pulsations, coherence collapse [FHME98], and others have been recently pre-
dicted and experimentally observed. Potential applications cover high-speed
data transmission, cryptography [Oht02], etc.

Optical feedback is usually achieved by combining the laser with an ex-
ternal mirror, see Fig.2.1. Three parameters are characterizing the feed-

Figure 2.1: Scheme of a feedback setup. κ - feedback strength, φ - feedback
phase, τ - feedback delay time
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back. First, the feedback strength K gives the ratio of in- and outgoing
field amplitudes |Ein/Eout| at the laser facet. The second parameter is the
feedback delay time τ = 2L/c, which depends on the feedback cavity length
L. Together with the lasing frequency ω0 of the solitary laser it gives the
third parameter, the feedback phase φ = ω0τ .

Theoretically, two approaches have been used, in order to investigate the
delayed feedback configuration [WT02]. One of them is the full travelling-
wave equations (TWEs) [RWS+00]. The resulting TWEs can be solved nu-
merically, e.g. with the LDSL simulation tool [KRWH03]. This allows to
regard effects like gain-compression, gain-dispersion and arbitrary feedback
strength. Although giving a detailed description of the experimental situ-
ation [KRWH03; BBK+04], this approach has one important disadvantage:
basic mechanisms are hidden by the complexity of the model.

For the understanding, the simple rate equations are commonly used in
order to qualitatively describe the dynamical phenomena. In a phenomeno-
logical approach, the equation for the optical field can be supplemented by
an additional feedback term responsible for the re-injected light. This results
in the mean-field rate equation in normalized form

d

dt
E(t) = 1

2(1 + iαH)NE(t) + ηe−iφE(t− τ), (2.1)
d

dt
N(t) = ε(J −N − (N + ν)|E(t)|2). (2.2)

for the field of slowly varying amplitude E and the carrier density N with αH
as the Henry factor, φ as the feedback phase and η as the effective feedback
strength. ε = τ/τc is small with respect to the other coefficients, where τ
is feedback time and τc is a carrier lifetime. J stands for the pumping cur-
rent and −ν corresponds to the transparency density. These equations were
originally proposed by Lang and Kobayashi (LK) [LK80] for the description
of feedback effects in semiconductor lasers. By the feedback term the laser
equations are transformed into delay differential equations, which in gen-
eral have high degree of complexity due to infinite dimensional phase space
[Kra00]. The LK equations are widely used to describe lasers with feedback.
A large number of investigations have shown that this approach gives a good
description in the long- and short-cavity regimes [MTM92; HFE+03; WT02].

The behavior in presence of feedback crucially depends on the number
of modes that are of relevance in the compound device. The modes of com-
pound cavity are the steady-state continuous wave type solutions of Eqs.2.1
. The number of modes grows when the feedback strength K increases. A
second factor arises through the time-scales involved. Photon life-times in
typical semiconductor lasers are τP ≈ 1-10 ps, while the period of the relax-
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ation oscillations τR ranges between 0.1 and 1 ns. In the long-cavity limit,
addressed in most previous studies, τ is much longer than τR. The solitary
mode is hence transformed in a quasi-continuous spectrum of external cav-
ity modes, even for modest K. The consequence is an irregular dynamical
response with stochastic power dropouts. Studies on shorter cavities have
yielded qualitatively different behavior [LK80; HFEG01; HFE+03]. Here,
the feedback phase begins to influence the field-inversion dynamics in the
laser. Regular intensity pulsations have been reported already in early stud-
ies [LK80]. However, the multimode nature of the used Fabry-Perot lasers
mixes with feedback effects [LK80]. Using single mode lasers in a short feed-
back regime (τ/τR ≈ 0.3 to 1), pulse packages have been observed recently,
that originate from a global trajectory along a limited number of modes in
the phase-inversion space.

When I started my work, the metamorphosis of this scenario with even
shorter delay time was not subject to experiments. An exception are DFB
lasers with active feedback used to generate self-pulsations of several ten GHz
[BBK+02]. The dynamics of these devices is however modified by coupling
of the photons to two independent inversion ensembles [BBK+04]. Only the
limit of feedback with zero delay is well known – the reflectivity from cleaved
facets does not cause dynamic instabilities in DFB lasers.

In this chapter experimental revealing of basic self organization processes
in laser with ultrashort optical feedback is reported. The main results have
been published in Ref.[UBB+04]. In extension of these inventions, possible
transitions to chaotic operation are characterized, which have been obtained
more recently.

2.2 Phase tuning characteristics
The investigated device is sketched in Fig. 2.2. It is based on the InGaAsP-
InP material system and the optical wave is guided by a ridge waveguide
structure. It consists of two sections: a LDFB = 220 µm long DFB laser is
integrated with a passive feedback section of length LP = 200 µm. The active
bulk λgap = 1.55 µm layer of the DFB laser is embedded in an asymmetric
λgap = 1.3 µm InGaAsP optical waveguide which has an index coupled grat-
ing without phase shifts. A coupling coefficient κ = 130 cm−1 was chosen
in order to prevent mode switching between the two stop-band sides of the
DFB laser. The short wavelength mode is supported by the resulting longi-
tudinal hole burning. The facet of the DFB section is anti-reflection (AR)
coated with a remaining power reflectivity of 10−4. In the feedback section
the 1.55 µm layer is removed and the remaining layers do not directly couple
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to the emission of the laser. Its rear facet is cleaved, with a resulting power
reflectivity R ≈ 0.3. The feedback parameters are

φ = −4π
λ
neffLP , (2.3)

K = TAP exp(−αPLP )
√
R, (2.4)

τ = 2LPv−1
g . (2.5)

The phase shift φ is proportional to the effective refractive index neff which
in turn is affected by the carriers injected into this section. Therefore, the
current IP can be used for phase tuning at fixed laser parameters in contrast
to previous studies with external feedback cavity, exploiting laser current
[LK80] (and references therein) or laser temperature [HFEG01; HFE+03].

The device is produced in group of Bernd Sartorius in the Heinrich-Hertz-
Institut für Nachrichtentechnik (HHI)1, Berlin. In detail, the technical char-
acteristics of the laser is investigated in Ref. thesis [Bro05]. Measured ampli-
tude spontaneous emission (ASE) spectra are used from Ref. [Bro05] in order
to estimate the phase tuning characteristics of the device. The extracted data
are shown in Fig.2.3. More than 3 phase periods are accessible before the
phase shift saturates beyond 80 mA. A secondary effect of IP is induced
free-carrier absorption. It degrades the feedback strength K by roughly a
factor 3 in the considered range of currents. Comparing with transmission
spectra of non-biased isolated feedback sections cut from the same wafer,
we estimated about 10 cm−1 background losses in the feedback cavity and a
transmissivity TAP ≈ 0.7 of the active-passive interface. The corresponding
feedback amplitudes range from K ≈ 0.3 down to K ≈ 0.1. The measured
group index c/vg ≈ 3.5 is nearly independent of the phase current, yielding a
constant delay τ ≈ 5 ps. The according round-trip frequency τ−1 ≈ 200 GHz

1Since 2003: FhG-HHI

Figure 2.2: Schematics of the multi-section laser device and the experimental
setup. PD – photo diode, ESA – power spectrum analyzer, EDFA – erbium
doped fiber amplifier, OSA – optical spectrum analyzer, Osc – digitizing
sampling oscilloscope, SL – Alcatel laser, EPG – electrical pulse generator.
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is nearly two orders of magnitude larger than typical relaxation oscillation
frequencies and, hence, the present device realizes the limit of very short
feedback cavities.

Figure 2.3: Phase tuning properties of the passive section. Phase shift versus
phase current deduced from the ASE spectra.

The following experimental setup is used in order to detect and to char-
acterize self-pulsations. The two section laser is connected to an oscilloscope,
an optical spectrometer and an electrical spectrum analyzer by a single mode
optical fiber (SM Patchcord 9/125) from the DFB facet. The signal is am-
plified by the Erbium Doped Fiber Amplifier (EDFA). To obtain time series
the sampling oscilloscope(HP 54120B Digitize Oscilloscope, bandwidth of
50 GHz) with u2t photo diode is used. The optical spectra are measured
by a Czerny-Turner spectrometer (THR 1500, grating 600 g/mm) with an
IR camera as detector. Power spectra are acquired by an electrical spec-
trum analyzer (R&S FSP 9/40GHz, bandwidth of 40 GHz) with u2t photo
diode. The time averaged mean power is measured by an optical power-meter
(NOYES OPM 5), with averaging time of 5 s. Measurements are carried out
at varying currents in the passive and the active sections. Currents are con-
trolled by the current source (Tektronix/Profile PRO 8000). Both sections
of the laser are kept at a constant temperature 20 Co± 0.05 Co.

2.3 Regions of self-pulsations
The dynamics of the laser with ultrashort optical feedback strongly depends
on the feedback intensity. For low feedback strengths, the experimental sit-
uation is similar to a solitary laser. Once the feedback is strong enough that
a pair of longitudinal modes can coexist, additional dynamics is induced by
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beating phenomena. Mode beating (MB) requires two longitudinal modes
which are simultaneously lasing. This corresponds to the configuration first
investigated by Tager and Petermann [TP94]. The most important finding
of their work was a stable coexistence of mode and antimode, provided suf-
ficiently strong feedback and an appropriate feedback phase. These results
were later confirmed by analytical investigations in Refs. [ERGK00; WT02].

Below the feedback strength required for MB only single-mode dynamics
occurs. An analysis of the short cavity regime in [TP94] has shown that the
single-mode scenario can give rise to self-sustained pulsations. These oscil-
lations are similar as in multisection lasers comprising two detuned gratings
[TWS+00]. The setup in these devices involves a DFB mode positioned spec-
trally on a decreasing reflectivity slope of the other DFB section. Mediated
by αH , any fluctuation in the lasing DFB section leads to a variation of the
wavelength. In presence of dispersive feedback this induces a change of the
feedback strength, i.e. the resonator quality of the cavity is modified. For
this reason, the effect is also called dispersive Q-switching (DQS). As a result
of DQS, periodic modulations of the laser intensity or undamped ROs are
observed; frequencies are slightly enhanced compared to the damped ROs of
a solitary laser.

In order to find the theoretically predicted MB and URO self-pulsations
[TP94; WT02; ERGK00; TWS+00] we map the two injection currents over a
wide range. Depending on the point of operation, different types of RF and
optical spectra are observed. Fig. 2.4 shows characteristic examples. A single
line in the optical spectrum and a flat noise floor in the RF spectrum are
attributes of CW emission. Sharp and strong RF peaks and a corresponding
splitting of the optical emission line into several sublines are the fingerprints
of self-pulsations.

Fig. 2.5 shows those regions in the two-parameter plane IDFB – IP where
the major RF peak exceeds the noise floor by more than 5 dB. Cycles of
alternating SP and CW regimes appear in dependence on IP due to the phase
tuning property of this current. The injection level of the DFB section has
only a small influence on the position of the SP islands. This influence is
due to the change of the feedback phase with the emission wavelength. The
SP islands of the different cycles are similar but not identical because IP
influences not only the phase but also the strength of feedback.

The frequencies of SP range from about 1 GHz up to 24 GHz. They
increase sub-linearly with IDFB in the lower part of each SP island. This
behavior is a fingerprint of relaxation oscillations. We can conclude that those
parts of the SP-islands, which continuously evolve from these low frequency
parts are regions of undamped RO. Below we shall give more evidence for this
conclusion. We shall also proof that the high-frequency parts of the islands
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Figure 2.4: Characteristics of the most prominent types of laser emission.
Left column: power spectra, middle column: optical spectra, right column:
histograms. Upper row: CW emission (point CW of Fig. 2.5, IDFB = 65 mA,
IP = 45 mA). Middle row: undamped RO pulsation (point RO of Fig. 2.5,
IDFB = 50 mA, IP = 28 mA). Lower row: MB pulsation (point MB of
Fig. 2.5, IDFB = 70 mA, IP = 11 mA).

are MB pulsations, in particular the upper parts within the first two phase
cycles.

The right column in Fig. 2.4 shows how frequent a given optical power
is detected by the oscilloscope within a persisted time. These histograms
provide further statistical characteristics of the measured signals which is
proportional to a probability density function (PDF), see Appendix A. The
stationary state is represented by a single peak at the mean power. Its width
is a measure for the noise induced intensity fluctuations. Regular pulsations
are characterized by wide two-peak distributions. The peaks represent the
mean minimum and maximum powers. Their heights measure how fast the
intensity passes through the respective extrema. The RO histogram exhibits
a high extinction ratio and a very distinct peak at the minimum power. Thus,
the RO pulsations are comparatively short pulses separated by relatively long
valleys with minimum intensity. This is consistent with the presence of many
harmonics in the power spectra. In contrast, the extinction of MB pulsations
is smaller and the two similar peaks indicate a nearly sinusoidal behavior and
in power the power spectra single spike at the fundamental frequency.
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Figure 2.5: Self-pulsation regions in the plane of phase and DFB current.
The gray levels code the frequency of the major peak in the RF spectrum.
White: CW emission (major RF peak less than 5 dB above noise floor).
Diamonds: points of operation presented in Fig. 2.4.

2.4 Phase tuning
So far we have identified the regions and frequencies of self-pulsations. The
phase current appeared as main parameter for the bifurcations from CW to
SP. Now we give a deeper characterization of the SP and of the bifurcations
associated with the feedback phase. To these purposes we change the phase
current in steps of 0.1 mA from 0 mA to 80 mA and reverse, keeping the
DFB current at 50 mA. Mean intensity, modulation depth, and wavelength
of the emission from the DFB facet are recorded in each point of operation.
In Fig. 2.6, the data are plotted versus the phase parameter φ determined
from IP as described in Section 2.2.

Power and wavelength undergo cyclic variations with φ and exhibit dis-
tinct hysteresis effects due to the movement of external cavity modes across
the fixed DFB resonance. The power becomes maximum when a mode co-
incides with the resonance. With changing φ from here, the threshold in-
creases and the power decreases until a jump to the next better mode ap-
pears. The regions of nonzero modulation depth in Fig. 2.6c) are indications
of self-pulsations. They appear for increasing phase (forward direction) in
each period just before jumping to the next mode. Similar power and wave-



12

Figure 2.6: Control of the dynamics by feedback phase. Panel a) mean
output power P . Panel b) shift ∆λ of the main peak in the optical spectrum
Panel c) modulation depth M (difference between maximum and minimum
on the sampling oscilloscope). Solid: increasing IP . Dotted: decreasing IP .
The phase φ (bottom scale) is determined from the phase current (top scale).
The DFB current is kept at 50 mA.

length undulations were observed when changing the injection current of a
semiconductor laser subject to external optical feedback [LK80].

The different periods are not completely equivalent because IP changes
not only the phase of the feedback but also its strengthK from ≈ 0.3 down to
≈ 0.1 in the investigated current range (see Section 2.2). Obviously, hystere-
sis and pulsation effects are most sensitive to this effect. They qualitatively
change from region ii to region iii.

In regions i and ii pulsations occur only with small amplitude in a small
interval in forward direction and the frequencies are around 20 GHz as ex-
pected for MB pulsations. In the other two periods, the SP have distinctly
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smaller frequencies, higher amplitudes, and show less hysteresis.

2.5 Hopf bifurcations
Theory predicts that SPs appear in Hopf bifurcation [WT02]. Mathemat-
ically a Hopf bifurcation is characterized by a pair of complex conjugated
eigenvalues of the dynamical matrix moving across the imaginary axis. What
does it mean from physical point of view? Among many vibrational modes
there is one oscillator whose damping approaches zero. In order to detect this
process experimentally, we can profit from the noise in our real system, which
is omnipresent e.g. due to spontaneous emission. Noise drives all possible
oscillations. If the damping of one oscillator approaches zero, its oscillation
amplitude increases. An increasing and narrowing line should appear in the
power spectrum as a precursor of the Hopf bifurcation, whose position and
width are a direct measure for the relevant complex eigenvalues.

First we apply this concept to the SP region iii of Fig. 2.6. The modulation
depth re-plotted in a zoomed scale exceeds the noise level when approaching
the pulsation region from left (see Fig. 2.7). This amplitude increase is al-
ready the fingerprint of an oscillator getting undamped. At the same time, a
well resolvable line in the rf spectra appears . The distinct decay of its width
gives evidence of a Hopf bifurcation at this boundary of the self-pulsation
region.

In order to evaluate the physical nature of the undamped oscillator, the
laser was excited by an external pulse and the decaying response was mea-
sured (see inset of Fig. 2.7). The decay rates fall with the same slope as the rf
linewidths. Thus, the oscillations undergoing the Hopf-bifurcation are relax-
ation oscillations. The small deviation between measured resonance widths
and decay rates is possibly due to the small impact of the external excitation
on the feedback phase.

The frequency of the decaying oscillations is 12 GHz in agreement with
the rf-peak positions, distinctly above the RO resonance of comparable DFB
lasers without feedback. This finding is a typical effect of undamping by
dispersive Q-switching which is accompanied by an increase of the effective
differential gain [WBWR96; TWS+00].

The modulation depth suddenly blows up when crossing the bifurcation
accompanied by a slowing down of the oscillations from 12 GHz to 9 GHz.
However, no hysteresis is observable within the experimental resolution. We
conclude, the investigated point of operation is very close to a codimension
two degenerate Hopf bifurcation, where the Hopf changes its character from
subcritical to supercritical.
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Figure 2.7: a) Characteristics of the Hopf-bifurcation of RO self-pulsations.
DFB current at 50 mA. Small circles: modulation depth. Full circles: half-
width π∆ν of the resonance line in the rf spectrum. Open circles: damping
rate τ−1

d of relaxation oscillations. Both linewidth and decay rate approach
zero. The horizontal offset of the decay rates is possibly due to a change of
the point of operation caused by the external excitation. b) rf spectrum, c)
time decay of relaxation oscillations, d) set of histograms with a change of
the phase current.

The evolution of pulsations can also be observed in the histograms (Fig. 2.7b).
The stationary state at 28.2 mA is represented by a single peak with about
0.8 mWmean power. At 28.5 mA, the histogram shows the typical features of
RO pulsations. However, this transition is not sudden as might be concluded
from panel a). In a finite intermediate range, the RO-peaks appear smoothly



15

Figure 2.8: a) Characteristics of the Hopf-bifurcation of mode-beating self-
pulsations. DFB current at 70 mA Small circles: modulation depth. Full
circles: half-width π∆ν of the resonance line in the rf spectrum. Open circles:
damping rate τ−1

d of relaxation oscillations. b) Evolution of histograms with
phase current, solid line to guide eyes.

in the same manner as the single cw-peak drops down. We attribute this
phenomenon to noise induced transitions between the two stable attractors
close to the subcritical Hopf bifurcation. Obviously, the transitions from cw
to RO and back appear with comparable probabilities within this range. This
feature confirms the proximity to a degenerate Hopf.

The same technique is applied now to the mode-beating pulsations on a
horizontal cut crossing point MB in Fig. 2.5. The spectra of the SP along the
cut are similar to that in point MB (Fig. 2.4). They indicate nearly sinusoidal
mode-beating pulsations with frequencies around 20 GHz. The left boundary
of the pulsation region depicted in Fig. 2.8 is not sharp, the modulation depth
raises smoothly here. However, the mode-beating line in the power spectrum
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emerges from a precursor whose width falls rapidly when approaching the
pulsation region. Thus, the mode-beating pulsations are also born in a Hopf
bifurcation as predicted theoretically [ERGK00]. The measured decay rates
of relaxation oscillations keep high along this bifurcation. Thus, the oscil-
lator undergoing the Hopf bifurcation is not connected with the relaxation
oscillations.

The evolution of the histograms in Fig. 2.8b exhibits similar tendencies
as previously observed in the case of the subcritical Hopf bifurcation. The
height of the main peak decreases and its width increases with the increase
of the current. However, the two peaks of the pulsating state appear now in
a smooth transitions which clearly resembles the features of a supercritical
Hopf bifurcation.

2.6 Theoretical Analysis
The amplitude returning to the DFB at time t is given by the amplitude
emitted a time τ before as

E−(t) = Ke−iφE+(t− τ). (2.6)

A fraction K of the field is re-injected into the laser cavity with a phase
shift φ and a delay τ . Let us consider stationary states. They behave as
E±(t) = E±0 (Ω)e−iΩt, where Ω = ω − ω0 describes the deviation from the
frequency of solitary laser ω0; The two amplitudes are also related by the
reflectivity r(Ω) of the laser,

E+
0 (Ω) = r(Ω)E−0 (Ω). (2.7)

Substitution Eq.(2.6) into Eq.(2.7) gives E+
0 (t) = r(Ω)Ke−iφeiΩτE+

0 (t), from
where follows the round trip condition for the compound-cavity modes:

q(Ω, N) exp(−iΩτ) = K exp(−iφ), (2.8)

where N is the average carrier density in the laser. The DFB enters here by
its inverse amplitude reflectivity [CWP98]

q = 1
r(Ω) = iγ

κ
cot(γLDFB)− β

κ
(2.9)

with γ2 = β2 − κ2 and the propagation constant

β(Ω, N) = 1
2[(i+ αH)g′(N −Ntr)− α0] + Ω

vg
. (2.10)
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This characteristic equation allows to determine the lasing modes of the
feedback setup. For moderate feedback strengths only small changes of the
laser state are expected and the modes in the feedback setup are located
close to the solitary positions.

The parameters involved (κ = 130 cm−1: coupling coefficient of index
grating, αH = −5: linewidth enhancement factor, α0 = 25 cm−1: back-
ground absorption, g′ = 10−20 m2: differential gain, including the transverse
confinement factor, Ntr = 1024 m−3: carrier density at transparency level)
have been deduced from independent measurements.

The solutions of the complex valued Eq. (2.8) are quite complicated sur-
faces in the three dimensional space spanned by Re Ω, Im Ω, and N . Fig. 2.9
depicts these solutions by curves of constant K and constant φ in two differ-
ent plane cuts through this space. The modes of the solitary laser (K = 0)
are represented by vertices, where the equi-phase lines move together. The
left panels shows the so-called external cavity modes. They belong to a fixed
N , here the threshold density of the solitary laser. Obviously, the very short
delay of our device has a considerable impact on the mode structure. Without
delay, curves of constant feedback strength | q(Ω, N) |= K are orbits around
the mode of the solitary laser. Their extension is an increasing function of
K. With delay, the factor exp(iΩτ) in Eq. 2.8 gives rise to additional modes.
At small K = 0.1, these new external cavity modes are highly damped and
located on a separate line well above the orbit of the central laser mode. At
the higher K = 0.3, this line has moved down and it merged with the central
orbit forming a deep valley.

Fig. 2.9c shows the central part of the same scenario in terms of modes at
threshold, often called compound cavity modes. Standard single-mode stabil-
ity analysis [UBB+04] of these modes yields two types of instabilities: saddles
in the region labelled ’anti-modes’ and undamped relaxation oscillations in
the small island denoted by ’URO’. The grey borders of these islands rep-
resent saddle-node and Hopf bifurcations, respectively. The orbit K = 0.1
touches the ’URO’ island, but the more extended orbit K = 0.3 does not
touch the island. This island topology explains, why RO pulsations are only
found in higher phase periods of IP (see Fig. 2.5), as K is sufficiently reduced
here. It is also consistent with the observation of similar Hopf bifurcations
for longer cavities [HFE+03]. Undamped relaxation oscillations are hence a
common feature of short and ultra-short cavities with weak feedback.

While the form of the orbit in the right panel is independent on τ , the de-
lay controls the number of modes enclosed. For small K, exp(iΩτ) ≈ 1 holds
along the orbit. Only one mode exists that rotates with φ clockwise around
the orbit. However, variation of Ωτ along extended orbits is associated with
a change of φ by more than one period, enabling thus several modes. It is this
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Figure 2.9: Modes calculated from Eqs. (2.8) to (2.10). Curves of constant
feedback (K = 0.1 dashed, K = 0.3 solid) and curves of constant phase (thin
grey, 10 lines per phase period) are drawn in all panels. Panels a) and b):
External cavity modes in the damping-wavelength plane, carriers fixed to
the threshold density of the solitary DFB laser. Panel c): Compound cavity
modes in the wavelength-density plane Im(Ω)=0. The carrier-induced shift
λ0(N) is subtracted here for clarity. Gray area: regions of instability.

interrelation between feedback delay and strength that gives rise to new dy-
namics, even though τ/τR � 1. The variation of φ is not monotonous along
the orbit. The equi-phase lines are tangential with the orbit, where it enters
the anti-mode region. Pairs of modes appear or disappear here in saddle-
node bifurcations. With increasing φ, the stable modes move up on the left
part of the loop, while the unstable anti-modes do so on the right-hand side.

At a particular phase, mode and anti-mode arrive at comparable threshold
densities (triangles). Here, both modes accommodate to each other at a com-
mon density and MB pulsations emerge in a Hopf bifurcation [TP94; WT02].
This scenario is reminiscent of the bifurcation bridges predicted for long de-
lay times [ERGK00]. The peculiar feature of the ultra-short cavity regime is
the existence of only one anti-mode, yielding regular dynamics, whereas the
pulse-package scenario [HFE+03] involves multiple anti-modes. The device
output is therefore qualitatively different. Pulse packages are pulse sequences
with a repetition rate exactly given by the external cavity frequency 1/τ ,
amplitude-modulated with a frequency below 1/τR. At variance, the MB
pulsations are not modulated and their frequency is by about one order of
magnitude smaller than 1/τ , due to pulling of the side-mode by the DFB
resonance. The transition between both regimes is an interesting subject of
future research. We note finally that the instability above state 2 is also the
source of the hysteresis observed experimentally. For decreasing φ, state 1
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moves to longer wavelengths and, in contrast to forward phase, reaches the
saddle-node bifurcation. Here, the laser switches to the only stable state of
same φ on the left part of the orbit.

A single-mode DFB laser with an biased passive feedback cavity has been
investigated experimentally. Although the 5 ps feedback delay is shorter by
two orders of magnitude compared to the period of relaxation oscillations, it is
crucial for the dynamics of the device. Two different types of self-sustaining
intensity-pulsations are detected depending on strength and phase of the
feedback which are controlled by the bias to the passive section. One type
of pulsations is emerging in a Hopf-bifurcation from relaxation oscillations.
These oscillations become undamped due to dispersive self-Q switching. The
second type of pulsations is a mode-anti-mode beating pulsation. It is also
born in a Hopf bifurcation. These findings represent experimental evidence
for recent theoretical predictions [ERGK00]. A supplementary mode and
stability analysis agrees well with measurements and it is used to discuss the
relations to intermediate-delay [HFE+03] as well as zero-delay regimes.

2.7 Period doubling
As was shown above two types of pulsations can emerge in a laser with optical
feedback. A Hopf bifurcation is responsible for their appearance. However,
transition to higher order instabilities is observed in such a type of lasers,
e.g., chaos [HFE+03]. In this section we consider a period doubling (PD)
bifurcation.

A sequence of power spectra and histograms is shown in Fig.2.10 for
the evolution of the dynamical state with change of phase current IPH . The
power spectrum with a frequency of 12 GHz and distinct harmonics at 24 GHz
and 36 GHz in Fig.2.10 (a1) corresponds to URO pulsations being appeared
in a subcritical Hopf bifurcation. A histogram of this state is shown in
Fig.2.10 (a2) where two spikes feature is attributed with periodic pulsations.
Suddenly, after increasing the phase current by a few tenth of milliamperes,
a single small peak at a half of the fundamental frequency f0/2 appears,
shown in Fig.2.10 (b1). In the histogram, the sharp spikes become lower
and broader, see panel (b2). The low frequency peak f0/2 further increases
in amplitude and narrowed in frequency width; its harmonics are clearly
visible Fig.2.10 (c1). Peaks in the histogram begin to split up panel (c2),
indicating that the period doubling is due to an amplitude modulation with
frequency f0/2. A well developed period doubled state is represented by the
power spectrum in Fig.2.10 (d1). A small peak at 3f0/4 and its harmonics
are seen as well. These peaks correspond to a precursor of a second PD.
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Further increasing of the phase current leads to sudden disappearance of the
oscillatory state. In the power spectrum a flat noisy background appears. In
the histogram a single spike corresponds to stationary emission (cw state).

Figure 2.10: Power spectra (left panel) and histograms for corresponding
states (right panel). Current in DFB section is constant IDFB=90 mA. From
(a) to (d) phase current IPH takes the values 18.6 mA, 19 mA, 19.2 mA, 20
mA. An arrow indicates the peak at the frequency 3f0/4

The sequence of period doubling bifurcations is a typical route to chaos.
We have observed only the first two PD bifurcations in the sequence. Prob-
able explanation of this phenomenon is that the attractor after two PD bi-
furcations collides with a saddle in a homoclinic bifurcation and disappears
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[WKL01]. Emergence of chaotic motion in semiconductor laser with optical
feedback depends of feedback strength [Kra00].

In order to obtain chaotic motion one needs to increase feedback strength.
This was performed in the laser with active optical feedback. Dynamics of
this laser is studied in the next chapter.



Chapter 3

Chaotic motion

So far we considered MB and URO pulsations separately. In this section
we investigate the nonlinear interaction of these two type of pulsation. The
mixed state results in motion on a torus in phase space. Fractalization of the
torus leads to chaotic motion. Experimental measurements are supplemented
by simulations of a comprehensive traveling-wave equations (TWE).

3.1 Quasi-periodic route to chaos
Figure 3.1 sketches an amplified feedback laser (AFL). The basic setup is
similar to the passive feedback laser, Sec. 2.2, however, the feedback cavity
is implemented as a combination of passive and amplifier section. This allows
for a separate control of feedback phase (phase section) and feedback strength
(amplifier section) using current injection. Strong feedback is adjustable
since the amplifier can compensate for losses arising in the device (i.e. in
the phase tuning section, at the section interfaces, and the amplifier facet).
Moreover, the gain in the amplifier section can increase the overall internal
photon density, producing new effects in comparison to passive feedback. The
dynamics of the additional carrier density in the amplifier will turn out as
important for the device dynamics. The dynamics of AFL is investigated in
Ref. [BBK+04; Bau05]. It has been shown that after sequence of bifurcations
laser output may become chaotic. However, the investigation of this chaotic
motion was not performed in detail. Here, we analyze in depth the sequence
of bifurcations which leads to chaotic motion.

The experimental setup is shown in Fig.3.1. The power spectra are mea-
sured by a power spectrum analyzer (R&S FSP 9) with 40 GHz bandwidth.
Analysis of temporal characteristics is performed by a digitizing sampling
oscilloscope (HP 54120B) with bandwidth of 50 GHz. Ultra fast photodi-

22
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Figure 3.1: Schematic of an AFL. An additional amplifier section enables
the control of feedback strength. The different sections are controlled by
independent currents. ESA – power spectrum analyzer, EDFA – erbium
doped fiber amplifier, Osc – digitizing sampling oscilloscope.

odes (u2t) are used as a detectors. Three currents govern the dynamics of
the device IDFB – laser current, IPH – phase current and IA – current in
the amplifier section. We fixed two currents: IDFB=41.7 mA, IA=47 mA.
The phase current is used as a bifurcation parameter as well as in Sec.2.4.
Sampling techniques allow to analyze ultra-fast periodic processes, but the
analysis of quasi-periodic and chaotic processes by this technique is a chal-
lenge. To acquire information about the form of time traces we supplemented
our measurements with a histogram.

Fig.3.2 (upper panel) depicts a bifurcation diagram, maxima and minima
of the laser power versus a phase current IPH . The panels below show power
spectrum and histogram in different operation points. The laser operates in
cw regime at low phase currents. In the power spectrum this state is pre-
sented by a flat noisy background (a1). A small peak at 3 GHz corresponds to
noise induced damped relaxation oscillations. In the histogram one observes
a sharp peak at the mean power (a2). In the power spectrum a spike ap-
pears at 34 GHz what is typical for mode beating pulsations. The histogram
exhibits two spikes feature of sine-wave oscillations. The amplitude of pulsa-
tions increases as a square root with the phase current A ∼ (I − Ic)1/2 what
indicates a supercritical Hopf bifurcation, see Fig.3.2 (upper panel). The
amplitude of pulsations start to saturate at currents above 5 mA.

Suddenly at 6.8 mA, the amplitude begins to grow again. In the power
spectrum a peak at 4 GHz appears, (c1). This indicates a secondary Hopf or a
torus bifurcation. Behind the torus bifurcation, motion with two frequencies
occurs. The trajectory wanders on a torus in the phase space. The origin of
the newly born pulsations is undamped relaxation oscillations (URO).
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Figure 3.2: Upper panel: maxima and minima of laser intensity vs. current
in the phase section IPH . Evolution of states, first and third columns: power
spectra, second and fourth column: probability distribution function – his-
togram. From (a) to (j) IPH takes values 1.5 mA, 6 mA, 6.8 mA, 7 mA, 7.3
mA, 7.5 mA, 7.7 mA, 7.9 mA, 8.05 mA, 8.2 mA.

Further increasing of phase current leads to a growth of the amplitude
of the low frequency pulsations. In the histogram one observes a bump at
high power, see (d1). The power spectrum exhibits a new peak at 8 GHz
what corresponds to higher harmonics of URO pulsations. The peaks at 34–4
GHz, 34–8 GHz are due to nonlinear interaction of URO and MB pulsations.

At 7.3 mA one observes a comb of peaks in the power spectrum what
corresponds to a well developed torus (e1). The histogram shows that the
bump at the high power becomes flatter and spikes attributed with periodic
motion approaching to each other and becomes smaller (e2).

A broadband feature emerges in the power spectrum as the phase current
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is increased (f1). The histogram shows that the bump at the high power
becomes more flatter and spreads towards high power (f2). Peaks of periodic
motion become less resolvable.

At 7.7 mA, a peak at half of the low frequency (2 GHz) appears. This
may indicate a period doubling bifurcation of the torus. But also it may
point out a complex resonance on the torus[WKL01]. Resonances on the
torus occur when ratio of torus frequencies takes a rational value. Resonance
on the torus in AFL is investigated in details in Bauer’s thesis [Bau05] and
we will not consider them.

At 7.9 mA, an abrupt increase of the pulsation amplitude occurs. In the
power spectrum one observes a broadband feature indicating chaotic motion
(h1). In the histogram one observes no any marks of periodic features, a long
tail decaying till high power and a bump at low power. However, spikes in
power spectrum can be still visible what hints on weakly unstable periodic
orbits in the CA, which are often visited.

At 8.05 mA the power spectrum possesses a noise like broad spectrum
where the bimodal shape is reminiscent of the torus. In the histogram, one
observes a unimodal distribution what is typical for chaotic vibrations. A
long exponentially decaying tail is a feature of high intensity narrow spikes.
The bump at low power characterizes dropouts of the laser intensity which
resemble low-frequency fluctuations (LFF) in the laser with short optical
feedback [San94; FTL+96]. The sharp peak in the distribution in the middle
corresponds to a slowing down of the motion in this region. Two objects may
induce such slowing down in phase space: a stable or a saddle equilibria.
Further, we will show that the saddle is responsible for this slowing down.

Finally, as pictured in Fig. (j1), the dynamical scenario concludes in a
sudden disappearance of the chaotic state, which is then replaced by stable
emission. This transition depicted in Figs. (i1) and (j1) is not only sudden
but also displays hysteresis. In Chapter 4 I will give experimental evidence
that this sadden break down of chaos represents as boundary crisis. It is
structurally stable, i.e., it appears on extended line in the parameter space
spanned by the currents IDFB, IPH , IA.

In the following sections, we will confirm by numerical investigation the
dynamics underlying the transitions over one cycle of the feedback phase
depicted in Fig. 3.2.

3.2 Numerical experiment
We supplement the analysis of experimental data by performing simulations
with the comprehensive traveling wave equations (TWE) model solved by the
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software suite LDSL (Longitudinal Dynamics in multisection Semiconductor
Lasers) of the Weierstrass Institute1. Parameters and details of the model
can be found in Appendix B and Appendix C.

In Fig. 3.3, we show the calculated maxima of the output power as a
function of the feedback phase φ. We start from the situation that laser

Figure 3.3: Maxima and minima of output power versus phase φ. H - Hopf
bifurcation, T - torus bifurcation.

emits constant intensity (stable stationary state). As φ is decreased, a Hopf
bifurcation takes place and the laser now produces periodic output (Fig.
3.4(a)). Sine form oscillations with period 25 ps originates from MB pulsa-
tions (Fig.3.4 (a2)). In phase space projection (optical power versus carrier
density in DFB section) a closed loop characterizes the limit cycle. When in-
creasing φ further, a torus bifurcation (or Neimark-Sacker bifurcation) takes
place, so that, after transients all trajectories settle down to an attracting
torus, corresponding to quasiperiodic (or very high-period locked) dynamics,
Fig. 3.4(b). The power spectrum shows a new spike at 4 GHz, see Fig.3.4
(b3), what is typical for URO pulsations. In time series one observes that
fast oscillations are modulated by low frequency pulsations. Upon increasing
φ further, the torus starts to breakup into a chaotic attractor (Fig. 3.4(c)).
For certain ranges of φ, the dynamics on the breaking-up torus may be locked
to lower-period periodic orbits (Fig. 3.4(c3)). At 0.688 value of phase pa-
rameter a sudden increase in the size of the attractor occurs due to a global

1http://www.wias-berlin.de/software/ldsl/
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Figure 3.4: Changes of the dynamics when the phase φ varies, IDFB and
IA are constant and equal 41.7 mA and 49.5 mA, respectively. Shown are
the phase space projections in the plane of power from left facet vs nDFB
(first column), the time trace (second column), the power spectrum (third
column). From (a) to (e) φ/2π takes the values 0.88, 0.8, 0.7, 0.688, 0.66.
Note the different scales.

bifurcation (Fig. 3.3). The localized chaotic attractor hits the stable mani-
fold of the saddle immediately above it. After this bifurcation, the dynamics
can leave the previous region of localization to make a large excursion end-
ing with a global reinjection. This global bifurcation is, hence, identified as
an interior crisis [GOY82]; the size (and nature) of the attractor suddenly
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changes. The chaotic attractor of Fig. 3.4(c) collides with a saddle, resulting
in the much larger chaotic attractor in Fig. 3.4(d). The saddle is now part
of the new attractor. An important ingredient of this bifurcation is the pres-
ence of the reinjection mechanism. Without reinjection the dynamics would
never return to the region of the former attractor. After the interior crisis,
the dynamics is of a typical form and it displays intermittency because the
dynamics stays near the previous localized attractor for long periods of time
interrupted by sudden large excursions (compare Fig. 3.4(d1) and (e1)).

As φ is increased away from the interior crisis, these large excursions
become more frequent until the dynamics moves more uniformly over this
large new chaotic attractor (Fig. 3.4(e2)). Eventually the chaotic attractor
disappears suddenly in a second global bifurcation. This bifurcation is a
boundary crisis [GOY82], in which the attractor hits its basin boundary and
suddenly disappears, see Fig.3.3. Indeed, we found the typical long chaotic
transients associated with this bifurcation before the system settles down
to the stationary state. Properties of the chaotic transients will be further
addressed in Chapter 4.

The numerical analysis enables us to quantify the chaotic dynamics by
computing the Lyapunov exponents. For this goal, the partial-differential
TW equations are approximated by ordinary differential equations (ODE)
for a truncated set of optical modes [Rad06]. The number of modes is care-
fully chosen to reproduce the solutions of the full TW model in the relevant φ
range. The Lyapunov exponents of the resulting 17 real ODE are calculated
as described in Ref. [WSSV85]. The Lyapunov spectra are nearly indepen-
dent of φ. In decreasing order, the first four exponents have approximate
values of 2.7, 0 , -1.0, and -3.0 ns−1. The respective Kaplan-Yorke dimen-
sion varies between 3.3 and 3.7 and is thus indicative of a high-dimensional
CA. The rotational invariance of the optical equations is not accounted here.
It gives another zero Lyapunov exponent and increases the attractor dimen-
sion by 1.

Comparing of experimental and numerically calculated data one observes
good agreement in dynamical behavior. In the experiment and as well as in
the calculations, stationary state loose its stability in a supercritical Hopf
bifurcation where MB pulsations appear. A supercritical secondary Hopf
or a torus bifurcation leads to motion on the torus in phase space. The
power spectrum of this trajectory matches very well to the one shown in
Fig. 3.2 (b3). Deformation of the torus in phase space results in short
narrow pulses separated by intervals with almost constant power (compare
Fig.3.4(c2) and Fig.3.2(g2)). Sudden change of the quasiperiodic attractor
can be seen in the experiment (Fig.3.2(i)) and in the calculation (Fig.3.4(d))
due to internal crisis. Boundary crisis is responsible for abrupt disappearance
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of the chaotic vibration. In Chapter 4 dynamics close to the boundary crisis
will be investigated in detail.

3.3 Conclusion
We have provided a detailed overview over the dynamics of the laser with
active optical feedback. When changing φ phase over 2π, we observed ex-
perimentally a transition from stable output via periodic and quasiperiodic
output to chaotic motion and back to stable output.

To analyze these experimental observations, the TWE model equations
are solved numerically. It has been shown that two global bifurcations are
involved in dynamics of the laser with ultrashort optical feedback. Internal
crisis is responsible for explosion of chaotic attractor and boundary crisis for
its disappearance.



Chapter 4

Excitability of Chaotic
Transients

In this chapter I give experimental evidence that the sudden destruction of
chaos, described in Chapter 3, is occurred due to a boundary crisis. The exis-
tence of high-dimensional chaotic transients (CT), which are a fingerprint of
the boundary crisis, is demonstrated. In numerics, CT are usually detected
when switching the parameter across the transition. This is impossible in
experiment due to extremely short time scales. Instead, the CT are excited
by short optical pulses. In course of these experiments excitability was dis-
covered. Thus, this chapter combines two nonlinear effects, which so far are
treated only separately.

The generic phase-space portrait behind our observation consists in a
boundary crisis of a chaotic attractor with a saddle born in a saddle-node
bifurcation of continuous-wave states. The excitation of the CT exhibits a
distinct threshold as well as a refractory time.

4.1 Chaos in crisis
Crises are a common manifestation of chaotic dynamics for dissipative sys-
tems and have been seen in many experimental and numerical studies [GOY86;
GOY82; PDEPH88; JFT94]. In a crisis, one observes a sudden discontinuous
change in a chaotic attractor as a system parameter is varied. The crises are
typically of three types: in the first, internal crisis, the size of the chaotic
attractor in phase space suddenly increases; in the second, mergin crisis,
(which can occur in systems with symmetries) two or more chaotic attractors
merge to form one chaotic attractor; in the third, boundary crisis, type a
chaotic attractor is suddenly destroyed as the parameter passes through its
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critical value
After a boundary crisis (BC) chaotic attractor is replaced by a nonat-

tracting chaotic saddles (CS). A chaotic saddle is a bounded set, and it
has fractal structures in both stable and unstable directions, in contrast to
a chaotic attractor which exhibits a fractal structure only in the stable di-
rection. Due to the fractal structure in the unstable direction, an infinite
number of gaps of all sizes exists along the unstable manifold of the chaotic
saddle. Let us consider trajectories with initial conditions in the region of
the basin of attraction of the attractor which existed before crisis. Such tra-
jectory will typically behave as a chaotic transient (CT). That is, they are
initially attracted to the phase-space region formerly occupied by the attrac-
tor; they then bounce around in this region in a chaotic way; finally, after
behaving in this fashion for a arbitrary long time, they suddenly move away
from the region of the former attractor and asymptote some other attractor.

The length of time an orbit spends in the vicinity of the CS depends
sensitively on its initial condition, but, nevertheless, when many such orbits
are considered, the length of the CT apparently has a well-defined average
which tends to infinity as p approaches pc. For example, let M(t) denote the
number of trajectories staying still inside the CS after time t, and take M0
initial conditions so large that M(t)� 1. As t becomes large, one observes,
in general, an exponential decay in the number of survivors, that is, one finds
asymptotically [GOY82] that

M(t)
M0

∝ e−t/τ , (4.1)

where τ is the average lifetime of the chaotic transient. It is well estab-
lished both theoretically [GOY86; GORY87] and experimentally [DRC+89;
SDG+91] that the average lifetime τ scales with the parameter variation as:

τ ∝ (p− pc)−γ, (4.2)
where p is the control parameter of the system, and pc critical value of p
at the crisis. Grebogi, Ott, and Yorke proved that [GORY87], in an every-
where smooth and "exactly dissipative" mapping system, the scaling exponent
should take a value of γ = 1/2 in a one dimensional case, and 1/2 ≤ γ ≤ 3/2
in a two-dimensional case.

4.2 Excitability
Excitability is observed in a wide range of natural systems. A list of examples
includes lasers, chemical reactions, ion channels, neural systems, cardiovascu-
lar tissues and climate dynamics, to mention only the most important fields
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Figure 4.1: a) Schematic phase-space portrait of an excitable chaotic sad-
dle. u1, u2 – the two branches of unstable manifold of the saddle-focus. b)
Laser with external excitation. ESA – electrical spectrum analyzer, EPG –
electrical pulse generator, PD – photo diode, EDFA – Erbium doped fiber
amplifier, SL – gain-switched DFB laser.

of research [WBRH02; Hod47; Mur93; CB99; ZZ70]. Common to all ex-
citable systems is the existence of a "rest" state, an "excited" ("firing") state,
and a "refractory" (or "recovery") state. If unperturbed, the system resides
in the rest state; small perturbations result only in a small-amplitude linear
response of the system. For a sufficiently strong perturbation, however, the
system can leave the rest state, going through the firing and refractory states
before it comes back to rest again. This response is strongly nonlinear and
accompanied by a large excursion of the system’s variables through phase
space, which corresponds to a spike. The system is refractory after such
a spike, which means that it takes a certain recovery time before another
excitation can evoke a second spike. Excitability requires a certain phase
space configuration. An equilibrium state (or a small-amplitude orbit) is
the only attractor available and serves as rest state. Close to it, a sharp
separatrix between trajectories of different types must exist. One type of
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trajectories approaches the rest state directly and determines the subthresh-
old response. The trajectories beyond the separatrix undertake extended
phase space excursions before returning and govern the superthreshold re-
sponse. Such configurations appear generically after bifurcations at which
an extended periodic orbit is suddenly destructed [Izh00]. Paradigmatic ex-
amples are the Canard transition in the FitzHugh-Nagumo model [Mur93]
and homoclinic bifurcations [KSS+03; WBRH02]. The ruin of the destruc-
ted orbit guides the long excursions after superthreshold stimulation in either
case.

Our idea is to replace the regular orbit by a chaotic attractor (CA). Specif-
ically, we consider the configuration sketched in Fig.4.1. A saddle-focus and
a stable focus stemming from a nearby saddle-node (SN) bifurcation exist
in close neighborhood. Branch u2 of the unstable manifold of the saddle-
focus goes to the stable focus representing the rest state. The other branch
u1 leads to a CS formed just before in a boundary crisis when a CA has
touched the stable manifold of the same saddle-focus. Obviously, the stable
manifold of the saddle-focus separates two completely different types of tra-
jectories. Those below this separatrix are spiraling along unstable branch u2
directly to the rest state. Those above follow unstable branch u1 into the CS
and reach the rest state only after moving for some time along the saddle.
Accordingly, the perturbed system may exhibit two qualitatively different
responses: immediate return to the rest state upon weak perturbations and
a long chaotic excursion along the CS when the stimulus is strong enough
to push the system beyond the separatrix. The phase-space configuration
of Fig.4.1a is prepared by means of the laser with active optical feedback
(AFL), see Chapter 3. The experimental setup is shown in Fig.4.1b. The
response to external stimuli is studied by injecting short optical pulses into
the DFB section. The pulses with a duration about 30 ps, are generated
with a gain-switched DFB laser (Alcatel A1905 LMI) and electrical pulse
generator (HP 8131A). The wavelength of 1530 nm is non-resonant to the
AFL and the repetition rate is 5 MHz. The pulse energy is controlled by an
optical attenuator (SK 48AT). The maximal attained pulse energy is about
10pJ. The output is analyzed by a spectrum analyzer with bandwidth 40
GHz or, in order to record time transients, by a digital sampling oscilloscope
(HP 54120B) with bandwidth 50 GHz and sampling rate 500 kHz.

Locating the device relatively far above the critical current in the cw
regime, the response on optical injection is indeed very similar to excitability.

A distinct spike or set of spikes occur in the output followed by relaxation
oscillations and return to stable emission within about 2 ns . When plotting
the height of the largest spike versus the energy of the stimulation pulse,
an "all-or-none" response with a sharp threshold is found (Fig. 4.3). Even
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Figure 4.2: Left panel: power spectra, right panel histograms at selected
phase currents, chaos IPH = 6.85 mA (solid gray lines), stationary cw state
IPH = 6.9 mA power spectrum (dotted), histogram (grey dotted). Power
spectrum (black solid line) and histogram (dark grey area) at IPH = 6.9 mA
under the superthreshold stimulation. Note the logarithmic scale in both
plots.

more, using a pair of stimulation pulses, the existence of a refractory period
is evidenced, see Ref. [Bet03]. The device fires only again, when the delay
of the second pulse is longer than the time needed to generate the response
on the first pulse. However, marked differences to the standard excitability
scenario turn out, when the operation point is moved closer to the chaotic
regime, as will be addressed below.

Numerical calculations based on the traveling-wave (TW) equations en-
tirely confirm the experimentally observed pathway to chaos and reveal the
underlying bifurcations. For a detailed description of the TW model as well
as the parameter set, see Appendix B. In the calculations, instead of IP , the
feedback phase φ produced per round-trip in the passive section is directly
used as control parameter. Fig. 4.4 compares theoretical and experimental

Figure 4.3: Response of the multi-section laser on 30 ps optical excitation.
Maximum device output versus optical pulse energy (IP = 6.9 mA).
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results. Note that increasing IP means decreasing φ [BBK+04]. A SN bifur-
cation (� in Fig. 4.4a) occurs still within the chaotic domain. The resultant
cw states are the stable focus and saddle-focus required in the phase-space
portrait of Fig. 4.4a. Slightly right of the SN bifurcation at critical phase φc,
the CA responsible for the chaotic behavior breaks up in a boundary crisis
by touching the stable manifold of the saddle-focus. A close neighborhood of
both transitions is achieved by proper choice of DFB and amplifier current.

Figure 4.4: Excitability threshold versus distance from the boundary crisis.
a) Calculation (IDFB = 40 mA, IA = 28 mA). SN bifurcation (�) and bound-
ary crisis occur at feedback phase φ = 4.1936 and φc = 4.1930, respectively
[UKR+06]. Rectangles: stimulus energy at threshold, scattering dots left of
φc: maximum device output in the chaotic regime computed over a time of
10 ns, lower solid and dashed lines: carrier inversion ∆n on node and saddle,
respectively, measured relative to its value at the SN bifurcation. b) Mea-
surement (IDFB = 41.7 mA, IA = 49.5 mA). Meaning scattering dots as in
a), circles and rectangles: maximum spike strength and stimulus energy at
threshold under superthreshold stimulation are inserted from Ref. [Bet03].
Note that the power output right after the device edge is plotted in the cal-
culation, while the experimental signal is attenuated by the various optical
elements of the setup before detection.



36

4.3 Excited chaotic transients
A distinct finding, both in experiment and theory, is that the stimulation
threshold strongly declines when the device is set closer to the boundary
crisis, whereas the strength of the dominant response spikes stays practically
constant. Closest to the SN bifurcation, an optical power as low as 100
fJ is sufficient for excitation. The calculation verifies that the threshold is
determined by the saddle-node separation (Fig. 4.4a), in full agreement with
the role of the stable saddle-manifold as separatrix. Various facts clearly
signify that the excitable dynamics of the system close to the boundary crisis
is correlated with the former CA. First, the experimental spike heights agree
very well with the maximum output fluctuations of the device for IP < Ic and
no injection (Fig. 4.4b). Second, in the histogram of the excited state one
can observe reminiscent of distribution of chaotic motion. This distribution
is convoluted with single peak distribution of stationary state, see Fig.4.2b.
Third, the power spectrum of the chaotic attractor and power spectrum of the
excited state are practically identical (Fig. 4.2a). Fourth, as will be detailed
in the remainder, the transient spike trains subsequent to stimulation are
highly irregular in frequency and amplitude.

Fig. 4.5 summarizes calculated and experimentally detected response tran-
sients close to the boundary crisis. The cw state prior to excitation is char-
acterized by a power as well as an optical phase. The latter is random in the
measurements because of a phase drift between successive excitation steps
due to unavoidable experimental noise. The two transients in Fig. 4.5a are
computed for the same stimulus strength but slightly different initial phases.
The spike trains coincide only initially but diverge after longer times. One
transient (grey) approaches equilibrium already after 3 ns, while the other
one (black) keeps spiking as long as 20 ns. Such extreme sensitivity on the
initial conditions is a clear fingerprint of chaotic dynamics associated with
the motion along the CS. Indeed, also in the calculations, the excited spike
sequences resemble very well the power fluctuations in the CA just before
the boundary crisis. Furthermore, as can be tracked in the numerics, the
irregular spiking always stops when the trajectory passes the separatrix close
to the saddle-focus.

The sampling technique used experimentally provides one data point per
stimulation event in the power-time diagram. Repeating the time scans
sufficiently often yields then the probability that the device emits a cer-
tain power at given time. An example of such measurement is displayed
in Fig. 4.5b. Chaotic transients differ from each other after a time of the
order of the largest inverse Lyapunov exponent. Consistently, a couple of
quasi-deterministic spikes is seen at very early times in Fig. 5b. Later spikes
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Figure 4.5: Transients after superthreshold excitation. a) Comparison of two
calculated responses (black and grey, φ = 4.15). The stimuli differ only by
the initial phase difference between internal and injected fields. Initially, the
two transients are indistinguishable. At later times, however, they diverge
resembling the extreme sensitivity of chaos on initial conditions. One tran-
sient (grey) approaches equilibrium after 3 ns). The other one stays nearly
20 ns on the chaotic ruin. b) Superposition of 500 measurements with the
sampling oscilloscope (stimulus repetition rate 12.5MHz). The point of oper-
ation (phase current 6.9 mA) is close to the crisis. and not all transients do
return to the rest state within the 80 ns repetition period. c) Probability of
presence in the CS versus time after stimulation for three different distances
from the boundary crisis IP − Ic: 0.04 mA (triangles), 0.02 mA (squares),
and 0.01 mA (circles). Lines: singe-exponential fits.

are irregularly spaced and yield thus only a cloud of uncorrelated dots. The
latter starts few nanoseconds after stimulation, which is in fair agreement
with the numerically calculated Lyapunov exponents [UKR+06]. The power
distribution along a vertical line in Fig. 4.5b is a superposition of the nar-
row Gaussian related to the rest state and a much broader band due to
the chaotic response. In detail it is shown in Fig.4.2b. The area below the
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Figure 4.6: Mean lifetime τ on the CS versus IP − Ic. Solid line: inverse-
power function with exponent γ =1.

wide band is a measure for the probability to find the system still in the
CS at this time. The plots in Fig. 4.5c reveal that this probability decays
strictly single-exponential with a time constant τ representing the mean life-
time in the CS. This lifetime becomes shorter with increasing distance from
the boundary crisis. As long as the distance is not too large, τ obeys an
inverse-power law ∼ (IP − Ic)−γ with a critical exponent γ ≈ 1 (Fig. 4.6).
Beyond IP − Ic ≈ 0.1 mA, saturation sets on and τ approaches a constant
value of about 1.8 ns. In parallel, as already noted above, the response of
the device becomes increasingly dominated by a single spike and is thus fully
analogous to the previously observed excitability at a homoclinic bifurcation
[WBRH02].

A time-independent escape rate 1/τ from the CS is a generic property of
chaotic transients [GOY86; GORY87; DRC+89; SDG+91; ASY06]. Inverse-
power laws are well established for one- or two-dimensional maps [GOY86;
GORY87] and have been experimentally verified in a nonautonomous me-
chanical system [DRC+89; SDG+91]. Three dimensions have been treated
theoretically only very recently [ASY06]. The present study provides direct
evidence that an inverse-power law remains valid also for the boundary crisis
of a high-dimensional CA in a continuous and autonomous system. The crit-
ical exponent of one-dimensional maps is generically 0.5 [GOY86; GORY87],
a three-dimensional example has yielded 1.5 [ASY06], and those of two-
dimensional maps lie in between. It has been argued [GOY86; GORY87]
that the critical exponents should increase with the dimension of the chaos.
Our results do not confirm this conjecture: In the continuous system under
study, γ is close to 1 although the estimated dimension of the CA is as large
as 3.5.
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4.4 Influence of noise
Noise in the presence of a CS can also induce chaotic behavior [LLBS03].
In order to investigate the role of noise in the multi-section laser, we have
repeated the measurements without external excitation. Indeed, close to the
boundary crisis, random jumps into chaotic transients are observed, wide
wings in Fig.4.7. However, in marked contrast to the excitable dynamics,
their probability decreases very rapidly with the distance from the crisis and
becomes as small as 10−4 already at an excess current of 0.01 mA. Noise-

Figure 4.7: Histogram of stationary state close to the boundary crisis I −
IC ≈ 0.01mA, Gaussian approximation (solid line). Side wings indicate noise
induced wandering on the chaotic saddles. Ratio of area under the wings and
the main peak is 0.6× 10−4.

induced dynamics is thus of minor importance in our case. In particular, the
few data points in Fig. 4.5b before application of the excitation pulse are
not a result of noise but correspond to chaotic transients which last longer
than the 200 ns separation between subsequent stimuli. Such an extremely
extended response is a characteristic feature of a CS: It involves trajectories
wandering arbitrarily long in the saddle before approaching an attractor.

4.5 Conclusion
We have presented a detailed experimental and numerical investigation of
the dynamics close to a boundary crisis. It is shown experimentally that
the chaotic motion is destroyed in a boundary crisis. The escape from the
underlying chaotic saddles is strictly single-exponential and validity of an
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inverse-power law for the escape time is found. Despite of high dimension-
ality, the critical exponent is close to unity. The excitation of the chaotic
transient exhibits a distinct threshold as well as a refractory time and, suf-
ficiently far from the boundary crisis, the standard response of excitable
systems is recovered. The relaxation times of the carrier-photon dynamics in
the laser are in the sub-ns range. A striking finding from a practical point
of view is therefore that the device is capable of emitting pulses with a delay
on a two orders of magnitude longer time scale.



Chapter 5

Coherence resonance at a Hopf
bifurcation

This chapter addresses the influence of noise on the dynamics close to the
bifurcations investigated in the previous chapter. Noise induced regularity
phenomena such as a coherence resonance are studied at the onset of a Hopf
bifurcation. A generic model supplements the experimental findings.

5.1 Noise induced regularity
The paradigmatic and pioneering example of noise induced motion is that
of stochastic resonance (SR) in bistable systems [BSV81], which had been
originally proposed as a mechanism to describe the observed periodicity of
the Earth’s ice ages. Here, a dynamical system with two stable fixed points
is subject to the action of a periodic forcing and noise. The periodic forcing
is sufficiently weak that, by itself, it can not overcome the separation barrier
between the stable fixed points. The system oscillates around one of them,
determined by the initial conditions. The presence of noise, however, allows
the system to make random excursions and visit both fixed points. The
jumps between the fixed points occur when the impact of the external forcing
sufficiently lower, the separation barrier. The signal-to-noise ratio (SNR),
appropriate measures of the signal coherence, pass through a maximum at
an optimal noise strength when the noise-controlled time scale of the system
matches the period of the external signal. A related phenomenon is that
of coherence resonance (CR) by which a nearly periodic signal is generated
under the effect of the fluctuations in systems which lack an external signal.
Again, the periodicity is optimal (resonance) for a given value of the noise
intensity [PK97; LNK98; GDNH93].

41
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Coherence resonance can manifest itself in quite different systems due
to different mechanisms. In excitable systems, the essential role of slow
and fast dynamics, and the nonuniformity of oscillations was emphasized
in [LGONSG04]. This approach was successful in interpreting CR in neuron
models [PK97; LNK98; LSG00]. CR in excitable systems was experimentally
confirmed in a laser diode with optical feedback [GGBT00] and in electronic
circuits [PHYS99]. CR has also been observed in bistable systems such as
in simulations of the FitzHugh-Nagumo model [LSG00], and both in simu-
lations and experiments with the chaotic Chua model [CMT01; PTMC01].
Wiesenfeld [Wie85] has demonstrated that power spectrum of a system ob-
served after a bifurcation point can, nevertheless, be visible even before the
bifurcation actually occurs if noise is present. We thus observe a noisy pre-
cursor of the bifurcation. Let us suppose that noise induces a peak of height
H at the frequency ωp in the power spectrum, so that the noisy precursor of
a bifurcation is observed.

In order to measure the coherence of the system at the noise induced
peak one can define the signal-to-noise ratio as β = H/W [GDNH93], with
the peak’s relative width W = ∆ω/ωp, which is the inverse of the familiar
quality factor Q. Coherence resonance at a noisy precursor manifests itself
when SNR displays a maximum as a function of the noise level. Coherence
resonance at noisy precursors can be explained [NSS97] by the interplay of
the constructive effect of noise as promoting coherent precursors and by the
well-known destructive effect as eliminating order.

Noisy precursors of period doubling and torus bifurcations have been nu-
merically investigated in Ref.[NSS97]. Resonance-like behavior close to the
onset of a supercritical Hopf bifurcation has been found in computer simula-
tions [HX99; KL00; RTAW01; JC02] and observed experimentally for plasma
waves [DWK99; LJ95] and electro-chemical reactions [KHSP03]. However,
in all these studies, the question how the type of the bifurcation controls the
noise dynamics and, in particular, whether this manifests in the existence of
CR has not been explicitly addressed.

In this work, we examine the case of a CR at a Hopf bifurcation. We
demonstrate that noise induced resonances occur for both the subcritical and
supercritical type. However, the specific response is crucially determined by
the character of the bifurcation.
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5.2 Experimental characterization of bifurca-
tions and states

This section is devoted to characterization of the bifurcations close to which
noise induced dynamics is studied.

5.2.1 Experimental setup
In order to characterize noise induced oscillations, the laser with active opti-
cal feedback is connected to an electrical spectrum analyzer (R&S FSP 9/40GHz)
with bandwidth of 40 GHz by a u2t photo diode. Electrical broadband noise

Figure 5.1: a) schematics of the multi-section laser device and the experi-
mental setup. NS – an electrical noise source, Att. – a tunable attenuator,
T – a bias tee, PD – a photo diode, ESA – a power spectrum analyzer,
EDFA – an erbium doped fiber amplifier. b) a power spectrum of electrical
broadband noise; c) an intensity distribution of noise (open dots), Gaussian
approximation (solid line).

is generated by a 50 Ω resistor at room temperature and then amplified by
three electrical amplifiers (SHF100CP) with 25 GHz bandwidth. The power
spectrum of the noise (Fig.5.1 a)) is practically constant in the relevant fre-
quency range. The noise is added to the laser injection current IDFB and thus
imprinted in the carrier density. In order to avoid a shift of the operation
point, the dc component is filtered by a broadband bias tee (SHFBT45) with
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a bandwidth of 45 GHz. While the average of the noise signal itself is zero,
the noise intensity is Gaussian distributed (Fig.5.1 b)) with a mean value
adjusted experimentally by a tunable attenuator (HP8494B/11dB) with an
accuracy of 1 dB. The maximally accessible value of electrical noise is D =
-20 dBm/GHz.

5.2.2 Noisy precursors
As shown in Chapter 2 the laser with optical feedback is capable of two sta-
ble self-pulsations with distinctly different frequencies determined by their
specific physical origin. The beating of two longitudinal compound-cavity
modes (MB) gives rise to pulsations with frequencies f > 20 GHz. Here, we
focus on the low frequency pulsations f ≤ 12 GHz arising from undamped
relaxation oscillations (URO) due to dispersive Q switching. URO can be
born in both types of Hopf bifurcations [BBK+04; Bau05], allowing us to in-
vestigate the influence of noise under otherwise identical physical conditions
(Fig.5.2(a1),(b1)). The relaxation-oscillation self-pulsations are also born
in a supercritical torus bifurcation when the higher-frequency mode-beating
pulsations are already present (Fig.5.2(c1)). In order to elucidate the in-
fluence of noise, the injection currents are adjusted close to the respective
bifurcation point, shown by arrows in Fig.5.2. Even in the absence of external
noise, as documented by the weak features in the power spectra of Fig. 5.2,
precursors of the pulsations are observed for all three bifurcations. Those
precursors are induced by the intrinsic noise of the device. When adding
external noise, the precursors develop into pronounced resonance features
(Fig.5.2 (a2),(b2) and (c2)).

5.3 Coherence resonance close to a Hopf bi-
furcation

Eventually, the noise creates merely fluctuations in the laser emission, as
indicated by an increased noise floor in the power spectrum. To analyze
the spectral response quantitatively, the data are fitted by a Lorentzian line-
shape function with peak frequency ωp, a full width at half maximum ∆ω
and peak height H.

The width ∆ω translates by Fourier transformation into a correlation
time τc ∼ 1/∆ω. There is only a very small shift of the peak frequency so
that the quality factor Q = ωp/∆ω is an inverse function of the width. As
mentioned above, a measure characterizing the noise-induced response is the
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Figure 5.2: Left column: maximum (Pmax) and minimum (Pmin) output
power versus phase current. Right column: power spectra of the device under
the influence of noise. (a2) Before the supercritical Hopf bifurcation without
external noise (lower plot) and at optimum noise level (upper plot), solid lines
are fits with a Lorentzian shape (IDFB=70 mA, IA=5.62 mA, IPH=11.8 mA).
The same for the subcritical case (b2) (IDFB=70 mA, IA=30.6 mA, IPH=98.2
mA) and the torus bifurcations (c2) (IDFB=41.7 mA, IA=47 mA, IPH=6.1
mA). Arrows correspond to operating points.

signal-to-noise ratio[GDNH93; NSS97; LGONSG04]

β = HQ = Hωp/∆ω. (5.1)

As seen in the Fig. 5.3, β is a non-monotonic function of the noise intensity,
demonstrating the existence of an optimum noise level. However, qualitative
differences between the bifurcations turn out, when height and width are
considered. In the supercritical case, H and ∆ω increase monotonically,
although with different slopes. In particular, the height saturates at higher
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noise intensities, as the system nonlinearities limit the oscillation amplitude
(Fig. (a), (b)). In contrast, the width exhibits a clear minimum at a certain

Figure 5.3: Peak height (gray dots), normalized width (open dots), and
signal-to-noise ratio (black dots) versus noise intensity as deduced from the
power spectra by Lorentzian fits. Note the log scale. (a1,2) Supercriti-
cal bifurcation, (b1,2) Torus bifurcation, and (c1,2) Subcritical bifurcation.
Maxima of curves are normalized to unity.

noise intensity for the subcritical bifurcation (Fig. 5.3(c)). In the time
domain, this means a maximum of τc, similarly to the CR of excitable systems
[PK97]. However, there is a marked difference: The noise-induced peak
is already present at infinitely small noise intensities in the present case,
whereas the threshold of excitable systems produces an abrupt occurrence at
a certain noise level.

Locating the system on the stable limit cycle close to a supercritical torus
bifurcation and adding noise, the result is qualitatively the same as for the
Hopf bifurcation, (compare Figs. 5.3 (a1) and (b1)) for the case of a stable
focus. This suggests that, irrespective of the specific oscillator involved, the
type of the noise resonance is determined by the subcritical or supercritical
character of the bifurcation. The succeeding analysis demonstrates that the
above observations are indeed of much wider reach, as they uncover generic
scenarios close to a Hopf bifurcation.
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5.4 Generic model
Onset and enhancement of self-sustained oscillations can be successfully mod-
eled by the complex differential equation

ż = −iω0z − zF (z), (5.2)

used in many different contexts. Here z = x + iy is a complex amplitude,
ω0 is the eigenfrequency. In fact, the model (5.2) is a normal form for the
Hopf bifurcation; examples of applications range from the Van der Pol equa-
tion to the Lang-Kobayashi mean field equations [SPM04]. The bifurcation
scenario depends on the non-linear function F (r). For the supercritical Hopf
bifurcation, F (r) takes the form

F1(r) = −a1 + r2 + r4, (5.3)

with r = |z| =
√
x2 + y2; at a1 = 0 the equilibrium at |z| = 0 gets destabi-

lized, and the stable limit cycle is born from it. Alternatively, the subcritical
Hopf bifurcation is rendered by

F2(r) = −a2 − r2 + r4. (5.4)

Here, the increase of the parameter a2 results, first, in the birth of the finite
amplitude oscillatory state at a2 = −1/4 and, second, in the destabilization
of equilibrium at a2 = 0. The former event is the saddle-node (tangent)
bifurcation which creates on the phase plane two limit cycles: the stable and
the unstable one. The latter event is the Hopf bifurcation: the unstable limit
cycle shrinks to the equilibrium which, thereafter, inherits its instability. In
the parameter range between two bifurcations the system has two attractors:
the equilibrium and the stable limit cycle.

We set ω0 = 1 and fix the values a1 = −0.05 and a2 = −0.257, re-
spectively. This choice adjusts the systems before the birth of self-sustained
oscillations, z = 0 being a stable fixed point and dr/dt < 0 everywhere out-
side this point. In the first operation point a stable focus ”almost” gives
birth to a limit cycle. All trajectories are spirals approaching to the fixed
point (Fig.5.4(a)). In the second case the system is close to a saddle-node
bifurcation of periodic states, after which a stable fixed point and a stable
limit cycle coexist. If the system trajectories start far enough from the fix
point one observes monotonic spiraling to the origin. However, there is a
region where spiraling is slowing down and the trajectories stay a long time
in the region of impending limit cycle (Fig.5.4(b)). Below, we will argue why
the presence of this region is responsible for the minimum in the spectral
width.
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Figure 5.4: (a), (b) calculated trajectories. (a1), (b1) local damping F(r).
Normalized distribution P (r) for different level of noise. (a2) I - D=0.0001,
II - D=0.0016, III - D=0.008, IV - D=0.13. (b2) I - D=0.0001, II - D=0.0016,
III - D=0.008, IV - D=0.0625; Left column: supercritical case; Right column:
subcritical case.

We rewrite the model (5.2) in polar coordinates:

ṙ = rF (r), (5.5)
ϕ̇ = ω0. (5.6)

Here r =
√
x2 + y2, ϕ is a phase, and ω0 is the eigenfrequency. If F (r) would

be a constant what is valid for linear oscillator than equations (5.5, 5.6) can
be solved analytically and linewith is entirely determined by F , ∆ω = πF .
So for linear oscillator F (r) is related to the spectral linewidth. We consider
only amplitude equation (5.5) because noise in the phase equation plays no
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a significant role:

ṙ = rF (r) +
√

2Dξr(t). (5.7)

Here ξr(t) represents a non-white multiplicative noise with intensity D.
The difference between super- and subcritical cases can be explained by

the following arguments. First, the damping of (5.7) is determined by func-
tion F (r). Second, since the amplitude r is distributed due to noise, its
mean value < r >, as a function of D, moves from small to large values when
the noise becomes stronger. In other words, for different intensities of noise,
oscillations occur in regions with different local damping F (r).

For super-critical case F (r) is monotonically increasing function of r
(Fig.5.4(a1)) and, consequently, of the noise intensity D. In the region of
weak noise, it almost does not grow, and we observe noise induced oscilla-
tions with small amplitude and nearly the same coherence properties. This
can be related to phase dynamics. After F (r) is noticeably increased, the
coherence gets lost.

For sub-critical case the damping F (r) is a non-monotonic function of r
(Fig.5.4(b1)): in the range of moderate amplitude r it is decreasing. Accord-
ingly, when the trajectory of the system visits the region with low damping,
we observe time intervals of oscillations with high coherence. For large noise
intensity, F (r) is significantly increased, and coherent oscillations do not
occur.

We assume that the spectral width is governed by the effective damping
< F (r) > at fixed noise intensity D, which is defined as expectation value of
F (r):

< F (r) > =
∫
F (r)P (r)dr. (5.8)

Here P (r) is the stationary distribution of the amplitude fluctuation. One can
expect monotonic behavior of the effective damping versus noise intensity for
supercritical Hopf bifurcation, whereas for subcritical case minimum should
be observed.

In order to verify this statement the model (5.7) was solved numerically
by a stochastic Heun method [KP06] with time step 10−3. Distribution of the
amplitude P (r) for different noise intensities are shown in Fig.5.4 (a2), (b2).
One observes shift of the distribution maximum to higher amplitude with
increasing of noise intensity. Bimodal distribution in the subcritical case is
due to nonmonotonic dependence of the damping on coordinate. Spectral
width was obtained from the computed power spectra fitted by Lorentzian
functions. In calculation of the effective damping < F (r) > the interval
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of integration is chosen so that P(r) is larger than 10−2. Fig.5.5 exhibits
the effective damping < F (r) > and the spectral width ∆ω versus noise
intensity. In case of supercritical Hopf bifurcation monotonic growth of both
the width and the effective damping is observed. Minimum in the effective
damping as well as in the spectral width is observed for subcritical case
(Fig.5.5(b)). Quantitative disagreement is visible and can be explained by
that fact that the spectral width is not exactly defined by effective damping.
Strict analytical treatment of the model is performed in Ref. [KLGZ06].

Figure 5.5: Results of numerical simulation: spectral width ∆ω (dots) and
mean local damping < F (r) > (squares); a) supercritical Hopf bifurcation,
b) subcritical Hopf bifurcation.

One can summarize that the nonlinearity in the amplitude equation is
related to nonlinearity in damping. Before the supercritical Hopf bifurcation
the damping is minimal in the fixed point, whereas before subcritical bifur-
cation the minimal damping values take place outside the fixed point, in the
region where impending limit cycle arises. Consequently, the main ingredi-
ent for the difference between the manifestation of coherence resonance is the
difference in the form of dependence of damping on the coordinate.
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5.5 Conclusion
We have demonstrated that resonance phenomena driven by noise are a gen-
eral concomitant to a Hopf bifurcation. However, while the existence of
an optimum noise level is a common feature for both types of bifurcations,
the physics behind the resonance effect is qualitatively different. In the su-
percritical case, the increase of the signal-to-noise ratio is produced by the
spectral peak height, that is, by an increase of the oscillation amplitude.
The width is initially only slightly affected, but increases steeply for stronger
noise, weakening the coherence. Resonance-like behavior originates from the
competition between the growth of height and width. In contrast, for the
subcritical type, the spectral width itself exhibits a minimum. Here, the noise
improves, indeed, the quality factor as well as the temporal coherence of the
oscillation transients. In a strict sense, only this kind of response represents
truly "coherence resonance".



Chapter 6

Conclusions

This thesis reports on the experimental investigation of the self-organization
in a single-mode semiconductor laser with ultrashort optical feedback.

The dynamical properties of the laser with ultrashort optical feedback are
governed by two main parameters: a strength and an optical phase shift of
the feedback. First, laser with passive feedback (PFL) is investigated. Vary-
ing of feedback phase gives rise to self-pulsation. Two types of self-pulsation
are seen undamped relaxation oscillations (URO) and beating of a pair of
longitudinal modes (MB pulsation). It has been experimentally shown that
both pulsations appear in a Hopf bifurcation. Transition to higher order
instabilities, period doubling bifurcation, is observed as well. However, the
period doubling sequence does not evolve into a chaotic attractor proba-
bly due to collision of the attractor with a saddle. Chaotic motion can be
obtained with increasing of the feedback strength. The laser with active
optical feedback (AFL) possesses an ability to tune the feedback strength
and the feedback phase separately. At higher feedback strength the quasi-
periodic route to chaos is found. An internal crisis is responsible for the
expansion of the chaotic attractor in the phase space. Chaotic motion is
destroyed by a boundary crisis when the chaotic attractor collides with a
saddle. Destabilized chaotic attractor, chaotic saddle (CS), appears behind
the crisis. Chaotic transients (CT), a typical fingerprint of CS are observed
experimentally by exciting the system with an external short optical pulse.
The lifetime of the CT scales with the distance to the crisis as power law
with critical exponent. Despite high dimensionality this exponent is equal to
unity. The excitation of the chaotic transient exhibits a distinct threshold as
well as a refractory time and, sufficiently far from the boundary crisis, the
standard response of excitable systems is recovered.

In Chapter 5 we have investigated the influence of external Gaussian noise
close to the onset of the Hopf bifurcations. Noise-induced oscillations appear
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as a Lorentzian-shaped peak in the power spectrum. The coherence factor
defined by the product of height and quality factor exhibits non-monotonous
behavior with a distinct maximum at a certain noise intensity for both types
of Hopf bifurcations. Thus, both types of Hopf bifurcations exhibit coherence
resonance. Besides these similarities, the measurements reveal also quali-
tative differences between the two cases. Whereas the width of the noise
induced peak increases monotonically with noise intensity for the supercrit-
ical bifurcation, it traverses a pronounced minimum in the subcritical case.
These experimental findings are examined in terms of general models for the
noise driven motion close to bifurcations.



Appendix A

Probability distribution
function

It is natural to seek probabilistic descriptor when deterministic systems are
in a state of dynamical chaos. Such statistical tools are widely used in the
random excitation of linear systems. However, probabilistic mathematics
for chaotic dynamics of nonlinear systems are not readily available. One
exception is the case of systems governed by a first order-difference equation
or map.

For a first-order map, the probabilistic description involves a function
P (x) called the probability density function (PDF), where x is the state vari-
able that governs the map

xn+1 = F (xn). (A.1)

Because, x is a continuous variable, P (x) dx is the probability that the
dynamical orbit will occur in (x, x+ dx). The domain of the variable x over
which P (x) 6= 0 is sometimes called the support of the probability measure.
One complication in chaotic systems is that the support is sometimes fractal.
However, in practical systems there is always a small amount of noise which
tends to smooth out the fractal nature of P (x).

A fairly obvious way to calculate an approximation to P (x) is to divide up
or partition the domain of x into N cells of size ∆x, and then run map for sev-
eral thousand iterations, counting the number of times Ni an orbit enters the
ith cell. The set of numbers, sometimes called a histogram Pi; i = 1, ..., N ,
is given by

Pi = Ni/N (A.2)

The histogram is then considered to be an approximation to P (x).
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Increasingly, measurement of the probability distribution function is being
used as a diagnostic tool in chaotic vibration. In general, a dynamic attractor
in three-dimensional phase space would have a probability measure with three
variables P (x, y, z), one for the each of the state variables.

Also, modern signal processing systems often have a function (called a
histogram) that will partition an interval x1 ≤ x ≤ x2 into N bins and that
will count the number of times the digitalized signal lies in each bin in a
given finite length data record. With suitable normalization, this procedure
will yield an approximation to P (x).

To function as a good diagnostic tool, a signal processing algorithm must
provide qualitatively different patterns for periodic and chaotic signals. A
periodic motion usually has an elliptic shape in the phase plane (x, ẋ).
If the points on the orbit are subdivided and projected onto the x− axis,
then probability density function P (x) is continuous over finite interval with
singularities at the edges; that is,

P (x) = 1
π

1√
A2 − x2

(A.3)

for a harmonic orbit center at the origin. (A is the maximum amplitude
of the limit cycle.) For chaotic signals, the singularities often disappear and
P (x) looks more Gaussian and often non-Gaussian.



Appendix B

Travelling-Wave-Model

The slowly varying envelopes E±(t, z) of the forward and backward travelling
waves obey the equations

∂

∂t
E± = vg(∓

∂

∂z
− iβ + α

2 )E± − ivgκE∓,

where vg is the group velocity, α the absorption coefficient for parasitic
losses, κ the coupling coefficient of the DFB gratings. Boundary conditions
read E+(0, t) = 0 at the antireflection coated DFB facet and E−(L, t) =
rLE

+(L, t) at the cleaved facet of the feedback cavity. The waveguide prop-
agation parameter β is a constant in the passive phase tuning section. For a
length lP , it is given by

Figure B.1: Schematic of a DFB laser. E±(t, z) - the forward and backward
travelling waves, r0, rL - facet reflectivities.

β = −φP2lp
,

where the phase shift φP represents one of the externally controllable bifur-
cation parameters of the AFL dynamics.

56



57

In the active sections, β is a function of t and z and contains the following
contributions:

β = δ + g

2(i+ αH) + iD,

Here, δ is the background wave number measured relative to the Bragg res-
onance and αH denotes the linewidth enhancement factor. The peak gain g
is a function of the carrier density N ,

g = g′(N −Ntr)
1 + εS

, S = |E+|2 + |E−|2,

with g′ as differential gain, including the transverse confinement factor, Ntr

as transparency concentration, and ε accounting for nonlinear gain satura-
tion. The optical field is normalized so that S represents the local photon
density. Dispersive contributions are taken into consideration by the operator
D reading as

DE± = ḡ

2(p± − E±)

For the polarization p± , a single-oscillator model is used:

∂

∂t
p± = γ̄(E± − p±) + iωp±,

where ω is the resonance frequency taken relative to the central frequency
2πc/λ0, g − ḡ the off-resonance gain, and γ̄ measures the gain bandwidth.

The carrier densities N(t, z) in the DFB and amplifier section are solu-
tions of the rate equation

∂

∂t
N = J −R(N)− 2vgIm(E∗βE).

The terms on the right-hand side are the injection rate J , the spontaneous
recombination R(N) = AN+BN2+CN2, as well as the stimulated emission.



Appendix C

Device parameter in simulation
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explanation values unit
DFB P A

κ index coupling coeff. 130 0 0 cm−1

l section length 200 350 250 µm
σ cross-section of AZ 0.45 0.45 µm2

g′ effective diff. gain 9 9 10−17 cm2

αH Henry factor -5 -5
α internal absorption 25 [20,40] 25 cm−1

δ static detuning 402.7 [0,160] cm−1

I current injection 70 [0,100] mA
Ntr transp. carrier density 1 1 1018 cm−3

A recombination coeff. 0.3 0.3 109 s−1

B recombination coeff. 1 1 10−10 cm3 s−1

C recombination coeff. 1 1 10−28 cm6 s−1

ε nonl. gain comp. 3 3 10−18 cm3

U ′F diff. Fermi level sep. 1 1 10−19V/cm3

Rs series resistivity 5 5 Ω
ḡ Lorentzian height 200 0 200 cm−1

γ̄ Lorentzian half width 23.84 23.84 rad/ps
ω̄ Lorentzian central f. 2.384 2.384 rad/ps
λ0 central wavelength 1540 nm
R power reflectivity 0.3
vg group velocity c/3.8

Table C.1: Parameter values used for the DFB, phase tuning (P), and
amplifier (A) sections. Deviations are noted in the text.
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Abbreviation

Abbreviation Explanation
AFL active feedback laser
AR anti-reflection
ASE amplified spontaneous emission
BC boundary crisis
CA chaotic attractor
CC coherence collapse
CR coherence resonance
CS chaotic saddles
CT chaotic transients
cw continuous wave
dc direct current
DFB distributed feedback
DQS dispersive Q-switching
EC(M) external cavity (mode)
ESA electrical spectrum analyzer
FP Fabry-Perot
FWHM full-width at half maximum
LFF low frequency fluctuations
LK Lang-Kobayashi
MB mode beating
OSA optical spectrum analyzer
PD period doubling
PDF probability density function
PFL passive feedback laser
rf radio frequency
RO relaxation oscillation
SL semiconductor laser
SN saddle-node
SNR signal-to-noise ratio
SP self-pulsation
SR stochastic resonance
TWE traveling-wave equation
URO undamped relaxation oscillations
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