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Abstract 

The mechanisms by which the electrical activity of ensembles of neurons in the brain give 

rise to an individual’s behavior are still largely unknown. Navigation in space is one 

important capacity of the brain, for which the medial entorhinal cortex (MEC) is a pivotal 

structure in mammals. At the cellular level, neurons that represent the surrounding space in 

a grid-like fashion have been identified in MEC. These so-called grid cells are located 

predominantly in layer 2 of the MEC. The detailed neuronal circuits underlying this unique 

activity pattern are still poorly understood. 

 

This thesis comprises a group of studies contributing to a mechanistic description of the 

synaptic architecture in layer 2 of the MEC in rat. First, this thesis describes the discovery 

of hexagonally arranged cell clusters. Furthermore, anatomical data on the dichotomy of the 

two principle cell types in layer 2 of the MEC is presented.   

 

In the second part of this thesis, the first connectomic study of the MEC is reported which 

provides a detailed picture of the circuit structure in MEC layer 2. An analysis of the axonal 

architecture of excitatory neurons revealed synaptic positional sorting along axons, 

integrated into precise microcircuits. These microcircuits were found to involve 

interneurons with a surprising degree of axonal specialization for effective and fast 

inhibition.  

 

Together, these results contribute to a detailed understanding of the circuitry in MEC. They 

provide the first description of highly precise synaptic arrangements along axons in the 

cerebral cortex of mammals. The functional implications of these anatomical features were 

explored using numerical simulations, suggesting effects on the propagation of synchronous 

activity in layer 2 of the MEC. These findings motivate future investigations to clarify the 

contribution of precise synaptic architecture to computations underlying spatial navigation. 

Further studies are required to understand whether the reported synaptic specializations are 

specific for the MEC or represent a general wiring principle in the mammalian cortex. 

 



 

 

Zusammenfassung 

Es ist noch immer weitgehend ungeklärt, mittels welcher Mechanismen die elektrische 

Aktivität von Nervenzellpopulationen des Gehirns Verhalten ermöglicht. Die Orientierung 

im Raum ist eine wichtige Fähigkeit des Gehirns, für die im Säugetier der mediale 

entorhinale Teil der Großhirnrinde als entscheidende Struktur identifiziert wurde. Hier 

wurden Nervenzellen gefunden, die die Umgebung des Individuums in einer gitterartigen 

Anordnung repräsentieren. Diese sogenannten Gitterzellen befinden sich hauptsächlich in 

der zweiten kortikalen Schicht des medialen entorhinalen Kortex (MEK). Die genauen 

neuronalen Schaltkreise, welche diese einzigartige geordnete Nervenzellaktivität 

ermöglichen, sind noch wenig verstanden.  

 

Die vorliegende Dissertationsarbeit umfasst eine Reihe von Studien, die eine Klärung der 

zellulären Architektur und der neuronalen Schaltkreise in der zweiten Schicht des MEK der 

Ratte zum Ziel haben. Zum ersten hat diese Arbeit zur Entdeckung der hexagonal 

angeordneten zellulären Anhäufungen in Schicht 2 des MEK beigetragen. Weiterhin 

wurden anatomische Daten zur Dichotomie der Haupt-Nervenzelltypen erhoben. 

 

Im zweiten Teil dieser Arbeit wird erstmalig eine konnektomische Analyse des MEK 

beschrieben. Die detaillierte Untersuchung der Architektur einzelner exzitatorischer Axone 

ergab das überraschende Ergebnis der präzisen Sortierung von Synapsen entlang axonaler 

Pfade. Im Weiteren wurden die neuronalen Schaltkreise, in denen diese Neurone eingebettet 

sind, studiert. Interessanterweise zeigte sich hier eine starke zeitliche Bevorzugung der 

hemmenden Neurone.  

 

Im Ergebnis tragen die hier erhobenen Daten zu einem detaillierteren Verständnis der 

neuronalen Schaltkreise im MEK bei. Im Besonderen enthalten sie die erste Beschreibung 

überraschend präziser axonaler synaptischer Ordnung – einer Schaltkreispräzision, die für 

den zerebralen Kortex der Säugetiere nicht zu erwarten war. Die möglichen funktionellen 

Konsequenzen dieser Schaltkreisarchitektur wurden mittels numerischer Simulationen 

exploriert und lassen einen Effekt auf die Weiterleitung synchroner elektrischer Popu-

lationsaktivität im MEK vermuten. Diese Erkenntnisse legen den Grundstein für weitere 

Studien, um die Bedeutung präziser neuronaler Schaltkreise für die räumliche Orientierung 

zu bestimmen. Insbesondere muss geklärt werden, ob es sich um eine Besonderheit des 

MEK oder ein generelles Verschaltungsprinzip der Hirnrinde des Säugetiers handelt. 
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1 General Introduction 

 

 

 

 

 

 

 

 

 

Research over the decades has provided substantial information about the molecular and 

cellular building blocks of the brain. Neurons are the fundamental building units, which 

transmit information via action potentials, and communicate with each other through 

chemical or electrical synapses. The morphology of neurons (Peters and Jones, 1984a; 

Petilla Interneuron Nomenclature et al., 2008; Ramón y Cajal, 1899, 1995), electrical 

processes of action potential initiation and propagation (Hausser et al., 1995; Hodgkin and 

Huxley, 1952; Stuart et al., 1997), temporal dynamics of synapses (Fatt and Katz, 1950; 

Markram et al., 1997b), and dendritic linear or non-linear integration of postsynaptic 

potentials (Larkum et al., 2009; Larkum et al., 1999; Nevian et al., 2007; Smith et al., 2013; 

Stuart and Sakmann, 1994). Powerful methods exist to record electrical activity (Brecht and 

Sakmann, 2002c; Lee et al., 2006; Margrie et al., 2002; Stuart et al., 1993; Tang et al., 

2014a) and calcium transients in single cells (Denk et al., 1990; Helmchen et al., 2001; 

Murayama et al., 2007; Svoboda et al., 1996) as well as population of neurons (Garaschuk 

et al., 2000; Grewe et al., 2010; Kerr et al., 2005; Komiyama et al., 2010; Mittmann et al., 

2011). Despite this anatomical and electrophysiological knowledge, information about 

circuit structure and an understanding of how the computations that the cerebral cortex 

performs actually work is still lacking in most cases (Denk et al., 2012). 

 

1.1 Neuronal circuits 

From the earliest studies of the cerebral cortex, researchers have been trying to represent 

components of the brain and their possible synaptic connections in more or less simplified 

wiring diagrams (Binzegger et al., 2004; Douglas et al., 1989; Felleman and Van Essen, 

1991; Lorente de No, 1922, 1992; Lorente de Nó, 1938; Ramón y Cajal, 1899). The 
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mammalian brain comprises a large number of neurons that are heavily interconnected 

through chemical synapses to thousands of partner neurons (1 mm3 of mouse cortex 

contains about 90.000 neurons, 3 km axons, 300 m dendrites and 700 million synapses, 

(Braitenberg and Schüz, 1998; Schuz and Palm, 1989), forming neuronal networks with a 

large number of possible configurations.  

 

Approaches to study the anatomical organization of the cortex range from the macroscopic 

to the microscopic: from studies of the whole brain (e.g. magnetic resonance imaging or 

neurotracing methods) to investigations of local circuits (dense reconstruction using 

electron microscopy). 

 

At the coarse level, light microscopic (LM) methods and neuroanatomical tracers are used 

to map projection-based connectivity between different brain areas without the possibility 

of visualizing the underlying synaptic contacts. Specific labeling methods (intracellular 

labeling by electrode penetration (Feldmeyer et al., 1999; Horikawa and Armstrong, 1988), 

juxtacellular electroporation (Bonnot et al., 2005; de Kock et al., 2007; Judkewitz et al., 

2009; Kitamura et al., 2008; Nevian and Helmchen, 2007; Pinault, 1996), viral vectors (e.g., 

(Marshel et al., 2010)), transgenic expression of GFP in restricted neuronal types (e.g., 

(Feng et al., 2000; Okabe et al., 1997)) allow the investigation of cell assemblies with 

common characteristics (for example a common source or target of axonal projection; or 

the common expression of proteins or neurotransmitters). Several initiatives, such as the 

Mouse Brain Architecture Project (http://brainarchitecture.org/) or the Allen Mouse Brain 

Connectivity Atlas (http://connectivity.brain-map.org/), use these methods to reconstruct 

efferent and afferent pathways between cortical and subcortical neuronal assemblies of 

millions of neurons each within the whole mouse brain. However, these approaches are not 

sufficient to resolve the direct communication between individual neurons.   

 

At the next level of description, the approach of inferring circuits from single cell anatomy 

(i.e. from reconstructions of complete axons and dendrites of neurons obtained after 

intracellular recordings in vitro or in vivo, e.g. (Brecht et al., 2003; Brecht and Sakmann, 

2002a, b; Feldmeyer et al., 1999; Helmstaedter et al., 2008b; Lubke et al., 2003; 

Oberlaender et al., 2011)) was applied to the study of interlaminar connectivity (Binzegger 

et al., 2004; Lubke et al., 2003). The neocortex possesses six layers, which have a thickness 

of typically 100 - 500 µm in most mammals ((Peters and Jones, 1984b), see (Meyer et al., 

http://brainarchitecture.org/
http://connectivity.brain-map.org/
http://brainarchitecture.org/
http://connectivity.brain-map.org/
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2010b) for data on rat cortex). The axonal trees of individual neurons are often restricted to 

particular layers or modules in the cortex (e.g., (Helmstaedter et al., 2008b; Lubke et al., 

2000; Lubke et al., 2003)), such that the single cell anatomical data could be used for circuit 

predictions.  

 

 

 

 

 

Especially work in the cat visual system by Douglas and Martin had the ambition to 

determine stereotypic rules of wiring (Fig. 1.1). This work described a “canonical” 

microcircuit for neocortex based on translaminar axonal projections, and implied that the 

obtained connectivity is general across neocortical areas and mammalian species (Douglas 

and Martin, 1991, 2004; Douglas et al., 1989). Studies were carried out in various species 

and sensory cortices ranging from rodents via cats to tree shrews to primates (summarized 

in (Douglas and Martin, 2004), see for example (Feldmeyer et al., 1999; Ghosh et al., 1987; 

Gilbert and Wiesel, 1983; Lund et al., 1979; Usrey and Fitzpatrick, 1996)). The fact that the 

authors found this basic pattern of projections in different cortical areas and in all of these 

species enforced the notion of generality (“canonical nature”) of the circuit.  

Still, these circuit diagrams do not reveal direct communication between neurons, but rather 

reflect an approximation of the main interlaminar pathways. Even the most quantitative 

approaches of assigning a source to every synapse in these circuits (Binzegger et al., 2004; 

Lubke et al., 2003; Meyer et al., 2010a), are based on approximations such as Peters’ rule 

(axons connect in direct proportion to the occurrence of all synaptic targets in the neuropil, 

(Braitenberg and Schüz, 1998)) and the equalization of axonal boutons (detectable as 

varicosities using light microscopic methods) with synapses (Fig. 1.2).  

 

Figure 1.1: Canonical circuit for neocortex based on 

electrophysiological and modeling work in the cat visual 

system.  

Interaction of three populations of neurons: inhibitory cells 

(smooth cells), excitatory pyramidal cells in upper layers 

(P2+3, including layer 4 spiny stellate cells (4)), and deep 

layer pyramidal neurons (P5+6). Thalamic input mainly 

targets superficial layers. Recurrent excitation and inhibition 

is prominent in all layers within cells of the same type and 

other cell types. From (Douglas and Martin, 1991), reprinted 

with permission.       
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The precise mapping of point to point connections between neurons at synapses (today 

called “Connectomics”) is achieved in smaller volumes of brain tissue by electron 

microscopy (EM). This ultrastructural approach is used to study local circuits, such as 

intralaminar connectivity, on a scale of a few 100 µm. In contrast to fluorescence-based 

labeling techniques that rely on the sparse labeling of neurons, EM stains result in a 

relatively unbiased labeling of all membranes and synapses of densely packed neurites 

(Peters and Palay, 1991). However, only few circuits have so far been mapped 

comprehensively: The complete reconstruction of the neuronal connectivity in C. elegans 

(initiated in the 1970s, (White et al., 1986)), was the first and largest such reconstruction 

for decades. Contemporary initiatives to map local circuits using EM in vertebrate and 

invertebrate systems, comprise the direction-selective wiring of the mouse retina (Briggman 

et al., 2011), analysis of the neuropil in rat hippocampus (Mishchenko et al., 2010), mouse 

primary visual cortex anatomy (Bock et al., 2011), the circuitry in the larval brain of 

Drosophila (Cardona et al., 2010; Eichler et al., 2017), area HVC of the zebra finch 

(Kornfeld et al., 2017) and the olfactory bulb of zebrafish (Wanner et al., 2016a), as well as 

the whole-brain EM in larval zebrafish (Hildebrand et al., 2017). 

 

 

1.2 Connectomics 

Sporns et al. define “For any given nervous system, the complete map of its neural 

components and their synaptic interconnections corresponds to the connectome” (Sporns, 

2013; Sporns et al., 2005). The mapping and interpretation of connectomes, a field today 

called “connectomics”, faces a range of methodological challenges that are described in the 

following sections. 

Figure 1.2: Quantitative analysis of excitatory 

connections between layers in cat visual cortex.  

Numbers indicate percentages of total excitatory 

synapses. Thalamic afferents (X/Y) mainly arrive in 

layer 4 (L4), leading to a signal propagation through 

layers 2/3 (L2/3), deep layers (L5, L6), and closing 

the major feed-forward loop with recurrent input 

back to L4. Note that only ~21% of excitatory 

synapses are involved in this pathway. Note further 

that the number of synapses formed in the self-

innervation of individual layers is about the same 

(34%), pointing to self-innervation as an important 

feature of this circuit. From (Binzegger et al., 2004) 

with permission. 
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1.2.1 Volume EM techniques 

Modern volume EM methods are either based on wide field transmission electron 

microscopy (TEM) or scanning electron microscopy (SEM). In serial section TEM (ssTEM, 

Fig.1.3a, (Harris et al., 2006; White et al., 1986)) individual brain slices are cut with a 

diamond knife, collected manually onto an electron-transparent support film, and are 

typically post-stained to enhance contrast. This process generally suffers from variability in 

section thickness as well as missed and wrinkled slices. The electron beam, accelerated by 

a high voltage (80 – 120 kV), passes through the specimen onto a phosphor screen where a 

digital camera is used to capture the image.  

 

In SEM, on the other hand, the specimen is raster scanned by a precisely focused electron 

beam. The signal is produced by backscattered electrons that are collected by a detector 

positioned above the sample. Usually low electron energies (1 – 3 kV) are used to limit the 

penetration depth of the electrons to only the very surface of the sample (Hennig and Denk, 

2007). Consecutive images of the sample can be generated either by scanning previously 

cut ultrathin serial sections, or by the fully-automated, repeating process of imaging a block 

of tissue and the subsequent removal of its surface. An automated tape-collecting 

ultramicrotome (ATUM, (Hayworth et al., 2006; Kasthuri et al., 2015)), was developed to 

automatically pickup serial sections onto a support tape. However, with the use of electron 

opaque tape, the application of ATUM is mostly restricted to SEM (Fig. 1.3b, (Kasthuri and 

Lichtman, 2007)). In block-face SEM, the upper layer of tissue is either removed 

mechanically using a diamond knife (serial block-face SEM, Fig.1.3c, SBEM, (Denk and 

Horstmann, 2004)) or by milling with a focused ion beam (FIB-SEM, Fig. 1.3d,  (Heymann 

et al., 2006; Knott et al., 2008)). This approach is destructive, since the sections are lost as 

soon as they are removed (see (Briggman and Bock, 2012)). 
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1.2.2 Imaging resolution 

For circuit reconstruction, the minimally required imaging resolution corresponds to 

roughly half the smallest neurite diameter found in the chosen tissue volume. The thinnest 

neurites are dendritic spine necks (e.g. 40-50 nm in rat hippocampus, (Harris and Stevens, 

1989)). Therefore, the minimal resolution required for most circuits (in mouse and rat) is 

~20-25 nm but can be as small as 10-15 nm in certain model system, like the fly (see 

(Helmstaedter, 2013) for an extended discussion). 

 

The in-plane resolution provided by TEMs is usually 4-8 nm, because electrons of high 

energy are used. Currently, an x-y-resolution of about 12 nm is used in SBEM and up to 4 

nm in FIB-SEM (Helmstaedter and Mitra, 2012). The different acquisition methods vary 

considerably with respect to their z – resolution. FIB-SEM obtains the highest z-resolution 

of 5 nm (Knott et al., 2008). SBEM and ATUM-SEM can achieve a cutting thickness of  

Figure 1.3: Overview of acquisition techniques for volume electron 

microscopy.  

(a) Serial section transmission electron microscopy (ssTEM). (b) Automated 

tape-collecting ultramicrotome scanning electron microscopy (ATUM-SEM). 

(c) Serial block-face scanning electron microscopy (SBEM). (d) Focused ion 

beam milling scanning electron microscopy (FIB-SEM). Adapted from 

(Briggman and Bock, 2012) with permission. 
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20 – 30 nm (Briggman and Bock, 2012; Briggman et al., 2011). Manual ssTEM sections 

are typically limited to 40 – 50 nm (Harris et al., 2006). Thus, data annotation in ssTEM 

datasets is mostly restricted to in-plane analysis, since the resolution is highly anisotropic 

(very high x-y-resolution, but up to a factor of 10 less resolution across planes, 

(Helmstaedter and Mitra, 2012)).  

 

1.2.3 Maximal circuit size 

The various EM imaging methods described above are used to study neuronal circuits of 

various size. Using ssTEM and ATUM-SEM, the extent of the field of view in the plane of 

imaging can be several millimeters. Therefore, these methods are, in principle, applicable 

to answer connectivity questions between nearby brain regions or even in whole brains of 

fruit flies or zebrafish larvae. However, the generation of successive ultra-thin tissue slices 

(which limits the volume extent in the third dimension) is currently the main caveat.  

Even though there are no fundamental technical limitations to image larger volumes, SBEM 

is currently optimized to tissue blocks of several 100 µm on a side (Denk and Horstmann, 

2004). This method is best suited to study moderately sized circuits, for example 

connectivity within a cortical layer.  

Image volumes acquired by FIB-SEM provide the highest 3-dimensional resolution, but are 

so far limited to about 50 – 100 µm extent. This approach is currently best suited for smaller 

species (e.g. fruit fly) and questions of very local synaptic circuitry (Briggman and Bock, 

2012). 

 

1.2.4 Challenges of high-throughput EM 

The processing of nervous tissue for the dense reconstruction of the underlying circuits in 

volume EM represents a number of considerable challenges. Reliable staining protocols are 

required to label the densely packed neuropil in brain samples without membrane breakages 

or artifacts. Especially in SBEM, where post-staining of sections is not possible, penetration 

of the chemicals into the whole tissue block (en-bloc staining) needs to be guaranteed (Hua 

et al., 2015).  

 

The completeness of EM-imaged volumes is crucial for the reconstruction of neurites. 

Consecutive missing sections (due to cutting artifacts, focus instabilities or other failures 

during the imaging process) increase the probability of ambiguities in the acquired data, 
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with fine processes like axons, spine necks or small dendrites being lost or confused during 

data annotation.  

 

After data acquisition, the alignment and stitching of the image series into a 3-dimensional 

image volume is necessary. The post-processing of ssTEM and ATUM-SEM datasets 

typically requires complex warping algorithms and non-affine registration to compensate 

for the folding and stretching of tissue sections. On the contrary, images acquired with 

SBEM or FIB-SEM are taken from the surface of a tissue block and are therefore already 

comparably well aligned. 

 

With advances in acquisition stability and speed, larger image volumes can be acquired 

(currently the datasets are about a dozen terabytes in size, and several petabytes seem 

possible in the near future) and larger circuits can be reconstructed. In fact, the main 

challenge in high-throughput 3D EM of neuronal tissue is the analysis of the imaging data. 

Human annotators provide highly accurate reconstructions of even the smallest neurites, but 

they are very slow and prone to make attentional mistakes. The development of efficient 

automated reconstruction methods is therefore essential for large-scale circuit analysis 

(Helmstaedter, 2013). 

 

The reconstruction of neuronal circuits requires the detection of synapses and the 

identification of the pre- and postsynaptic neurons. In comparison to the identification of 

synapses from single 2-dimensional images acquired at high in-plane resolution (typically 

using TEM, e.g. (Harris et al., 2006; Harris and Stevens, 1988, 1989)), synapse detection in 

volume EM relies on sequences of typically dozens of images, allowing the identification 

of relevant synaptic features such as presynaptic vesicles, postsynaptic densities, and the 

locations of the postsynaptic partners. Automated synapse detection algorithms are 

available for high-resolution imaging using FIB-SEM (Kreshuk et al., 2011) and are 

recently also becoming available for SBEM datasets (SynEM, (Staffler et al., 2017); 

syConn, (Dorkenwald et al., 2017)).       

 

The reconstruction of neuronal processes, however, is still a major challenge. The properties 

of brain tissue pose substantial problems: tiny neurites, high packing density of the neuropil, 

and the variety of diameter and local entanglement of neuronal processes. Based on this and 

the size of neurons, enormous reconstruction times ensue: the reconstruction of a neuron at 
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the LM level takes dozen of hours; the same procedure would take a factor of 100 longer in 

EM data (Helmstaedter et al., 2008a). Additionally, neurite continuity needs to be extremely 

reliable, as assigning synapses to wrong neurons leads to intolerable error rates in the 

connectivity matrix (Helmstaedter, 2013). 

 

The key approach so far to resolve the reconstruction problem combines human expertise 

(manual skeletonization, (Helmstaedter et al., 2011)) with automated volume segmentation 

(for cortex data: SegEM, (Berning et al., 2015)). Human annotation is usually parallelized 

(i.e. redundant tracing of the same neuronal processes) and a consensus is found to reduce 

attention related errors (Helmstaedter et al., 2011). Efficient online annotation tools 

(webKnossos, (Boergens et al., 2017)) enable reconstruction velocities of 1.5 mm/h for 

axons and 2.1 mm/h for dendrites. In parallel, automated volume segmentation routines are 

trained and applied to the image data. The resulting piecewise volume segmentation is then 

combined with the skeleton annotations to result in a full-volume reconstruction of neurons 

(Berning et al., 2015; Helmstaedter et al., 2013). 

 

1.3 Medial entorhinal cortex 

The entorhinal cortex is positioned at the posterior side of the rodent cerebral cortex. It is 

partly enclosed by the rhinal fissure and surrounded by a number of cortical areas: olfactory 

and amygdaloid cortices (towards the anterior and lateral borders); parahippocampal 

formation (to the posterior and medial borders) (Fig. 1.4). Cytoachitectonic and 

connectional data support a subdivision of the entorhinal cortex into two functionally 

different regions – the lateral and medial entorhinal cortex (broadly corresponding to 

Brodmann areas 28a and 28b, (Brodmann, 1909)). Whereas cells in the lateral entorhinal 

cortex (LEC) are considered to convey olfactory information (Chapuis et al., 2013; Staubli 

et al., 1984a; Staubli et al., 1984b) and take part in object recognition (Deshmukh and 

Knierim, 2011) the medial entorhinal cortex (MEC) contains spatially modulated cells 

(Hafting et al., 2005; Sargolini et al., 2006; Solstad et al., 2008). 
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1.3.1 Layers and cell types 

The lamination of the MEC is a transition between the three-layered allocortex and the six-

layered neocortex. The outermost layer (L1) is almost free of somata (the remaining somata 

are GABAergic interneurons), containing a dense band of transversely oriented fibers. 

Layer 2 consists mainly of densely packed pyramidal and stellate cells (Alonso and Klink, 

Figure 1.4: Overview of the parahippocampal region in rat. Location of the medial 

entorhinal cortex and the adjacent cortices.  

(A) Posterior view of the left hemisphere. (B) Tangential section of the entorhinal cortex. 

Saggital (C), horizontal (D), and tangential (E) section processed for acetylcholinesterase 

activity. 

Scale bars 1mm. MEC – medial entorhinal cortex; LEC – lateral entorhinal cortex; PaS – 

parasubiculum; Per – perirhinal cortex; Por – postrhinal cortex; Sub – subiculum; Rsg/Rsa – 

retrosplenial cortex; Occ – occipital cortex; (*) – triangular region; D – dorsal; V – ventral; 

L – lateral; M – medial; R – rostral; C – caudal. From (Ray et al., 2017). 
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1993; Germroth et al., 1989). Interneurons within L2 are described as multi- and bipolar 

neurons, fast spiking basket cells, and chandelier cells. Layer 3 is a broader layer containing 

loosely arranged pyramidal neurons. The deeper border of L3 is delineated by the lamina 

dissecans, a fiber-dense layer lacking cell bodies (corresponding to a remnant of layer 4). 

Layer 5 of the MEC is stratified and can be subdivided into an upper layer of large pyramidal 

neurons, having a tuft that traverses superficial layers and may reach the pial surface, and a 

deeper layer of smaller horizontal pyramidal cells with dendritic trees confined to L5 and 

L6. The deepest layer (L6) contains largely multipolar neurons, whose dendritic trees 

mainly stay within this layer (Canto et al., 2008). 

 

1.3.2 Extrinsic connectivity 

The MEC is often perceived as a major input and output structure of the hippocampal 

formation, serving a pivotal role in cortico-hippocampal interactions. The superficial layers 

project to the dentate gyrus and the hippocampus. More precisely, L2 mainly targets the 

dentate gyrus and hippocampal CA3 / CA2 region (Witter, 2007) whereas L3 predominantly 

projects to CA1 and subiculum (Steward and Scoville, 1976). The main input to L2 and L3 

of the MEC arises from the presubiculum, parahippocampal-postrhinal, and retrosplenial 

cortices, as well as the prefrontal cortex (Insausti and Amaral, 2008; Kerr et al., 2007). The 

deep layers of the MEC receive projections from CA1 and subiculum, closing the entorhinal 

– hippocampal loop (Swanson and Cowan, 1977; Tamamaki and Nojyo, 1995). Entorhinal 

– cortical connectivity largely arises in these layers, mostly reciprocating the cortical 

afferents (Canto et al., 2008). 

 

1.3.3 Spatially modulated cells 

The MEC comprises a few functionally dedicated cell types that represent position and 

orientation in the environment: grid cells (Hafting et al., 2005), border cells (Solstad et al., 

2008), and head direction cells (Sargolini et al., 2006). 

 

Grid cells encode an animal’s location in the environment. They have multiple firing fields 

that are arranged in a hexagonal manner across the entire environment. The size and 

frequency of the firing fields as well as their locations (spatial phase) differ between cells, 

yielding a complete coverage of the environment with only a few cells (Hafting et al., 2005). 

Notably, the firing pattern of grid cells remains stable irrespective of the speed and head 

direction of an animal. Border cells on the other hand indicate the animal’s distance to 
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geometric borders. They mostly fire only on one of the borders of a given environment and 

maintain their activity when the environment size is manipulated (Solstad et al., 2008). 

Finally, head direction cells reflect the orientation of an animal relative to fixed landmarks 

in the environment.  

 

1.3.4 Microcircuitry 

Layer 2 of the MEC contains the largest fraction of pure grid cells compared to other layers 

of the MEC (Boccara et al., 2010). Two main principal neuronal types, stellate and 

pyramidal cells, have been described in L2 (Alonso and Klink, 1993; Germroth et al., 1989), 

with remarkably distinct electrophysiological features (Alonso and Llinas, 1989; Klink and 

Alonso, 1997), immunoreactivity (Varga et al., 2010), and projection pattern (Lingenhohl 

and Finch, 1991). 

 

Accumulating evidence from in vitro studies indicates that stellate and pyramidal neurons 

engage in cell-type specific microcircuits. Using paired intracellular recordings, no 

recurrent excitatory connections were found among L2 stellate cells (Couey et al., 2013; 

Dhillon and Jones, 2000; Pastoll et al., 2013). Instead, Couey et al. report disynaptic 

inhibition of stellate cells via fast-spiking interneurons. However, monosynaptic excitation 

among principal L2 neurons was observed (Beed et al., 2010), which potentially arise from 

predominantly directional connectivity of pyramidal to stellate cells (Winterer et al., 2017). 

Pyramidal cells were found to receive selective inhibition by cholecystokinin (CCK) - 

positive interneurons (Varga et al., 2010), as well as a substantially larger fraction of 

excitatory inputs from deep layers in comparison to stellate cells (Beed et al., 2010), 

indicating that pyramidal cells can integrate a broader range of inputs from deep layers. 

Other functional studies provided evidence for a columnar organization of interlaminar 

connections (Kloosterman et al., 2003; Stensola et al., 2012; Stewart, 1999). It is not known, 

however, whether signal transformation across layers in MEC is similar to the canonical 

circuitry described in the visual cortex (Burgalossi and Brecht, 2014). 
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1.4 Scope of this thesis 

This thesis explores the anatomical organization of layer 2 in the medial entorhinal cortex. 

This is pursued at the level of cellular organization (chapter 2), where the light-

microscopically determined arrangement of cell clusters is investigated1, followed by a 

detailed connectomic analysis of individual axons and the circuits they form using state-of-

the-art 3-dimensional electron microscopy techniques2 (chapter 3). 

 

 

                                                 
1This work was first reported in the following journal papers:   

 

(1) Ray, S.*, Naumann, R.*, Burgalossi, A.*, Tang, Q.*, Schmidt, H.*, Brecht, M. „Grid-layout and theta-

modulation of layer 2 pyramidal neurons in medial entorhinal cortex“, Science, 2014 (*: equally 

contributing first authors). This study was performed in a collaborative approach. The author of this thesis 

contributed to the visualization of pyramidal cell clusters (calbindin stainings), performed retrograde 

neuronal labelling experiments, and analysed the alignment of the calbindin grid to the parasubiculum, the 

probability of hexagonal arrangement, as well as the proximity of cholinergic boutons to calbindin-positive 

dendrites. 

 

(2) Tang, Q., Burgalossi, A., Ebbesen, CL., Ray, S., Naumann R., Schmidt, H, Spicher, D., Brecht, M. 

“Pyramidal and stellate cell specificity of grid and border representations in layer 2 of medial entorhinal 

cortex”, Neuron, 2014. The author of this thesis contributed the spine density measurements. 

  

(3) Tang, Q., Burgalossi, A., Ebbesen, C.L., Sanguinetti-Scheck, J.I., Schmidt, H., Tukker, J.J., Naumann, 

R., Ray, S., Preston-Ferrer, P., Schmitz, D., Brecht, M. “Functional Architecture of the Rat 

Parasubiculum“, Journal of Neuroscience, 2016. The author of this thesis contributed to the anterograde 

tracing experiments.  

 
2This work was first reported as a journal paper:  Schmidt, H., Gour, A., Straehle, J., Boergens, K.M., 

Brecht, M., Helmstaedter, M. „Axonal synapse sorting in medial entorhinal cortex“, Nature, 2017. The 

author of this thesis performed all experiments and analyses in this work, with contributions from A.G. to 

the P90 experiment, and with the exception of the numerical simulations, and co-wrote the paper. 
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2 Grid-layout of Layer 2 Pyramidal Neurons in 

Medial Entorhinal Cortex 

 

 

 

 

 

 

 

 

 

 

 

 

The work presented in this chapter was first published in: 

 

Ray, S.*, Naumann, R.*, Burgalossi, A.*, Tang, Q.*, Schmidt, H.*, Brecht, M. (2014). 

Grid-layout and theta-modulation of layer 2 pyramidal neurons in medial entorhinal 

cortex. Science 343:891-6. 

 

Tang, Q.*, Burgalossi, A.*, Ebbesen, C.L.*, Ray, S., Naumann, R., Schmidt, H., 

Spicher, D., Brecht, M. (2014). Pyramidal and stellate cell specificity of grid and 

border representations in layer 2 of medial entorhinal cortex. Neuron 84:1191-1197.  

 

Tang, Q., Burgalossi, A., Ebbesen, C.L., Sanguinetti-Scheck, J.I., Schmidt, H., Tukker, 

J.J., Naumann, R., Ray, S., Preston-Ferrer, P., Schmidtz, D., Brecht, M. (2016). 

Functional architecture of the rat parasubiculum. Journal of Neuroscience 

36 (7) 2289-2301. 

 

* These authors contributed equally. 

This is the authors’ version of the work.  
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2.1 Introduction 

Little is known about how microcircuits are organized in layer 2 of the medial entorhinal 

cortex (MEC). Temporal (Boccara et al., 2010; Mizuseki et al., 2009; Quilichini et al., 2010) 

and spatial (Hafting et al., 2005) discharge patterns in layer 2 of the MEC are related through 

phase precession (Hafting et al., 2008) and the correlation of gridness (hexagonal regularity) 

and theta-rhythmicity (Boccara et al., 2010). Layer 2 principal neurons divide into 

pyramidal and stellate cells, the latter of which have been suggested to shape entorhinal 

theta (Alonso and Klink, 1993; Alonso and Llinas, 1989) and grid activity (Hasselmo et al., 

2007) by their intrinsic properties. Clustering of grid cells (Stensola et al., 2012) points to 

spatial organization. It is not clear, how functionally defined cell types correspond to stellate 

and pyramidal cells (Alonso and Klink, 1993; Germroth et al., 1989), which differ in 

conductances, immunoreactivity, projections, and inhibitory inputs (Alonso and Llinas, 

1989; Canto and Witter, 2012; Klink and Alonso, 1997; Lingenhohl and Finch, 1991; Varga 

et al., 2010). Here, we aimed for a comprehensive description of the anatomical organization 

of MEC layer 2 (analysis of modular arrangement, the dichotomy of the two principle cell 

types, and cholinergic and parasubicular inputs) by combining immunohistochemical 

stainings with tracing experiments and juxtacellular labeling. 
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Figure 2.1: Grid-like arrangement of calbindin+ pyramidal cells in the MEC. 

(A) Posterior view of a rat cortical hemisphere. LEC, lateral entorhinal cortex; PaS, 

parasubiculum; Per, perirhinal cortex; Por, postrhinal cortex. (B) Calbindin-immunoreactivity 

(brown precipitate) in a parasaggital section reveals patches with apical dendrites of 

calbindin+ pyramidal cells forming tents (white arrows) in layer 1. (C) Tangential section 

showing all neurons (red, NeuN-antibody) and patches of calbindin+ neurons (green). Bracket, 

dashed lines indicate the patch-free stripe of MEC. (D) Inset from (C). (E) Two-dimensional 

spatial autocorrelation of (D) revealing a hexagonal spatial organization of calbindin+ patches. 

Color scale, –0.5 (blue) through 0 (green) to 0.5 (red); grid score is 1.18. Scale bars, (A) 1 mm; 

(B) 100 μm; (C) to (E) 250 μm. D, dorsal; L, lateral; M, medial; V, ventral. From (Ray et al., 

2014).  
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2.2 Results 

Calbindin immunoreactivity (Varga et al., 2010) identifies a relatively homogeneous 

pyramidal neuron population in MEC layer 2. Parasagittal sections stained for calbindin 

(Fig. 2.1B) showed that calbindin positive (calbindin+) pyramidal cells were arranged in 

patches (Fujimaru and Kosaka, 1996). Apical dendrites of calbindin+ pyramidal cells 

bundled together in layer 1 to form tent-like structures over the patches (Fig. 2.1B). The 

patchy structure is well defined at the layer 1/2 border, whereas a “salt-and-pepper” 

appearance of calbindin+ and calbindin– cells is observed deeper in layer 2 (Fig. 2.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Patches contained 187 ± 70 cells (111 ± 42, ~60% calbindin+; 76 ± 28, ~40% calbindin– 

cells; counts of 19 patches from four brains). We double-stained tangential sections for 

calbindin (green) and the neuronal marker NeuN (red) to visualize patches in the cortical 

plane. Calbindin+ (green/yellow) patches covered the MEC except for a 400- to 500-µm-

Figure 2.2: Cellular architecture of an individual calbindin patch. 

(A) Side view of an optically-cleared patch of calbindin+ cells. Serial optical sections spaced 2 µm 

apart were taken along the x-z-axis and displayed as maximum intensity projection. (B-I) Optical 

sections at the levels indicated in A, showing calbindin+ cells in green (B, D, F, H) and an overlay 

of calbindin+ cells in green and red autofluorescence showing all neurons (C, E, G, I). Dashed 

lines in A indicate the level of the optical sections displayed in (B-I): 70 µm below surface (B, C), 

108 µm below surface D, E, 130 µm below surface (F, G) and 160 µm below surface (H, I). Note 

the increase in patch diameter from the upper to middle levels. At the lower level there is no 

apparent modular structure of calbindin+ cells. Scale bars: A = 50 µm; B = 50 µm, applies to B-I. 

From (Ray et al., 2014).  
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wide patch-free medial stripe adjacent to the parasubiculum (Fig.2.1C). Clustering was not 

observed in calbindin– neurons (red) (Fig. 2.1C). We noted a striking hexagonal 

organization of calbindin+ patches (Fig. 2.1, C and D) and characterized this organization 

by means of three techniques. (i) We used two-dimensional spatial autocorrelation analysis 

(4), which captures spatially recurring features and revealed a hexagonal regularity (Fig. 

2.1E). (ii) We modified grid scores (Sargolini et al., 2006) to quantify hexagonality also in 

elliptically distorted hexagons (Barry et al., 2012a), distortions that result from tissue 

curvature and anisotropic shrinkage. Grid scores range from –2 to +2, with values >0 

indicating hexagonality. The example in Fig. 2.1D had a grid score of 1.18, suggesting a 

high degree of hexagonality. (iii) We assessed the probability of hexagonal patch 

arrangements given preserved local structure (Krupic et al., 2012) by means of a shuffling 

procedure. We found that the strongest Fourier component of the sample (Fig. 2.1D) 

exceeded that of the 99th percentile of shuffled data, suggesting that such hexagonality is 

unlikely to arise by chance. 

 

We retrogradely labeled neurons from ipsilateral dentate gyrus (Fig. 2.3A) using 

biotinylated dextran amine (BDA) (Fig. 2.3B) or cholera toxin B (Fig. 2.3C) to investigate 

the arrangement of layer 2 principal cells with identified projection patterns and 

immunoreactivity (Varga et al., 2010). Although most retrogradely labeled neurons were 

stellate cells (Germroth et al., 1989; Tamamaki and Nojyo, 1993), a small fraction had 

pyramidal morphologies, but these neurons appeared larger than calbindin+ pyramidal cells 

(Fig. 2.3B). Calbindin+ neurons did not project to the dentate gyrus (only 1 double-labeled 

out of 313 neurons in Fig. 2.3, C to E) (Varga et al., 2010). Calbindin+ patches were 

hexagonally arranged (Fig. 2.3, C, D, and F), whereas dentate gyrus– projecting neurons 

(red) were uniformly distributed (Fig. 2.3, E and G). Reconstructions of calbindin+ and 

calbindin– cells labeled in vivo confirmed their pyramidal and stellate morphologies, 

respectively. Calbindin+ dendrites were largely confined to patches, whereas calbindin– 

stellates cells had three times larger dendritic trees (7.6 versus 2.6 mm average total length, 

P < 0.03), which extended unrelated to patches (Fig. 2.3, H and I). Interestingly, the spine 

density in calbindin+ cells decreased as a function of distance from the soma, whereas the 

reverse was true for calbindin− cells (Fig. 2.4). Differentiating layer 2 neurons by calbindin 

and reelin immunoreactivity confirmed patchy hexagonality of calbindin+ cells and 

scattered distribution, of reelin+ cells without overlap between these neurons (Fig. 2.5) 

(Varga et al., 2010). 
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Figure 2.3: Calbindin+ pyramidal but not dentate-projecting stellate neurons form 

patches. 

(A) Schematic of retrograde labeling from dentate gyrus. (B) Such retrograde labeling 

(BDA, brown) stains neurons (most with stellate morphologies) in a parasaggital MEC 

section. (C) Tangential MEC section showing calbindin+ neurons (green) and retrogradely 

labeled neurons (red) after dentate-gyrus–cholera–toxin-B injection. (D and E) Insets 

from (C). (F) Two-dimensional spatial autocorrelation of (D) reveals regular organization 

of calbindin+ patches; grid score is 0.32. The strongest Fourier component of the sample 

exceeded that of the 99th percentile of shuffled data confirming hexagonality. (G) Two-

dimensional spatial autocorrelation of (E) reveals no spatial organization; grid score is –

0.03. (H and I) Superimposed reconstructions of dendritic morphologies of 5 

calbindin+ pyramidal (green) and 5 calbindin– stellate neurons (black) in the tangential 

plane. Morphologies were “patch-centered” aligned according to orientation and the center 

of the nearest calbindin+ patch (gray outlines). Scale bars, (B) 100 μm; (C) to (E) and (G) 

to (I) 250 μm. D, dorsal; L, lateral; M, medial; V, ventral. From (Ray et al., 2014).  
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Figure 2.5: Calbindin-positive pyramidal neurons but not reelin-positive cells form 

patches. 

(A) Tangential section of the rat MEC showing calbindin+ pyramidal neurons and neuropil 

(green) and reelin+, putative stellate, neurons (red). Calbindin+ and reelin+ neurons form two 

nonoverlapping populations (2 double-labeled neurons in 168 calbindin+ and 405 reelin+ layer 2 

neurons) (20). (B) Inset from A showing a high magnification of calbindin+ patches. (C) Two-

dimensional spatial autocorrelation of B illustrating regular spatial organization of calbindin+ 

patches. The grid score is 0.49. The strongest Fourier component of the sample exceeded that of 

the 99th percentile of shuffled data, confirming hexagonality. (D) Corresponding image section 

from B showing reelin+ neurons. (E) Spatial autocorrelation of D illustrating a lack of spatial 

organization of reelin+ neurons. The grid score is -0.04. Scale bars: A-E = 250 μm. D = dorsal, 

L = lateral, M = medial, V = ventral. From (Ray et al., 2014). 

Figure 2.4: Spine distribution differs in calbindin+ 

(green) and calbindin- cells (black).  

Data refer to ten cells each, for which spine densities in 

multiple ~30 µm dendrite segments were counted at the 

distances from the soma specified in the plot. Slopes of 

spine density differed significantly between calbindin+ 

cells and calbindin- cells (P < 0.003, t-test). Error bars 

indicate SEM. From (Tang et al., 2014b).  
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To investigate the organization of calbindin+ patches across the MEC, we prepared flattened 

whole-mount preparations. Patches had similar arrangements throughout the dorsoventral 

extent of the MEC (Fig. 2.6). At the layer 1/2 border, we consistently observed hexagonal 

arrangements in well-stained specimens. We quantified patch size and spacing in 10 largely 

complete MEC whole mounts. Patch density was similar throughout the MEC, whereas 

patch diameter slightly increased toward ventral (Fig. 2.6). We estimated 69 ± 17 patches 

across the entire MEC (n = 10 hemispheres). Calbindin patches stained also positive for 

cytochrome-oxidase activity (Burgalossi et al., 2011). However, the two staining patterns 

were not the same because calbindin patches were more sharply delineated than were spots 

revealed by cytochrome-oxidase activity, and cytochrome-oxidase staining revealed many 

more patches than did calbindin staining in the MEC (Burgalossi et al., 2011). Moreover, 

the staining patterns did not correspond at all in the parasubiculum. 

 

 

 

 

 

 

Figure 2.6: Layout of calbindin patches across the extent of medial entorhinal cortex. 

(A) Measurements of mean patch diameter (red) and density (blue) across the dorsoventral extent 

of the MEC. Measurements refer to ten MEC whole-mounts and did not include the medial patch-

free stripe of MEC (see Fig 2.1C). Error bars = SD. (B) Tangential section from a flattened cortical 

preparation processed for calbindin immunoreactivity (green) showing modularity throughout the 

MEC. The image was flipped around the vertical axis for comparability. (C) Two-dimensional 

spatial autocorrelation of the dorsal inset in A. The grid score is 0.32. The strongest Fourier 

component of samples C, D exceeded that of the 99th percentile of shuffled data confirming 

hexagonality. (D) Two-dimensional spatial autocorrelation of the ventral inset in A. The grid 

score is 0.79. Scale bars: B-D = 250 µm. D = dorsal, L = lateral, M = medial, V = ventral. From 

(Ray et al., 2014).  
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Calbindin+ patches shared a roughly 60° symmetry of their axes (Fig. 2.7A). One axis runs 

parallel to the dorsoventral axis of the parasubiculum (Fig. 2.7, A and B). Lines fitted 

through the dorsoventral axis of the parasubiculum, and the most medial column of 

calbindin+ patches had the same orientation (Fig. 2.7B). A second consistent axis was tilted 

~60° relative to the dorsoventral axis. This calbindin+ patch axis curved ventrally at more 

lateral positions and aligned with the orientation of overlaying layer 1 myelinated axons 

(Fig. 2.7, C to F). Thus, the line connecting diagonally neighboring calbindin patches 

(revealed by spatial autocorrelation) (Fig. 2.7, D and E) aligned with the orientation of layer 

1 axons (Fig. 2.7F). We quantified the orientation of axonal segments by a polar plot shown 

in Fig. 2.7G and confirmed that layer 1 axons share one main orientation in the MEC 

(Blackstad, 1956; Burgalossi et al., 2011; Witter et al., 1989). 

 

MEC function and grid cell activity (Barry et al., 2012b; Heys et al., 2012) depend on medial 

septum inputs (Brandon et al., 2011; Koenig et al., 2011) and cholinergic transmission. We 

observed a patchy pattern of acetylcholinesterase labeling at the layer 1/2 border (Fig. 

2.7H), which colocalized with the cores of calbindin+ patches (Fig. 2.7, H to J). Axonal 

terminals positive for the vesicular acetylcholine transporter (VAChT) were closely 

apposed to calbindin+ cells, and their density was twofold larger in calbindin+ patches than 

between patches (Fig. 2.8). We also stained for m1 muscarinic receptors and observed a 

diffuse labeling without colocalization of these receptors to VAChT puncta. Moreover, we 

analyzed the apposition and distribution of presynaptic VAChT puncta relative to dendrites 

of in vivo filled calbindin+ and calbindin– layer 2 cells by means of confocal microscopy. 

VAChT puncta were much more abundant around calbindin+ than calbindin– layer 2 cells, 

but proximity histograms of VAChT puncta and dendrites did not indicate a direct targeting 

of calbindin+ cell dendrites by cholinergic synapses (Fig. 2.8). Both the m1 receptor labeling 

and the dendrite-VAChT puncta colocalization analysis are in line with a volumetric action 

of acetylcholine in the MEC (Agnati et al., 2006; Hasselmo and McGaughy, 2004; Teles-

Grilo Ruivo and Mellor, 2013). 
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Figure 2.7: Alignment of the calbindin grid to parasubiculum, layer 1 axons, and 

cholinergic markers. 

(A) Section from Fig. 1C. Dashed white lines indicate axes of the calbindin+ grid (angles 

are indicated). Axes aligned with parasubiculum (B) and layer 1 axons [(C) to (G)]. (B) 

(Left) Schematic of calbindin patches and parasubiculum from (A). The orange line fits 

the dorsoventral axis of the parasubiculum, and the green line fits the most medial column 

of patches (red); the angle between these lines is indicated. (Right) Fitted lines and their 

relative angles for four other brains. (C) Tangential section processed for calbindin 

(green) and myelin basic protein (red). (D) Inset from (C). (E) Two-dimensional spatial 

autocorrelation of (D). Dashed black lines indicate grid axes. (F) Inset from (C). (G) 

Axonal segments in (F) were manually traced from left to right, and we computed a polar 

plot (red) of the orientations of the axonal segments. The orientations of axonal segments 

aligned with one axis of the grid of calbindin patches [superimposed dashed lines from 

(E)]. (H) Tangential section stained for acetylcholinesterase activity. (I) Section from (H) 

costained for calbindin. (J) Overlay of (H) and (I) shows overlap between 

acetylcholinesterase and calbindin staining. Scale bars, (A), (C) to (F), (H), and (I) 250 

μm; (J) 100 μm. D, dorsal; L, lateral; M, medial; V, ventral. From (Ray et al., 2014). 
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Figure 2.8: Vesicular acetylcholine transporter, calbindin patches and 

proximity of cholinergic boutons to calbindin-positive dendrites. 

(A) Fluorescence micrograph showing one calbindin patch from a tangential 

section stained for calbindin (green). (B) Same section as in A stained for 

VAChT immunoreactivity (red). Note the higher density of VAChT-positive 

puncta in the calbindin-patch than in the surrounding area. (C) Overlay of A 

and B. (D) Density of VAChT-positive puncta in calbindin patches (green dots) 

and non-patch areas (black dots) at the layer 1/2 border. In five rats we selected 

10 regions of interest (ROI) centered on calbindin patches and 10 ROIs 

positioned equidistant between calbindin patch centers. Horizontal bars indicate 

mean values. All VAChT positive puncta in the ROI were counted and divided 

by area size to obtain puncta density. (E) Fluorescence micrograph showing an 

overlay of a calbindin+ dendrite (green) and nearby VAChT-positive puncta 

(red). (F) Histogram of the closest distance of VAChT-positive puncta to 

dendrites of calbindin+ (top) and calbindin- (bottom) cells. We selected 35 

dendritic segments of calbindin+ and 25 segments of calbindin- dendrites and 

measured the distance of VAChT-positive puncta and dendrites. The histograms 

were normalized by dendritic length to obtain the number of VAChT-positive 

puncta per µm. Data refer to 10 (5 each) juxtacellularly stained calbindin+ and 

calbindin- neurons. Scale bars: A, B, C = 50 µm; E = 10 µm. From (Ray et al., 

2014). 
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Finally, we were interested in how parasubicular circuits (containing head-direction cells, 

(Solstad et al., 2008; Tang et al., 2016)) relate to the patchy architecture in layer 2 of MEC. 

Injections of the anterograde tracer BDA (3000 molecular weight) showed that 

parasubicular neurons extend long axons throughout the full length of the parasubiculum 

(Fig. 2.9A), consistent with previous evidence from single-cell microcircuits (Burgalossi et 

al., 2011). As a consequence of this internal connectivity, a single tracer injection could 

label the full extent of the parasubiculum (Fig. 2.9B top). Furthermore, we observed heavy 

staining of layer 2 of the MEC (Fig. 2.9B bottom). To determine whether parasubicular 

axons target a specific subpopulation of neurons in layer 2 of MEC, we performed fine-

scale injections of anterograde tracers in the dorsal parasubiculum, combined with 

visualization of calbindin patterns (Fig. 2.9C-E). Surprisingly, calbindin+ patches were 

selectively innervated by parasubicular afferents (Fig. 2.9C-D), which targeted the center 

of patches (Fig. 2.9E). This indicates that parasubicular axons may preferentially provide 

input to layer 2 pyramidal neurons of MEC, which could convey head-direction 

information.   
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Figure 2.9: Internal structure of the parasubiculum. 

Parasubicular axons target layer 2 pyramidal cell 

patches in medial entorhinal cortex.  

(A) Tangential sections of the parasubiculum showing the 
injection site of BDA tracer (red fluorescence) and 
anterogradely traced circumcurrent axons (according to the 
terminology of (Burgalossi et al., 2011)), extending 
throughout the parasubiculum (see also magnified inset, 
left). (B) Parasagittal sections of the parasubiculum (top) 
and parasubiculum and MEC (bottom) after the injection of 
larger amounts of BDA (tracer, dark color). The tracer 
completely fills the parasubiculum and stains layer 2 of the 
MEC. (C) Left, Tangential section stained for calbindin 
(green) revealing patches of calbindin+ pyramidal neurons. 
Middle, Same section as left processed to reveal the tracer 
BDA (red). Right, Overlay. (D), Same as C but at higher 
magnification. (E) High-magnification view of a single 
patch. (*) Location of the parasubicular injection sites. Scale 
bars, (C) to (E) 150 μm. D, Dorsal; L, lateral; M, medial; V, 
ventral; A, anterior; P, posterior. Adapted from (Tang et al., 
2016). 
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2.3 Discussion 

We studied the arrangement and properties of the two main principal cell types in rat medial 

entorhinal cortex layer 2. Non–dentate-projecting, calbindin-positive pyramidal cells 

bundled dendrites together and formed patches arranged in a hexagonal grid aligned to layer 

1 axons, the dorsoventral extent of the parasubiculum, and cholinergic and parasubicular 

inputs. Calbindin-negative, dentate-gyrus–projecting stellate cells were distributed across 

layer 2 but avoided centers of calbindin-positive patches.  

 

We have hypothesized that calbindin+ neurons form a “grid-cell-grid” (Brecht et al., 2014) 

- that their hexagonal arrangement might be an isomorphism to hexagonal grid cell activity, 

much like isomorphic cortical representations of body parts in tactile specialists (Catania et 

al., 1993; Woolsey and Van der Loos, 1970). However, hexagonality often results from 

spacing constraints and hence might be unrelated to grid cell activity. Determining the 

spatial modulation patterns of identified entorhinal neurons will help clarifying whether and 

how the calbindin+ grid is related to grid cell activity. 

 

The reported morphological differences (dendritic size and shape, inhomogeneous spine 

distribution), together with clustering of calbindin+ cells in patches and the polarization of 

their apical dendrites toward the center of calbindin+ patches, likely result in a local and 

overlapping sampling of inputs in neighboring calbindin+ cells, whereas neighboring 

calbindin− stellate cells sample large and non-overlapping input territories. Recognizing the 

functional dichotomy of pyramidal and stellate cells in layer 2 will help elucidate how 

spatial discharge patterns arise in cortical microcircuits. 

 

In addition to these anatomical findings, the functional results (not shown here) indicate 

that the strongly theta-rhythmic parasubicular neurons project selectively into layer 2 

pyramidal cell patches (Tang et al., 2016), where neurons show strong entrainment by the 

theta rhythm (Ray et al., 2014) and where most grid cells might be located (Tang et al., 

2014b). This could indicate a focus of grid cell activity in pyramidal cell patches. Results 

about inter-class connectivity ((Couey et al., 2013; Fuchs et al., 2016; Winterer et al., 2017), 

see Chapter 3 of this thesis) would however predict that (given inhibitory gating) grid cell 

activity could spread across the cell types in MEC. It thus still needs to be assessed how 

these two distinct principal cell networks contribute to grid cell activity. 
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2.4 Materials and methods 

All experimental procedures were performed according to German guidelines on animal 

welfare. 

 

2.4.1 Brain tissue preparation 

For anatomy experiments, male and female Wistar rats (150-400 g) were anesthetized by 

isoflurane, and then euthanized by an intraperitoneal injection of 20% urethane. They were 

then perfused transcardially with 0.9% phosphate buffered saline solution, followed by 4% 

paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB). After perfusion, brains were 

removed from the skull and postfixed in PFA overnight. They were then transferred into a 

10% sucrose solution in PB and left overnight, and subsequently immersed in 30% sucrose 

solution for at least 24 hours for cryoprotection. The brains were embedded in Jung Tissue 

Freezing Medium, and subsequently mounted on the freezing microtome to obtain 20-60 

μm thick sagittal sections or tangential sections (parallel to the pial surface). Tangential 

sections of the medial entorhinal cortex were obtained by separating posterior cortices 

(including the entorhinal cortex) from the remaining hemisphere by a cut parallel to the 

surface of the medial entorhinal cortex. The tissue was then frozen and positioned with the 

pial side to the block face of the microtome.  

 

2.4.2 Histochemistry and immunohistochemistry 

Acetylcholinesterase (AChE) activity was visualized according to previously published 

procedures (Ichinohe et al., 2008; Tsuji, 1998). After washing brain sections in a solution 

containing 1 ml of 0.1 M citrate buffer (pH 6.2) and 9 ml 0.9% NaCl saline solution (CS), 

sections were incubated with CS containing 3 mM CuSO4, 0.5 mMK3Fe(CN)6, and 1.8 

mM acetylthiocholine iodide for 30 min. After rinsing in PB, reaction products were 

visualized by incubating the sections in PB containing 0.05% 3,3’- Diaminobenzidine 

(DAB) and 0.03% nickel ammonium sulfate.  

Immunohistochemical stainings were performed according to standard procedures. Briefly, 

brain sections were pre-incubated in a blocking solution containing 0.1 M PBS, 2% Bovine 

Serum Albumin (BSA) and 0.5% Triton X-100 (PBS-X) for an hour at room temperature 

(RT). Following this, primary antibodies were diluted in a solution containing PBS-X and 

1% BSA. Primary antibodies against the calcium binding proteins Calbindin (1:5000), the 

extracellular matrix protein Reelin (1:1000), the extrinsic membrane protein Myelin Basic 

Protein (1:1000), the vesicular acetylcholine transporter (1:1000), and the DNA binding 
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neuron specific protein NeuN (1:1000) were used. Incubations with primary antibodies were 

allowed to proceed for at least 24 hours under mild shaking at 4°C in free-floating sections. 

Incubations with primary antibodies were followed by detection with secondary antibodies 

coupled to different fluorophores (Alexa 488 and 546). Secondary antibodies were diluted 

(1:500) in PBS-X and the reaction was allowed to proceed for two hours in the dark at RT. 

For multiple antibody labeling, antibodies raised in different host species were used. After 

the staining procedure, sections were mounted on gelatin coated glass slides with Mowiol 

or Vectashield mounting medium.  

In a subset of experiments, primary antibodies were visualized by DAB staining. For this 

purpose, endogenous peroxidases were first blocked by incubating brain tissue sections in 

methanol containing 0.3% hydrogen peroxide in the dark at RT for 30 min. The subsequent 

immunohistochemical procedures were performed as described above, with the exception 

that detection of primary antibodies was performed by biotinylated secondary antibodies 

and the ABC detection kit. Immunoreactivity was visualized using DAB staining.  

For whole-mount immunohistochemistry we used a variant of the protocol in (Jährling et 

al., 2008; Sillitoe and Hawkes, 2002). Thick tangential sections (~ 300 μm) containing layer 

2 of the MEC were first post-fixed in Dent's fixative overnight at 4°C and then incubated in 

Dent's bleach overnight at 4°C. They were then dehydrated twice in 100% methanol for 30 

min each and then rehydrated for 90 min each in 50% and 15% methanol in PBS at RT. 

Subsequently, sections were incubated with 10 μg/ml proteinase K for 5 min at RT. Sections 

were then rinsed three times for ten minutes in PBS at RT and subsequently incubated in 

PBS-X containing 2% BSA overnight. Primary antibodies were diluted in PBS-X 

containing 5% DMSO, 1% BSA and incubated for 96 hours at 4°C. After this incubation, 

whole-mounts were washed in PBS-X three times for 2–3 h each and then incubated 

overnight in secondary antibodies diluted in PBS-X and 5% DMSO at 4°C. Sections were 

then washed three times in PBS-X for 2–3 h each and incubated in PBS-X overnight to 

ensure efficient removal of unbound antibodies. The sections were dehydrated in series of 

50%, 80%, and 100% methanol in PBS at RT for 90 min each. Finally, the sections were 

transferred for at least 2 days into a clearing solution consisting of two parts of benzyl 

benzoate and one part of benzyl alcohol at RT, until they became transparent.  

For histological analysis of juxtacellularly-labeled neurons, neurobiotin was visualized with 

streptavidin conjugated to Alexa 546 (1:1000). Subsequently, immunohistochemistry for 

Calbindin was performed as described above and visualized with Alexa Fluor 488. After 

fluorescence images were acquired, the neurobiotin staining was converted into a dark DAB 
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reaction product, performed as previously described (Klausberger et al., 2003). This has 

advantages of being more sensitive than most fluorescent dyes, is permanent and not 

sensitive to photobleaching (Marx et al., 2012). In general we found similar results for 

calbindin immunohistochemistry as previous authors (Langston et al., 2010; Varga et al., 

2010), who showed that the large majority (~90% in (Langston et al., 2010)) of calbindin+ 

cells are glutamatergic neurons. 

 

2.4.3 Retrograde and Anterograde Neuronal Labeling 

Retrograde tracer solutions containing either Biotynilated-Dextrane Amine (BDA) (10% 

w/v; 3.000 MW) or Cholera Toxin Subunit B, Alexa Fluor 488 Conjugate (CTB) (0.8 % in 

PB) were injected in juvenile rats (~150 gr) under ketamine/xylazine anesthesia. Briefly, a 

small craniotomy was opened above the dentate gyrus at intermediate positions along the 

septotemporal axis. Animals were placed in a stereotaxic apparatus, and prior to injection, 

the granule cell layer was localized by electrophysiological recordings, based on 

characteristic signatures of the local field potential and neuronal spiking activity. Glass 

electrodes with a tip diameter of 10- 20 μm, filled with CTB or BDA solution, were then 

lowered unilaterally into the target region. Tracers were either pressure-injected (CTB; 10 

injections using positive pressure of 20 p.s.i., 10- 15 s injection duration) or 

iontophoretically-injected (BDA; 7s on/off current pulses of 1-5 mA for 15 min). After the 

injections, the pipettes were left in place for several minutes and slowly retracted. The 

craniotomies were closed by application of silicone and dental cement. The animals 

survived for 3-7 days before being transcardially perfused. The results from backlabeling 

agreed with previous authors (Germroth et al., 1989; Peterson et al., 1996; Tamamaki and 

Nojyo, 1993), who also found that the large majority of retrogradely-labeled neurons from 

the dentate gyrus had stellate morphologies. 

 

2.4.4 Image acquisition 

A microscope equipped with a motorized stage and a z-encoder, was used for bright field 

microscopy. Images were captured using a MBF CX9000 camera using Neurolucida or 

StereoInvestigator. Confocal and epifluorescence microscopes with camera were used to 

image the immunofluorescent sections. Alexa fluorophores were excited using the 

appropriate filters (Alexa 488 – L5, Alexa 546 – N3, Alexa 633 – Y5). Fluorescent images 

were acquired in monochrome, and colour maps were applied to the images post acquisition. 

Whole-mount stainings were imaged using a microscope. Fluorescence images were 
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acquired with a 25x (1.05 NA) water-immersion objective. A femtosecond laser was used 

to excite fluorophores at 850 nm. Post hoc linear brightness and contrast adjustment were 

applied uniformly to the image under analysis. 

 

2.4.5 Cell Counts and Patch Sizes 

In the analysis for determining cell numbers and patch sizes, patches in consecutive sections 

were matched by overlaying them in Adobe Photoshop, and only the ones which could be 

reliably followed in all the sections under consideration were taken up for further analysis. 

Image stacks were first converted into .tiff files for different channels and focal planes using 

ImageJ. These files were then merged back together into a single file using the Neurolucida 

image stack module. In these patches all cells positive for Calbindin and NeuN were counted 

manually. 

Quantification of patch sizes was done with the Neurolucida software by using the mean of 

maximum and minimum Feret diameter, defined as the maximum and minimum diameter 

of the patch, respectively. To correct for overestimation of neurons due to double counting 

in two adjacent sections, we estimated the number of cells in a section assuming uniform 

cell density and uniform spherical cell shape in the section and applied a correction factor 

of s / (s+d) where, s is the section thickness and d is the diameter of a cell, to correct for the 

cells which would be counted again in an adjacent section. 

 

2.4.6 Quantification of axonal orientation and cholinergic boutons 

To quantify the orientation of axonal fibers in layer 1, axon segments from myelin-stained 

sections were traced using Neurolucida software. The polar histogram in Fig. 2.7G was 

constructed with angular bins of 3°, and the total length of axons in each angular direction 

was summed up. Using Stereoinvestigator software we quantified the density of VAChT-

positive puncta in calbindin patch and non-patch areas at the layer 1/2 border in tangential 

sections from five rats. In total, we selected 10 regions of interest (ROI) centered on 

calbindin patches and 10 ROIs positioned equidistant between calbindin patch centers. All 

VAChT positive puncta in the ROI were counted manually and divided by area size to 

obtain puncta density. 

To assess the colocalization of VAChT puncta and calbindin+ and calbindin- dendrites, we 

labeled neurons in vivo juxtacellularly and identified the cells based on their calbindin 

immunoreactivity. We calculated the proximity histograms of the closest distance between 

VAChT puncta and dendrite segments (35 calbindin+ and 25 calbindin- segments), at 50 
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µm and 100 µm from the soma (5 calbindin+ and 5 calbindin- cells from 4 brains). The 

histograms were normalized by dendritic length to obtain the number of VAChT-positive 

puncta per µm. The proximity analysis between VAChT puncta and dendritic segments was 

done in two ways: 1. We measured the closest distance of VAChT puncta to the dendrite 

shaft. 2. We measured the distance of the VAChT-positive puncta to the closest spine. Both 

results give rise to the same conclusion. Here, we show the results of analysis 1 only. 

 

2.4.7 Analysis of Spatial Periodicity 

To determine the spatial periodicity of calbindin+ patches, we determined spatial 

autocorrelations and spatial Fourier spectrograms. The spatial autocorrelogram was based 

on Pearson’s product moment correlation coefficient (as in (Sargolini et al., 2006)). Grid 

scores were calculated as previously described (Schwartz and Coleman, 1981) by taking a 

circular sample of the autocorrelogram, centered on, but excluding the central peak. The 

Pearson correlation of this circle with its rotation for 60 degrees and 120 degrees was 

obtained (on peak rotations) and also for rotations of 30 degrees, 90 degrees and 150 degrees 

(off peak rotations). Gridness was defined as in (Solstad et al., 2008) as the minimum 

difference between the on-peak rotations and off-peak rotations. To determine the grid 

scores, gridness was evaluated for multiple circular samples surrounding the center of the 

autocorrelogram with circle radii increasing in unitary steps from a minimum of 10 pixels 

more than the width of the radius of the central peak to the shortest edge of the 

autocorrelogram. The radius of the central peak was defined as the distance from the central 

peak to its nearest local minima in the spatial autocorrelogram. The grid score was defined 

as the best score from these successive samples (Solstad et al., 2008). 

Grid scores reflect both the hexagonality in a spatial field and also the regularity of the 

hexagon. To disentangle the effect of regularity from this index, and consider only 

hexagonality, we transformed the elliptically distorted hexagon into a regular hexagon 

(Barry et al., 2012a) and computed the grid scores. A linear affine transformation was 

applied to the elliptically distorted hexagon, to stretch it along its minor axis, till it lay on a 

circle, with the diameter equal to the major axis of the elliptical hexagon. The grid scores 

were computed on this transformed regular hexagon. The spatial Fourier spectrogram was 

calculated by implementing a two-dimensional discrete Fourier transform and determining 

its power (Krupic et al., 2012). 
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To determine the probability that the patches present in the selected area would be arranged 

hexagonally, we employed a shuffling procedure and compared the maximum Fourier 

power of the block pattern representing the original image, to the 99th percentile of the 

power of a shuffled one with the same blocks (representing the patches) being randomly 

distributed in the same area without overlapping. This shuffling was performed on all 

samples on a sample-by-sample basis until the 99th percentile of the maximum power 

Fourier component converged to a constant. 

 

2.4.8 Spine density measurement  

To assess the spine density of calbindin+ and calbindin- dendrites, we labeled neurons in 

vivo juxtacellularly and identified the cells based on their calbindin immunoreactivity. We 

counted spines of fluorescent and DAB converted cells (10 calbindin+ and 10 calbindin- 

neurons) at 50 µm, 100 µm and 150 µm from the soma. The spine counts were normalized 

by dendritic length to obtain the number of spines per µm. 
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3.1 Introduction 

Ultrastructural analysis of cortical synaptic connectivity by electron microscopy has 

typically been limited to small volumes of tens of micrometers in extent (Ahmed et al., 

1997; Genoud et al., 2006; Holtmaat et al., 2006; Kasthuri et al., 2015; Koganezawa et al., 

2015; Mishchenko et al., 2010; van Haeften et al., 2003). Similarly, connectivity analysis 

using mutliple intracellular electrical recordings in brain slices is typically limited to testing 

small numbers of connections within an individual brain slice (Couey et al., 2013; 

Feldmeyer et al., 1999; Feldmeyer et al., 2002; Fuchs et al., 2016; Helmstaedter et al., 

2008d; Jiang et al., 2015; Markram et al., 1997a; Markram et al., 1997b). Only recently, 

larger-scale high resolution 3-dimensional imaging of neuronal circuits using electron 

microscopy has become feasible in volumes extending to several hundred micrometers in 

at least two dimensions (Bock et al., 2011; Briggman et al., 2011; Helmstaedter et al., 2013; 

Lee et al., 2016; Wanner et al., 2016b), which was previously unique to electrical 

recordings. These approaches allow studying locally complete synaptic in- and output maps. 

Especially for mapping synapses along axons, the path length of the reconstructed axon is 

the key constraining factor – and this is limited by the smallest of the 3 imaged and 

reconstructed dimensions (40-52 µm in previous studies in cortex, (Bock et al., 2011; 

Kasthuri et al., 2015; Lee et al., 2016), see (Helmstaedter, 2013)).  

 

Here we used serial blockface scanning electron microscopy (SBEM, (Denk and 

Horstmann, 2004)) and skeleton-based connectomic data analysis (Helmstaedter et al., 

2011) to investigate the neuronal circuitry in layer 2 of rat medial entorhinal cortex (MEC) 

in 3-dimensional EM datasets whose smallest dimensions were 274 µm (juvenile 25-day 

old rat) and 101 µm (adult 90-day old rat).  

 

Previous electrical recording studies of MEC (Couey et al., 2013; Fuchs et al., 2016) had 

found connectivity between excitatory neurons to be absent (Couey et al., 2013) or sparse 

(Fuchs et al., 2016), suggesting types of attractor models in MEC based on purely inhibitory 

connectivity between excitatory neurons (Couey et al., 2013). We find that at least 30% of 

the output synapses of excitatory neurons are made onto other excitatory targets. This 

excitatory connectivity was distance-dependent: when investigating the output synapses of 

excitatory neurons in L2 along the neurons’ axons, we find that inhibitory neurons are 

targeted first, offset by about 120 µm along the path length of the axon to the innervation 

of excitatory neurons (path length-dependent axonal synapse sorting, PLASS). We 
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furthermore find that axons frequently provide multiple innervations to the same 

postsynaptic dendrites in close proximity, further enhancing the ability to activate the 

postsynaptic neurons at high temporal precision in a cellular feedforward inhibition circuit. 

These results reveal a new level of synaptic specialization in the cerebral cortex beyond 

average cell-to-cell connectivity and emphasize the need for high-resolution connectomic 

circuit mapping. Using numerical simulations, we show that this circuit could enhance spike 

timing precision, and could control the propagation of synchronized activity.  

 

3.2 Results 

3.2.1 Tree-dimensional electron microscopy experiment 

We acquired and densely reconstructed (Fig. 3.1a-c) two 3-dimensional EM datasets: one 

sized (424 x 429 x 274) µm3 from the medial entorhinal cortex (MEC) of a P25 male rat 

(Fig. 3.1b,c) at a voxel size of (11.24 x 11.24 x 30) nm3 (increased to (11.24 x 11.24 x 50) 

nm3 for the final 56 µm of the dataset) and one sized (183 x 137 x 158) µm3 from MEC of 

a P90 male rat (Fig. 3.2a; note that analysis of the P90 dataset was already performed when 

101 µm in the third dimension had been acquired) at a voxel size of (11.24 x 11.24 x 30) 

nm3 using a serial blockface scanning EM (SBEM, (Denk and Horstmann, 2004)). For the 

acquisition of the large P25 dataset, the EM was equipped with a custom-built microtome 

that we modified for continuous stage movement, which increased the effective acquisition 

speed to about 6 MVx/s (Fig. 3.2d-h, for details see section 3.4 Methods; the P90 dataset 

was acquired using conventional mosaic-based imaging). The tissue blocks were stained 

using enhanced en-bloc staining (Hua et al., 2015) to provide high image contrast over the 

entire tissue block size. The tissue adjacent to the sample was stained for Calbindin 

immunoreactivity (Fig. 3.2b,c), confirming the location in dorsal MEC and the relationship 

to the patches of pyramidal neurons in MEC layer 2 (Kitamura et al., 2014; Ray et al., 2014).  
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Figure 3.1: EM-based connectomic analysis in rat medial entorhinal cortex (MEC).  

(a-c) 665 neurons in cortical layers 2,3 (L2,L3) skeleton-reconstructed (Boergens et al., 2017) (a) 

to analyze local circuitry within a 3D EM dataset of MEC L2 of a P25 rat (b,c). Reconstruction of 

2 example excitatory neurons in L2 (yellow, red) together with raw EM data and dataset boundaries 

(dashed lines). (d) Example reconstruction of somata and axons with all local output synapses 

targeting interneurons (INs, black) and excitatory neurons (ExNs, magenta) from the P25 dataset 

(left, see a-c) and for an additional 3D EM dataset obtained from a 90 day old rat (P90, right, Fig. 

3.2a). (e) Target distribution of output synapses (n=310 in P25, n=284 in P90) of ExNs (n=15 in 

P25, n=7 in P90); local: local target; deep: dendrite from deep layers; unid.: unaccounted spines 

for which the continuation to the target dendrite was not uniquely identifiable; Glia: glial targets. 

(f) Example EM micrographs of excitatory synapses made from presynaptic axons (ax) onto spines 

(sp, top) and shafts (sh, bottom), for criteria of synapse identification in SBEM, see (Staffler et al., 

2017). (g) Classification of ExNs into pyramidal neurons (left) and stellate cells (right) based on 

dendritic morphology. (h) Superposition of soma and dendrites of pyramidal (left, n=15) and 

stellate (right, n=14) neurons for which expert consensus of cell type classification was reached 

(see Fig. 3.3). (i) Distribution of soma volume for consensus-classified pyramidal (gray) and 

stellate cells (black) in (h) and ensuing likelihood to encounter a stellate cell given soma volume 

(pstellate, blue). (j) Map of synaptically connected ExN-to-ExN cell pairs (circles, P25; squares, P90) 

and the respective pstellate (pre: presynaptic; post: postsynaptic). Scale bars: 50 µm (d), 500 nm (f), 

100 µm (g,h). From (Schmidt et al., 2017). 
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Figure 3.2: P90 dataset, Calbindin immunohistochemistry and continuous serial block-face 

electron microscopy imaging (SBEM). 

(a) Dimensions of the P90 SBEM dataset (pia, top). Dashed bounding box: initial 101 µm in z 

after which analysis was started. (b,c) Confirmation of sample location in dorsal MEC. Post-hoc 

CB+ staining of the remaining tissue after EM sample extraction for P25 dataset (b) and P90 

dataset (c). CB+ patches are visible close to the pia. HC: hippocampus. (d-h) Continuous SBEM 

imaging. (d) Sketch of microtome with piezo actor installed in-line with the geared motor. (e-g) 

Sketch of stage movement and imaging setup in continuous SBEM imaging. (h) Piezo actor 

command voltages during one motortile acquisition. See section 3.4 Methods for details. From 

(Schmidt et al., 2017). 
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3.2.2 Reconstruction of excitatory neurons 

We then used the in-browser data annotation software webKnossos (Boergens et al., 2017) 

for neurite reconstruction. In the P25 dataset, dendrites could be followed through the entire 

dataset, and axons could be followed in large parts of the image volume (see section 3.4 

Methods). In the P90 dataset dendrites and axons could be followed throughout (for 

calibration of traceability by multiple experts, see section 3.4 Methods). We first identified 

neuronal cell bodies in the datasets, asked a team of 24 student annotators to skeleton-

reconstruct the dendrites of all these neurons (n=665 in P25, Fig. 3.1a-c, n=91 in P90; total 

traced path length 2.89 m, average redundancy 2.0, i.e. 1.45 m unique neurites reconstructed 

within 3654 work hours total using orthogonal tracing mode in webKnossos (Boergens et 

al., 2017). We first identified 22 excitatory neurons (ExNs, 15 in P25 and 7 in P90), for 

which we reconstructed their local axons (examples in Fig. 3.1d), yielding an average 

axonal path length per neuron of 555.4 µm (8.33 mm total) at P25 and 921.1 µm (6.44 mm 

total) at P90. Along these proximal axons, we identified all outgoing synapses (n=594 (P25: 

310, P90: 284), Fig. 3.1d-f), their postsynaptic targets, and matched these to the 

reconstructed neurons in the dataset. If the synaptic target was a dendrite that had not yet 

been traced, we added this dendrite to the reconstruction (113 and 135 additional dendrites 

at P25 and P90, respectively; dendrite classification was based on rate of spines, calibrated 

to be >0.6 per µm for ExNs and <0.2 per µm for INs, see section 3.4 Methods). In the P25 

dataset, 44% of these synapses were made onto excitatory neurons (ExNs), 45% onto 

interneurons (INs) (1% of the targets were glial cells; for the remaining 10% of synapses, 

the postsynaptic structure was identified to be a spine that could not be followed back to the 

respective dendrite). In the P90 dataset, 32% of synapses were made onto ExNs, 67% onto 

INs, and 1% onto glia. The fraction of synapses made onto INs is noteworthy, since 

interneurons (13% of the neuron population) are ~7 times less common than excitatory cells 

(87% of the neuron population) in medial entorhinal cortex (Tang et al., 2014b); this 

prevalence for IN targeting is in agreement with findings from paired intracellular 

recordings in brain slices of MEC (Couey et al., 2013; Fuchs et al., 2016). To confirm that 

synapse detection in SBEM data is identifying the expected range of synapse sizes, and is 

in particular not biased towards larger synapses, we measured the volume of a random 

subset of postsynaptic spines in the data (0.13±0.12 µm3, n=20, P90 dataset), which is well 

in the range of so-far reported values (Kasthuri et al., 2015; de Vivo et al., 2017). It is 

noteworthy that studies using TEM appear to find smaller synapse sizes than those using 

SEM (compare data in (Harris et al., 1989; Arellano et al., 2007; Bopp et al., 2017) to 
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(Kasthuri et al., 2015; de Vivo et al., 2017; Staffler et al., 2017) and this study; one 

methodological caveat may be the precise determination of cutting thickness for volume 

estimates). 

 

To investigate how the connectivity between ExNs related to the at least two main types of 

excitatory neurons in layer 2 of MEC, pyramidal and stellate cells (Fig. 3.1g), we first 

searched for neurons with a very clear dendritic morphology allowing a unanimous 

classification as either pyramidal (single apical dendrite pointed towards the pia, denser 

plexus of basal dendrites, Fig. 3.1g, see also Fig. 3.3) or stellate (multiple large primary 

dendrites without clear angular preference; independently assessed by two experts). We 

then evaluated previously proposed (Fuchs et al., 2016) morphological classification criteria 

on these two morphological classes (overlay in Fig. 3.1h) and found that in fact, the volume 

of the cell body was a strong predictor of cell type (n=15 (pyramidal) vs 14 (stellate); 

volume 3,837 ± 869 µm3 vs 5,673 ± 934 µm3, mean ± s.d., t-test, P<10-5; Wilcoxon rank 

test, P<10-4 Fig. 3.1i), yielding a simple “stellate probability” pstellate based on soma size for 

each neuron. When analyzing the ExN-to-ExN connectivity in relation to the likely cell type 

of the pre- and postsynaptic neurons, respectively (Fig. 3.1j, analyzed for those targets that 

had a soma in the dataset), we find strongest evidence for connections from pyramidal to 

stellate cells (n=30 of 54 for pstellate(pre)<0.25 and pstellate(post)>0.75), and stellate to 

pyramidal cells (n=5 of 9 for pstellate(pre)>0.75 and pstellate(post)<0.25), and some examples 

of  pyramidal-to-pyramidal (n=12 of 54) and of stellate-to-stellate (n = 2 of 9) (see (Beed et 

al., 2010; Couey et al., 2013; Fuchs et al., 2016)). When analyzing the arrangement of output 

synapses of ExNs in more detail, though, we found the following surprising results, which 

were unrelated to the types of excitatory neurons. 
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Figure 3.3: Gallery of EM-based reconstructions from P25 dataset.  

(a) Pyramidal cells (top) and stellate cells (bottom) for which expert consensus was reached 

about cell type classification. Note apical dendrites (magenta arrows) and denser plexus of 

basal dendrites for pyramidal cells, and lack of a clear apical dendrite for stellate cells. (b) 

Same for locally reconstructed neurons. Scale bar 100µm (a and b). From (Schmidt et al., 

2017). 
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3.2.3 Path length-dependent axonal synapse sorting 

We investigated the relationship between synapse position along the presynaptic excitatory 

axon and the type of synaptic target (Fig. 3.4). We found that synapses targeting 

interneurons were made first along the path of the axon, while synapses targeting excitatory 

neurons were made later. This was the case for excitatory neurons both in the P25 (Fig. 

3.4a-c, n=15 axons, n=136 (synapses onto excitatory) vs. n=140 (inhibitory targets), 264 ± 

67 µm vs 215 ± 69 µm, mean ± s.d., t-test and Wilcoxon rank test, P<10-8; randomization 

test, P<10-3, Fig. 3.4c) and P90 dataset (Fig. 3.4d-f, n=7 axons, n=90 (synapses onto 

excitatory) vs. n=189 (inhibitory targets), 247 ± 43 µm vs 210 ± 45 µm, mean ± s.d., t-test 

and Wilcoxon rank test, P<10-8; randomization test,  P<10-3, Fig. 3.4f) and was irrespective 

of the type of presynaptic excitatory neuron (Fig. 3.5a).  

Could this unexpected axonal synaptic sorting be related to an inhomogeneous availability 

of postsynaptic targets in the neuropil surrounding the presynaptic neurons? To test for this, 

we first analyzed the distribution of output synapse targets when reported over their radial 

distance to the cell body of origin instead of their axonal path length distance (Fig. 3.4g). 

This analysis showed that the radial distances of output synapses were indistinguishable for 

excitatory (n=136) vs inhibitory (n=140) targets (82 ± 34 µm vs 85 ± 31 µm; mean ± s.d.; 

t-test, P=0.39 and Wilcoxon rank test, P=0.21, Fig. 3.4g). Similarly, the positional bias of 

synapses was not explained by distance to the centers of the presumed modules in L2 of 

MEC (“patches” in L2 of MEC (Ray et al., 2014), Fig. 3.5d-f). Next, we investigated the 

distribution of output synapses along the radial cortex axis (pointing from white matter to 

pia, Fig. 3.4h). In fact, output synapses to inhibitory targets were biased towards the bottom 

part of L2, while synapses to excitatory targets were biased towards the upper part of L2 

(Fig. 3.5b). We therefore measured the relative density of inhibitory dendrites and 

excitatory dendrites in 7 volumes sized (10 µm)3 each, positioned at different cortical depths 

within L2 (Fig. 3.5b,c). While the fraction of smooth dendrite path length decreased from 

26% to 13% from lower L2 to upper L2, this difference could not account for the imbalance 

in synapse targets (Fig. 3.4h, fraction of IN targeting synapses dropping from about 80% to 

about 20% from lower L2 to upper L2). The about 4-fold (Fig. 3.4h) proximal bias of 

synapses onto INs thus cannot be achieved by a specific trajectory of the axon together with 

an innervation rule that is homogeneous along the axon. Rather, these findings indicate an 

explicit target preference of proximal axonal synapses for interneurons. 
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Figure 3.4: Path length-dependent axonal synapse sorting (PLASS) in medial entorhinal 

cortex. 

(a) Example axonogram of one ExN with output synapses (triangles) onto INs (black) and ExNs 

(magenta), reported over axonal path length from soma. (b,c) Distribution of output synapses 

(n=307) over axonal path length to soma (15 ExN axons, P25) shows shift of inhibitory targets 

towards more proximal locations along the axon (n=136 (synapses onto excitatory) vs. n=140 

(inhibitory targets)). Asterisk in b: unidentified synapses onto spine heads. Lines in c: Gaussian 

fits to the initial peaks of the distributions. See Fig. 3.5a  for cell-type specific analysis. See also 

Fig. 3.11e. (d-f) Corresponding to a-c, for the P90 dataset. Cells in e sorted by increasing pstellate 

(top to bottom, see Fig. 3.1i and Fig. 3.3). (g) Summed distribution of output synapses along P25 

ExN axons (as in c) analyzed over Euclidean (radial) distance to ExN soma at which the axon 

originates. Note the Euclidean distance distribution is indistinguishable for excitatory (magenta, 

n=136) vs inhibitory (black, n=140) targets, indicating the synaptic sorting is specific to the axonal 

path length (c,f). (h) Fraction of ExN output synapses made onto dendritic shafts (black) vs spines 

(magenta) over cortical depth (see Fig. 3.5b). The fractional path length of smooth dendrites 

sampled at 7 different cortical locations is also shown (green, Fig. 3.5c). Note that while the 

fraction of smooth dendrites is about 2-fold higher in lower L2 than in upper L2, its gradient cannot 

account for the about 4-fold bias of output synapses onto INs in lower L2 (black vs green lines). 

Green dashed line: linear fit to the IN dendrite fractions sampled as indicated in Fig. 3.5b,c (n=7). 

From (Schmidt et al., 2017).   
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Figure 3.5: PLASS in dependence of cell types and synapse positions in relation to the 

cortical axis of MEC and patches. 

(a) Position of output synapses along presynaptic ExN axons analyzed separately for consensus 

pyramidal cells (top, n=6 axons, n=19 (synapses onto excitatory) vs. n=19 (inhibitory targets), 

222 ± 32µm vs 173 ± 38µm, mean ± s.d., t-test, Wilcoxon rank test and randomization test, 

P<10-3), stellate cells (middle, n=4 axons, n=36 (synapses onto excitatory) vs. n=51 (inhibitory 

targets), 303 ± 58µm vs 249 ± 53µm, mean ± s.d., t-test, Wilcoxon rank test, randomization test, 

P<10-4; randomization test,  P<10-3) and intermediate types (bottom, n=5 axons, n=81 (synapses 

onto excitatory) vs. n=70 (inhibitory targets), 257 ± 68µm vs 202 ± 75µm, mean ± s.d., t-test, 

Wilcoxon rank test, randomization test, P<10-5; randomization test,  P<10-3). Note that all ExNs 

exhibit PLASS. (b) Output synapses along radial cortex axis (cortical depth, histogram on the 

left) and in paracoronal plane of MEC (right, plane of imaging, see Fig. 3.1a). Synapse 

distribution along cortical depth shows a bias of inhibitory targets towards deeper L2 (n=15 

axons, n=136 (synapses onto excitatory) vs. n=140 (inhibitory targets), 223 ± 47µm vs 189 ± 

45µm, mean ± s.d., t-test, P<10-8; note that offset of depth values is close to the lower end of 

dataset, thus higher values mean closer to pia). Green, location of 7 cubes sized 10x10x10 µm3 

each in which dendrites were densely reconstructed. Green circles: dense reconstructions shown 

in c. (c) Skeleton reconstructions of all dendrites within a 10x10x10 µm3 cube sampled at about 

150µm (top) and about 60µm (bottom) from L1/2 border. IN dendrites, black; ExN dendrites, 

magenta. (d) Reconstruction of all myelinated axons (black) in L1 and upper L2, projected in 

the tangential plane. Yellow: circular areas of low myelin density previously identified with the 

patches of calbinbin+ neurons in MEC (Ray et al 2014). (e,f) Distribution of distance of synapses 

to each of the 3 patch centers (e) and to the nearest patch center (f). Note that no distance bias 

for IN (black) vs ExN (magenta) targeting synapses can be seen. Scale bar, 50µm (b, c), 100µm 

(d). From (Schmidt et al., 2017). 
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3.2.4 Cellular feed-forward inhibition 

What is the potential circuit context in which PLASS operates? We investigated the 

inhibitory neurons that receive input from the proximal output synapses of the excitatory 

axons (Fig. 3.6). Specifically, we wanted to know whether the PLASS-activated 

interneurons also target the very same excitatory neurons that the source neuron targets (Fig. 

3.6a) – or whether these interneurons would exclude the subset of excitatory neurons that 

were targeted by the excitatory source neuron (Fig. 3.6b). The latter would  amount to an 

exclusive opponent or lateral inhibition, the former would constitute cellular feed-forward 

inhibition in the PLASS target circuit. Such a cellular feedforward inhibitory circuit has so 

far not been demonstrated in cortex and could allow precise control of spike timing in the 

postsynaptic neuron (see below). 

 

Fig. 3.6c shows the soma and dendrite of one presynaptic ExN together with all its 11 local 

excitatory target neurons. The PLASS-activated interneuron is also shown. In fact, 10 of 11 

of these targets were also innervated by that very interneuron. In the entire population, 76% 

(32 of 42) connections between excitatory neurons were matched by PLASS-activated 

interneuron innervation involving one to three interneurons (Fig. 3.6d, a total of n=54 cFFI 

circuit motifs), showing a high prevalence of cellular feedforward inhibition in MEC L2. 

Given that we are biased in 3D EM imaging of limited volumes to miss synaptic 

connectivity due to incomplete axonal reconstructions, this data refutes an opponent 

inhibition model at p<10-7 under biological wiring noise of up to 30% (see section 3.4 

Methods). Even a random wiring between INs and ExNs is refuted at p<10-3, yielding the 

cFFI model as the most likely explanation of the data. 

 

But what is the potential functional significance of cellular feedforward inhibitory circuits? 

Feedforward inhibition has been described in several pathways in the mammalian brain, 

notably for the thalamocortical input to layer 4 (Bruno and Simons, 2002; Cruikshank et al., 

2007), the mossy fiber input to cerebellar granule cells (Eccles et al., 1964; Kanichay and 

Silver, 2008), and non-local input to pyramidal cells in hippocampus (e.g. (Alger and Nicoll, 

1982; Buzsaki, 1984)). In the latter circuit, feedforward inhibition was shown to enhance 

the precision of postsynaptic spike timing in CA1 pyramidal cells when activating the 

presynaptic excitatory axons (Pouille and Scanziani, 2001). However, in all of these 

settings, the presynaptic neuronal population was activated by bulk electrical stimulation, 

such that it could not be determined whether presynaptic neurons activating the postsynaptic 
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excitatory neuron were exactly the same ones as those activating the interneurons, or rather 

from the same population, but not identical at the single-cell level (population feedforward 

inhibition, pFFI, Fig. 3.6e). In the cerebellar circuit, recent data points to such a disjunct 

pFFI configuration (Duguid et al., 2015). By contrast, the cFFI configuration as found here 

in MEC (Fig. 3.6g) implies that the very same presynaptic neurons innervate both the 

postsynaptic ExN and in parallel the INs that provide FFI.  

 

We therefore studied whether this cFFI circuit could further enhance spike timing precision 

when compared to the pFFI circuit (Fig. 3.6e-k). We performed numerical simulations of a 

circuit involving a presynaptic population of 60 ExNs that innervate 7 INs, which converge 

onto an ExN (Fig. 3.6e, the convergence and pool sizes were estimated from the 

connectivity reported in Fig. 3.1, see section 3.4 Methods). We modeled action potentials 

(APs) in the presynaptic population (using Poisson statistics and yielding about 2.5 APs per 

cell within 30 ms, Fig. 3.6f) and recorded the occurrence of APs in the INs (Fig. 3.6f 

middle). Then, both the excitatory and inhibitory presynaptic AP sets were used to model 

synaptic convergence in the postsynaptic ExN, and the time points of APs occurring in the 

postsynaptic ExN were recorded (Fig. 3.6f right; synaptic delays were set to 1 ms and were 

the same for IN and ExN targets). When only providing ExN input (no inhibition), the 

postsynaptic neuron was strongly activated (2.85 ± 0.02 APs per neuron per trial, Fig. 

3.6i,k). When matched by pFFI, AP generation was reduced (Fig. 3.6i,k), and spike timing 

precision was enhanced (Fig. 3.6i,j). When however implementing the very same FFI circuit 

in the cellular FFI configuration (Fig. 3.6g), using the exact same presynaptic AP sequences 

to activate INs and ExN, not only statistically equivalent AP sequences as in the pFFI case 

(cf Fig. 3.6f), we found that APs in the postsynaptic ExN were about 2-fold rarer (0.16 ± 

0.02 (cFFI) vs. 0.33 ± 0.04 APs / cell / trial (pFFI), mean ± s.d., t-test, P<10-22, Fig. 3.6h,i,k), 

and the distribution of spike times further sharpened by about 2 ms (width of spike time 

histogram 7.9 ± 1.2 ms (cFFI) from 9.7 ± 1.1 ms under pFFI, mean ± s.d., n=4 different 

postsynaptic neuron models, n=2000 trials per cell, t-test, P<10-4, Fig. 3.6i,j). Note that the 

model was equivalent in all parameters between pFFI and cFFI, only the presynaptic APs 

were drawn from the same statistics twice in pFFI (one for input to INs, one for input to 

ExNs) but only once for cFFI (exact same presynaptic population innervates INs and ExNs). 

This effect was stable for a large range of presynaptic pool sizes (spike time sharpening: 

stable for 50-80 ExNs and 5-10 INs, Fig. 3.7b; substantial spike rate reduction: stable for 

30-80 ExNs, 7-10 INs, Fig. 3.7c). Thus cFFI can further enhance spike timing precision in 
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local circuits of MEC L2 under conditions of transiently substantial population activity (50-

90 Hz presynaptic activity, Fig. 3.7d). 

 

 

  

Figure 3.6: Local circuit patterns in layer 2 of medial entorhinal cortex.  

Possible configuration of the PLASS circuit in MEC: INs targeted by the more proximal synapses 

of ExN axons could either target the very same ExNs (a, cellular feedforward inhibition, cFFI) or 

exclusively a different population of ExNs than the source ExN targets (b, opponent or lateral 

inhibition). (c) Example innervation of one presynaptic ExN (likely pyramidal cell, blue arrow; 

soma and dendrites shown) that targets 11 other ExNs (magenta, sequential positions in the bottom 

circuit sketch correspond to the ranked position of first established synapse along the presynaptic 

axon). Before targeting the ExNs, this ExN axon innervates an IN (black, soma and dendrites 

shown) that in turn innervates 10 of the same 11 ExN targets, providing direct evidence for cFFI 

in MEC. (d) Frequency of cFFI circuit motifs in the local connectome.  cFFI motifs involving one 

to three INs are found in 76% (32 of 42) of ExN-to-ExN connections. Opponent inhibition was 

refuted (also see section 3.4 Methods). (e) Sketch of example circuit converging onto a 

postsynaptic ExN (magenta square) in population feedforward inhibition (pFFI) comprising a pool 

of presynaptic ExNs (light magenta) that target the postsynaptic ExN, in parallel to a pool of 

presynaptic ExNs (gray) from the same presynaptic population that target a pool of INs which in 

turn converge onto the postsynaptic ExN. Note that in the case of pure pFFI, the two sets of 
presynaptic neurons are disjunct (light magenta vs gray). (cont. next page) 
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 (f) Simulated AP spike histograms for the presynaptic populations (left), the resulting simulated 

spike distribution in the IN population (single neurons, top, summed histogram over 100 trials, 

bottom) and the resulting simulated spike distribution in the target ExN (right top, 4 example 

cells). Note that statistics of spiking in presynaptic population are indistinguishable between both 

presynaptic populations (left). (g) Sketch of example circuit configured as cFFI. Note that 

presynaptic neurons that innervate the postsynaptic ExN are the exact same ones that innervate 

the pool of INs (as found in panels e-h). (h) Example simulated spike distribution (top: 4 modeled 

neurons, 6 repititions shown) and average spike histogram per stimulus (bottom) in cFFI 

configuration. The spike distribution of the presynaptic ExN population was as in f, gray panel; 

and thus the IN spike distribution as in f, black panel. Note the more narrow distribution and 

lower spike rate compared to pFFI (f, right). (i) Average simulated spike histogram of 4 cells 

(aligned to median per cell), 2000 trials each, for the conditions: no inhibition (blue), pFFI (black), 

cFFI (red). Arrows indicate width between 25th and 75th percentile. (j,k) Quantification of cFFI 

vs pFFI effects on the width of the postsynaptic AP timing distribution (j) and number of APs (k). 
Note that cFFI further suppresses AP rate compared to pFFI (by 2-fold, 0.16 ± 0.02 (cFFI) vs. 

0.33 ± 0.04 APs / cell / trial (pFFI), mean ± s.d., t-test, ***P<10-22) and narrows AP timing (by 

1.8 ms, width of spike time histogram 7.9 ± 1.2 ms (cFFI) from 9.7 ± 1.1 ms under pFFI, mean ± 
s.d., n=2000 trials per cell, t-test,  ***P<10-4). See Fig. 3.7 for sensitivity of these effects on 

presynaptic neuronal pool sizes and presynaptic firing rates. Error bars: mean ± s.d (j,k). From 

(Schmidt et al., 2017). 

 

Figure 3.7: Comparison of population and cellular feed-forward inhibition with respect to 

postsynaptic spike timing and spike rate reduction, and presynaptic firing frequency. 

(a) Sketch of example circuit converging onto a postsynaptic ExN (magenta square) in population 

feedforward inhibition (pFFI) comprising a pool of presynaptic ExNs (light magenta) that target 

the postsynaptic ExN, in parallel to a pool of presynaptic ExNs (gray) from the same presynaptic 

population that target a pool of INs which in turn converge onto the postsynaptic ExN. Note that 

in the case of pure pFFI, the two sets of presynaptic neurons are disjunct (light magenta vs gray). 

(b) cFFI effect on spike timing measured as the decrease in spike histogram width; relative 

reduction in 75th-to-25th percentile width is reported for cFFI vs pFFI, p<0.01 for NExN =50..80 and 

NIN =5..7, t-test over 1000 trials per postsynaptic cell). (c) Relative reduction of spike rate in cFFI 

compared to pFFI. Note that spike rate reduction is most substantial (more than 2-fold) for 

presynaptic pool sizes of   NExN = 60..80 and NIN = 7..10 (p<10-5 for NExN =30..80 and NIN =7,10; 

p<0.05 for NIN =5; t-test over 1000 trials per postsynaptic cell). (d) Effect of presynaptic spike rate 

on cFFI effects. Note that for a range of 50..90 Hz presynaptic activity, both AP time histogram 

width and spike rate are significantly reduced compared to pFFI (**: p<0.01 for AP histogram 

width; p<10-6 for AP rate; one-sided t-test against 1). From (Schmidt et al., 2017). 
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3.2.5 Clustered postsynaptic innervation 

We next asked whether the precise synapse positioning along the excitatory axons might be 

matched by a positional preference of these synapses on the target neurons’ dendrites (see 

examples of such clustered innervation in (Kasthuri et al., 2015)). We found that the 

presynaptic excitatory axons in fact target the postsynaptic excitatory dendrites (Fig. 3.8a,b) 

as well as the postsynaptic inhibitory dendrites (Fig. 3.8c,d) with multiple closely spaced 

synapses. Quantified over all connections with more than one synapse (“multi-hit”, Fig. 

3.8e, P25 and P90), 76% (185 of 242) synapses were spaced at less than 10 µm distance 

from each other, and 82% (199 synapses) were spaced at less than 20 µm. Fig. 3.8c shows 

an extreme example of two presynaptic excitatory axons making each 8 and 10 synapses 

within about 52 µm onto the postsynaptic interneuron dendrite. Clustered synapses were on 

average 3.7 µm (onto ExNs) and 4.8 µm (onto INs) apart (inset in Fig. 3.8e). When also 

considering synaptic connections with just one synaptic contact (Fig. 3.8f; note that the 

number of synapses in these connections is most likely artificially reduced by axonal 

pruning based on 3D sample size), dendritic clustering occurs in at least 18% of all single- 

and multi-hit connections (12% for excitatory and 24% for inhibitory targets). This is more 

frequent than previously reported for supragranular layers of mouse V1 (Lee et al., 2016), 

where 9% of all connections were multi-hit connections, and an unreported fraction of these 

clustered (our multi-hit fraction was in contrast 21%).  
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Figure 3.8: Dendritic synapse clustering in medial entorhinal cortex.  

(a,b) Examples of connections between ExNs (green) to ExNs (violet) in which synapses are in 

close proximity (less than 10-20 µm distance between synapses of the same presynaptic axon) along 

the same postsynaptic dendrite (P25 dataset). (c,d) Examples of connections between ExNs 

(magenta, violet) and INs (black) in which synapses are in close proximity (less than 10-20 µm 

distance Dsyn,min between synapses of the same presynaptic axon) along the same postsynaptic 

dendrite (P90 dataset). Note that the example in (c) depicts the innervation of an IN dendrite by 

two ExN axons from two ExNs converging with n=10 (violet) and n=8 (magenta) clustered 

synapses. (e) Quantification of dendritic clustering in MEC: minimal inter-synaptic distances 

Dsyn,min along the postsynaptic dendrite (see indication in c) between synapses of the same 

presynaptic ExN axon for all connected cell pairs in P25 and P90 datasets that involved multiple 

synapses per cell pair (multi-hit). Synapses with Dsyn,min < 20 µm were considered clustered. Note 

that the large majority of such synapses has even less than 10 µm minimal inter-synaptic distance 

Dsyn,min (inset; arrows: mean, 3.7 µm (onto ExNs) and 4.8 µm (onto INs)). (f) Fraction of synapses 

involved in multi-hit connections and clustered connections. Note that at least 12% of all ExN-ExN 

connections and at least 24% of all ExN-IN connections involve dendritic synapse clustering. Scale 

bars: 5 µm (a,c); 20 µm (b,d). From (Schmidt et al., 2017). 
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3.2.6 Axonal properties of feed-forward interneurons 

Having found cFFI with PLASS in the excitatory branch of the circuit (Fig. 3.6), we next 

investigated the inhibitory branch of this circuit. We first measured the path length 

distribution of output synapses along the interneurons’ axons (Fig. 3.9a-c; Fig. 3.10a, n=3 

INs P25), which showed no evidence for a positional bias of the cFFI synapses compared 

to all synapses (n = 884 IN synapses vs n = 131 cFFI synapses, 334 ± 55 vs 331 ± 47 µm, 

mean ± s.d., t-test, P>0.5, Fig. 3.9c). We however noticed that the IN axons are frequently 

myelinated before establishing the output synapses (Fig. 3.9a), with myelination of all 

axonal branches in a P90 IN (Fig. 3.9d,e). Furthermore, the diameter of the IN axons 

appeared very large compared to the axon diameter of the excitatory axons in the cFFI 

circuits (Fig. 3.9f). When quantifying cross-sectional diameters of inhibitory and excitatory 

axons (Fig. 3.9g,h), we find that in fact the inhibitory axons show a 2.5-fold wider diameter 

along their path from after the axon initial segment to the distance at which most output 

synapses are formed (n=15 (excitatory) vs n=18 (inhibitory path to synapse), 0.29 ± 0.11 vs 

0.72 ± 0.11 µm, mean ± s.d., t-test, P<10-11, Wilcoxon rank test, P<10-5, Fig. 3.9h, see 

section 3.4 Methods and Fig. 3.10b). This was a truly remarkable finding, since we had 

expected IN axons if anything to be smaller than ExN axons. Accordingly, a recent study 

had found strong myelination of IN axons in supragranular layers of V1 (Micheva et al., 

2016), but axon diameters of INs were not substantially larger than for ExN axons in that 

study. Together, the finding of up to 100% myelinization and 2.5-fold wider axonal 

diameters in the inhibitory branch of the cFFI circuit could provide accelerated AP 

transmission from the IN to its targets. 
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Figure 3.9: Axonal properties of interneurons involved in cellular feedforward inhibition 

(cFFI).  

(a) Axonogram of one IN (P25) with n=401 output synapses. Note stretches of myelinization 

before output synapses are established (green). (b) 2-D projection of the same axon (4.5mm path 

length) with synapse positions. (c) Distribution of IN output synapses along axonal path length 

of 3 INs (Fig. 3.10a) for all their output synapses (n=884, black) and those synapses involved in 

the cFFI circuits (n=131, orange). (d) Axonogram of one IN (n=270 synapses, P90) showing 

complete myelinization before synapses are established. (e) 2-D projection of the same axon with 

synapse positions (3.7mm reconstructed axonal path length). (f) Example cross-sections of IN 

(left) and ExN axons (right) showing substantial diameter differences. (g) Overview of cross 

section contours of IN axons (black, top, n=45 sampled at 170 µm from the soma of 4 INs; 

thickening indicates myelinization) and 29 cross sections of ExN axons (magenta, bottom, n=29 

sampled at 170 µm from the soma of 6 ExN). (h) Change of axon diameters (mean and s.e.m. at 

intervals of 25 µm) along the trajectory between soma and distal synapses for 3 INs (n=18 

synapses, gray traces) and for 4 ExNs (n=16 synapses, magenta traces) (P25; P90 in Fig. 3.10b). 

Note the about 2.5-fold larger diameter of IN axons between about 130-260µm path length (black 

arrows). Inset: Distribution of the mean axon diameter, (over interval between black arrows) for 

15 excitatory (magenta) and 18 inhibitory (black) axonal trajectories (0.29±0.11 µm vs 0.72±0.11 

µm, mean±s.d., t-test, P<10-11, Wilcoxon rank test, P<10-5).  Scale bars: 50 µm (b,e); 1µm (f,g). 

From (Schmidt et al., 2017). 
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3.2.7 PLASS and cellular feed-forward inhibitory circuits 

We finally studied the subcellular arrangement of the converging inhibitory and excitatory 

synapses on the postsynaptic excitatory neurons (Fig. 3.11a,b). In the cFFI circuits we find 

that the imbalance of inhibitory synapses converging onto the postsynaptic neuron over the 

number of converging excitatory synapses is on average Nsyn(IN) / Nsyn(ExN) = 2.2 ± 1.7  

(n=54 cFFI circuits, mean ± s.d., right tailed t-test against 1, P<10-5, Fig. 3.11c). 

Furthermore, the position of these synapses on the postsynaptic dendrites is biased such that 

excitatory inputs in the cFFI circuits are more distal than inhibitory inputs (Fig. 3.11b,d; 

n=54 cFFI circuits, 75.3 ± 35.8 µm for ExN vs 45.4 ± 18.2 µm for IN synapses, mean ± s.d., 

paired t-test, P<10-6, Fig. 3.11d), allowing for powerful inhibition of excitatory inputs in the 

cFFI configuration. Finally, we measured the PLASS distance for each of the cFFI circuits 

(Fig. 3.11e): synapses onto excitatory neurons were on average 117.4 ± 79.7 µm more 

distally positioned along the presynaptic axon than those onto interneurons (n=54 circuits, 

mean path length of synapses onto excitatory 269 ± 57.5 µm vs inhibitory 151.6 ± 59.2 µm 

targets, mean ± s.d., paired t-test, P<10-17, Fig. 3.11e). 

 

Figure 3.10: Morphology of interneurons involved in cellular feed-forward inhibition and 

change of axon diameters along the axon from soma to synapses for the P90 dataset. 

(a) Morphologies of three INs involved in cFFI circuits. From left to right: 4.5, 2.3, and 3.6 mm 

reconstructed axonal path length, respectively. Scale bar 100µm. (b) Development of axon 

diameters along the trajectory between soma and distal synapses for one IN (n=7 synapses, gray 

traces) and for 3 ExNs (n=12 synapses, magenta traces) from P90 dataset. Mean and s.e.m. at 

intervals of 25 µm distance shown (based on linear interpolation between diameter measurement 

locations). Note the about 2.7-fold larger diameter of IN axons between about 83 and 188µm path 

length distance (indicated by black arrows, n=12 (excitatory) vs n=7 (inhibitory path to synapse), 

0.4 ± 0.1µm vs 1.09 ± 0.46µm, mean ± s.d., t-test, P<10-3, Wilcoxon rank sum, P<10-4). From 

(Schmidt et al., 2017). 
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Figure 3.11: Convergence of the cellular feedforward inhibition (cFFI) circuit and effects 

of path-length dependent axonal synapse sorting (PLASS) on propagation of synchronous 

excitatory activity in medial entorhinal cortex.  

(a) Example reconstruction of a postsynaptic ExN (black) with cFFI synapse positions on the 

postsynaptic dendrites (colored circles; from INs, green; from ExN, magenta). (b) Sketch of the 

relevant geometric dimensions: postsynaptic dendritic synapse distance between ExN and IN 

inputs Δxdend; presynaptic axonal synapse offset due to PLASS (ΔxPLASS), see d,e. (c) Relative 

number of inhibitory vs excitatory synapses converging onto Epost in 54 cFFI circuits (on average 

2.2±1.7-fold excess of IN synapses, mean±s.d.). (d) Average offset of ExN synapses (more distal) 

and IN synapses (more proximal) on postsynaptic dendrites (Δxdend = 30±40µm, n=54 cFFI 

circuits, dashed line). (e) Average distance of synapses involved in cFFI along the presynaptic 

ExN axon (ΔxPLASS): Excitatory synapses onto ExNs are 117.4±79.7µm (dashed) more distal than 
the corresponding synapses onto INs (n=54 circuits). (f) Sketch of cFFI circuit indicating AP 

conduction delay based on PLASS (ΔtPLASS) and inhibitory delay combining AP conduction time 

and synaptic release (Δtinh). (g) Example of simulated synchronous presynaptic population 

activity (1 AP per neuron within Δtsync=3ms) in PLASS-cFFI circuit (f). (h) Example of simulated 

membrane potential transients following a synchronous presynaptic activiation (g) in the IN 

(gray) and the postsynaptic ExN with (magenta) and without (cyan) PLASS-based presynaptic 

delay ΔtPLASS. Note that for such synchronous presynaptic activity, the cFFI circuit alone cannot 

suppress the postsynaptic ExN to discharge an AP, but cFFI with a PLASS-based delay of 

ΔtPLASS=1ms can. (i) Quantification of postsynaptic AP suppression upon brief synchronized 

presynaptic population activity in dependence of PLASS-based delay (ΔtPLASS) and delay of 

inhibitory axon conduction and release (Δtinh). Note that for a regime of Δtinh=0.5…0.7ms and 

ΔtPLASS=0.5…1ms, faithful suppression of postsynaptic AP discharge is possible. See Fig. 3.12. 

Scale bar: 20µm (a). From (Schmidt et al., 2017). 
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We finally explored possible functional implications of the precise subcellular arrangement 

of synapses in this cFFI circuit. We had found five main features of the circuit: (1) PLASS 

in the excitatory axon (Fig. 3.4, Fig. 3.11e, synapse offset of about 120 µm); (2) Small-

diameter ExN axons (Fig. 3.9f-h); (3) dendritic synapse clustering, especially onto IN 

dendrites (Fig. 3.8); (4) Highly myelinated large-diameter IN axons (Fig. 3.9f-h); (5) About 

2-fold excess of IN synapses, positioned closer to the soma than ExN synapses on the cFFI 

target neurons (Fig. 3.11a-d). While each of these findings alone would make an 

interpretation in terms of the timing of AP propagation unlikely because the involved 

temporal delays seemed too small, when acting in concert, these mechanisms could possibly 

allow for precisely timed inhibitory control of postsynaptic APs. To study this 

quantitatively, we performed numerical simulations of the cFFI circuit (as in Fig. 3.6), this 

time implementing the additional subcellular findings (1)-(4) as listed above. In particular, 

we varied the temporal delays possibly contributed by PLASS (findings (1) and (2), 

summarized as ΔtPLASS) and the conduction and synaptic transmission delays contributed 

by the inhibitory axon (finding (4), Δtinh, Fig. 3.11f).  

 

We speculated that precise millisecond timing might be critical in cases when the 

presynaptic population is active in tight synchrony. To emulate this, we activated the 

presynaptic excitatory neurons to discharge one AP within 3 or 10 ms (Fig. 3.11g, Fig. 

3.12a) and investigated the postsynaptically converging PSPs (Fig. 3.11h). Without PLASS 

(ΔtPLASS=0) the synchronous activity could not be completely blocked from propagation, 

and APs still occurred postsynaptically (Fig. 3.11h). When adding PLASS yielding a delay 

of ΔtPLASS=1 ms (corresponding to a conduction velocity of 120 µm/ms in the ExN axon 

given the measured PLASS offset ΔxPLASS, Fig. 3.11e), however, the inhibitory cFFI input 

arrived in time to completely suppress the postsynaptic AP (Fig. 3.11h, shown for inhibitory 

delay of Δtinh = 0.7 ms). When screened over varying PLASS delays ΔtPLASS and inhibitory 

conduction delays Δtinh, we find that PLASS in fact allows full suppression of action 

potentials after highly synchronous presynaptic acitivtiy for ΔtPLASS ≥ 0.5 ms (at Δtinh = 0.5 

ms inhibitory delay) and ΔtPLASS = 1 ms at Δtinh = 0.7 ms inhibitory delay. Also for Δtinh = 

0.7 ms and ΔtPLASS = 0.5 ms, postsynaptic activity is reduced about 200-fold (from 0.58 to 

0.0025 spikes per cell per trial, Fig. 3.11i). In previous studies in rat cortex, the latency 

between AP peak in local cortical interneurons and the onset of the IPSP in postsynaptic 

excitatory cells has been found to be between 0.5 and 1.1 ms (Hoffmann et al., 2015; Koelbl 

et al., 2015). Given the strong myelination and wide diameter of the IN axons we found in 
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MEC, it is thus plausible that Δtinh is in a regime (Fig. 3.11i) in which the PLASS-cFFI 

circuit can faithfully block the propagation of highly synchronous excitatory activity. This 

was the case for synchronous bursts of 3 and 10 ms length (Fig. 3.11i, Fig. 3.12a; note that 

in none of 4000 sampled presynaptic AP patterns a postsynaptic spike could be elicited; this 

is in contrast to the effects on spike timing in the pFFI/cFFI comparison, which are only 

obvious in the average AP activity, Fig. 3.6). Furthermore, the synchrony block was stable 

to additional background activity (Fig. 3.12b,c), and activity propagation could be 

unblocked by an additional postsynaptic gating input, Fig. 3.12d-h.  
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Figure 3.12: Numerical simulations of the PLASS-cFFI circuit motif. 

(a) Effect of PLASS on suppression of synchronized activity, for synchronization interval Δtsync of 

10 ms (cf. Fig. 3.11g,i). (b,c) Effect of additional background activity on PLASS-based suppression 

of synchronized activity propagation. Example shows 20 Hz background activity, under which 

PLASS-based suppression is still effective for synchronization intervals 3 and 10 ms. (d-h) Effect 

of an additional postsynaptic pre-depolarization on recovery from PLASS-supression. (d) 

Emulated current injection in postsynaptic neuron for PLASS circuit at 0.7 ms inhibitory delay and 

1 ms PLASS delay. (e) Presynaptic synchronized activity and 8 ms-long rectangular pre-

depolarizations in the postsynaptic neuron. (f) Simulated membrane potential transients in the 

postsynaptic excitatory neuron. Note spike suppression by PLASS (magenta, no additional 

stimulation), that can be gradually recovered from by current injections of increasing amplitude 

Istim. (g,h) Titration of PLASS recovery over stimulus strength and effective pre-depolarization 

before the synchronized input activity. A pre-depolarization of 10-20 mV is sufficient for recovery 

from PLASS; this could be achieved by underlying membrane potential modulation or an 

additional gating input to the postsynaptic excitatory neuron, for example at its apical dendrites in 

layer 1. From (Schmidt et al., 2017). 
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3.3 Discussion 

We discovered path length-dependent sorting (PLASS) of output synapses along the axons 

of excitatory neurons in rat medial entorhinal cortex, a novel level of specificity in neuronal 

circuits of the mammalian cerebral cortex. We found that PLASS acts in a cellular feed-

forward inhibition circuit, in which synapses are frequently clustered, in particular on the 

postsynaptic interneuron dendrites. The inhibitory branch of the circuit appears to be shaped 

for fast action potential transmission using myelinated, large-diameter axons. Together, this 

high-precision circuit in MEC may be in place to sharpen AP timing, and to control the 

propagation of highly synchronous activity in a cortex occupied with spatial sequence 

analysis. 

 

Our data is the first to demonstrate the positional sorting of output synapses in the 

mammalian cortex. However, in hindsight, data from mouse V1 cortex (Bock et al., 2011) 

and from CA1 (Takacs et al., 2012) can be interpreted as an indication that PLASS may 

operate in various cortices. In these studies, it had been noted that the fraction of synapses 

targeting interneurons was higher than expected on average. Since the studies were limited 

in EM-reconstructed volume (with an extent of 45µm in the third dimension in V1), the 

reconstructed axons were necessarily only very proximal. The fact that our volume was at 

least 3-fold larger in the third dimension made it possible to detect PLASS as a transition 

from IN-dominated to ExN-dominated targeting within the same excitatory axons, and 

determine the properties of the local cFFI circuit. Future studies are required to investigate 

whether PLASS is a general principle of cortical wiring in mammals. 

 

Data on axonal conduction velocity (Helmstaedter et al., 2008d; Kress et al., 2008; Schmidt-

Hieber et al., 2008) and latencies of local inhibition in cortex (Hoffmann et al., 2015; Koelbl 

et al., 2015) make it plausible that the described circuit can prevent the propagation of highly 

synchronous activity in L2 of rat MEC as shown in Fig. 3.11f-i (for this, AP propagation 

along the axon would have to be between 120-240 µm/ms and local inhibitory AP-to-IPSP 

latencies 0.5-1 ms). This is especially noteworthy since so far, feedforward inhibition 

circuits have rather been interpreted to selectively propagate synchronous, but not 

asynchronous activity (e.g. (Bruno, 2011)). The PLASS-cFFI circuit, in contrast, can act as 

a synchrony block. At the same time, if the postsynaptic neuron was to receive additional 

excitatory input or be modulated by an additional underlying membrane potential 

modulation such as the theta-frequency oscillation found in MEC (Alonso and Klink, 1993; 
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Alonso and Llinas, 1989), the PLASS-cFFI circuit could allow a controlled, predictive 

gating of synchronous activity propagation (Fig. 3.12d-h). The same would be possible by 

disinhibition of the involved interneurons. 

 

Our data show a novel high-precision wiring motif in cortex, revealing an unexpected level 

of structural specialization in local cortical circuits. We explored possible functional 

implications of these structural findings, pointing towards an effect on spike timing 

precision and the control of synchronized activity propagation. Connectomic analysis of 

other cortices will allow us to determine if path length-dependent axonal synapse sorting 

constitutes a general cortical wiring principle in mammals.  
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3.4 Methods 

3.4.1 Animal experiments 

All experimental procedures were performed according to the law of animal 

experimentation issued by the German Federal Government under the supervision of local 

ethics committees and according to the guidelines of the Max-Planck Society. 

 

3.4.2 Brain tissue preparation  

A male P25 Chbb:THOM (Wistar) rat (45 g) was anesthetized with Isoflurane. It was then 

perfused transcardially with ~25ml 0.15 M Cacodylate buffer, followed by ~160 ml of 

fixation solution (2.5% PFA, 1.25% Glutaraldehyde, 2 mM CaCl in 0.08 M Cacodylate 

buffer) at 15 ml/min. After perfusion, the brain was removed from the skull and left in the 

fixation solution for 24h at 4°C. Then, three consecutive parasagittal brain slices (thickness: 

70 µm, 550 µm, 70 µm, respectively) containing the medial entorhinal cortex were cut from 

the right brain hemisphere using a vibratome (Microm HM650 V, Thermo Scientific). Next, 

vertical vibratome cuts were performed on the 550 µm slice to extract a ~500 µm (dorso-

ventral) times ~700 µm (anterio-posterior) tissue sample containing the upper layers of the 

medial entorhinal cortex. This sample was further processed for en bloc EM staining.  

 

After extraction of the EM sample, the 550 µm – thick slice was transferred into a 10% 

sucrose solution in PB overnight followed by an incubation in 30% sucrose solution for 24h 

for cryoprotection. After that, the brain slice was embedded in Jung Tissue Freezing 

Medium (Leica Microsystems Nussloch, Germany) and cut into 60 µm thick sagittal slices 

with a freezing microtome (Leica 2035 Biocut). These, as well as the 70 µm – thick brain 

slices obtained in the previous step, were subsequently processed for Calbindin 

immunoreactivity for confirmation of sample location within MEC (Fig. 3.2b).  

 

To obtain the P90 sample the same procedure was applied. In brief, a 90 days old Wistar rat 

(235 g) was anesthetized with Isoflurane, then perfused transcardially with ~75ml 0.15 M 

Cacodylate buffer, followed by ~250 ml of fixation solution at 15 ml/min. The ~600 x 700 

µm sample was extracted from a 500 µm thick parasaggital brain slice containing the upper 

layers of the MEC and processed for EM (see below). After sample extraction, the slice was 

processed for Calbindin immunoreactivity for confirmation of sample location within the 

MEC (Fig. 3.2c). The staining for Calbindin immunoreactivity was performed as described 

in section Histochemistry and Immunohistochemistry 2.4.2.    
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3.4.3 Sample preparation for electron microscopy 

En-bloc staining for EM was performed as in Hua et al 2015. Briefly, the tissue was stained 

with a reduced osmium tetroxide solution (2% OsO4 in 0.15 M cacodylate buffer) followed 

by incubation with ferrocyanide (2.5% KFeCN in 0.15 M cacodylate buffer) and an 

incubation in saturated aqueous thiocarbohydrazide solution. Then, the sample was first 

transferred into 2% OsO4 (in H2O) for amplification and then left over night at 4°C in a 

solution containing 2% uranyl acetate (in H2O). Then, the tissue was incubated in 0.02 M 

lead (II) nitrate. Dehydration and resin embedding was performed as in (Briggman et al., 

2011). Briefly, the sample was dehydrated with propylene oxide and ethanol, infiltrated 

with 50%/50% propylene oxide/Epon and embedded in Epon (using the Epon substitute 

embedding medium kit, Sigma Aldrich) at 60°C for 24h. For the P90 sample, embedding 

was as in (Hua et al., 2015). 

 

3.4.4 Continuous imaging 

The P25 sample was imaged using a Magellan scanning electron microscope (FEI 

Company, Hillsboro, OR) equipped with a custom-built SBEM microtome (courtesy of W. 

Denk). To allow continuous image acquisition, piezo actors (P-602 Physik Instrumente, 

Karlsruhe, Germany) were added to the microtome setup to operate in line with geared 

motors (M-230, Physik Instrumente; Fig. 3.2d) for movements in the plane of imaging (x 

and y directions).  

The plane of imaging was divided into 4 overlapping regions (motortiles, MTs) sized 217 

µm in x and 216 µm in y, each (note that the radial cortex axis corresponded to the horizontal 

(x) axis during image acquisition). The stage movement between the MTs was executed 

using the geared motors (Fig. 3.2e). Within each MT, stage movement was executed using 

the piezo actors and configured as follows: The vertical stage movement (y Axis, Fig. 3.2e) 

consisted of a brief acceleration to 34.2 µm/s followed by a plateau continuous movement 

for 7.5 s, followed by a linear deceleration to –34.2 µm/s (see the piezo control voltage 

transients during one MT, Fig. 3.2h). This corresponded to continuous alternating down- 

and up-wards movements (“piezo columns”), interleaved by direction inversion strokes. 

The horizontal stage movement (x Axis, Fig. 3.2e) was executed during the direction 

inversion strokes (Fig. 3.2f), yielding step-wise right-ward movements in x after each piezo 

column that shifted the piezo columns by 31.4 µm. After each piezo column, the image 

orientation was rotated by 90° using the image rotate option in the FEI control software.  
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After acquisition of the first MT, the stage was moved rightwards by 217 µm, and then the 

2nd MT was executed, this time starting from the bottom right of the MT area (Fig. 3.2f) 

such that the positions of the piezo actor did not have to be changed between the end of 

MT1 and the beginning of MT2. Then, MT3 and MT4 were executed analogously (Fig. 

3.2e). 

Image acquisition was configured as follows: during the piezo column movements, 10 

images sized 2048 x 3072 voxel each were acquired continuously (without delay between 

image acquisitions) using a custom-written C# library (K Boergens, B Lich and P Potocek). 

Image acquisition was started 0.59 s after initiation of the piezo column movement. To 

compensate for the line feed introduced by the y piezo movement, the EM scanning line 

feed was reduced to 7.1% by activation of the “tilt” mode (set to 85.9°). The reset movement 

of the EM beam after image acquisition thus amounted to a beam position jump antiparallel 

to the current y piezo movement, creating overlap between consecutive images in the y axis 

that could be later used for image alignment (see below). After image acquisition during 

one piezo column movement, image acquisition was paused for 1.08 s to allow the x piezo 

movement to be executed. The resulting image columns had a variable offset along the y 

axis (Fig. 3.2e), which was compensated by an overlap between the motortiles of about 8 

µm, such that complete coverage of the blockface was assured.  

7 consecutive piezo columns were spaced in x such that neighboring columns overlapped 

by about 9% in the horizontal direction. MT were set to overlap by about 5.5 µm in x. Dwell 

time was set to 100 ns, and the effective data acquisition speed including all movement 

overheads was 5.9 MVx/s. 

 

3.4.5 Conventional mosaic imaging 

The P90 sample was imaged using a Quanta scanning electron microscope (FEI, Quanta 

250 FEG) equipped with a custom built SBEM microtome (courtesy of W. Denk). Image 

acquisition was performed in the conventional mosaic-based mode. The plane of imaging 

was devided into 4 x 2 overlapping regions, each sized 46 x 69 µm2. The stage movement 

between these mosaics was performed using geared motors (M-227.25, Physik 

Instrumente).  Overlap between mosaic positions was set to 1.1-2 µm. Dwell time was set 

to 2.3 µs, and the effective data acquisition speed including movement overheads was 0.4 

MVx/s.   
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3.4.6 Dataset acquisition 

For the P25 dataset, the sample position was centered to L2 judged by distance to pia in 

low-resolution overview images, acquisition in continuous mode (see above) was started. 

8372 consecutive image planes were acquired, interleaved by microtome cuts set to 30 nm 

cutting thickness. For the final 56 µm of the dataset, cutting thickness was set to 50 nm, 

thus the total extent of the dataset in the cutting direction was approximately 274 µm (see 

next section). The incident electron energy was set to 2.5 keV for the first 561 slices, then 

increased to 2.8 keV. The beam current settings were chosen to yield 3.2 nA nominal beam 

current (resulting in a dose of ~16 electrons/nm2). Focus and astigmatism were constantly 

monitored and adjusted using custom-written autofocus routines. Focus was frequently 

unstable, likely due to cutting debris accumulating around the sample and in the vacuum 

chamber. This was compensated by frequent manual skeleton reconstruction in about 3h 

intervals during the course of the experiment to monitor axon traceability. The position of 

the field of view was shifted 4 times during the course of the experiment to compensate for 

a tilt of the sample in the tangential plane (shifts along the radial cortex axis towards white 

matter by 17.5 µm from plane 1816 onwards, by 21.6 µm from plane 3146, by 43.1 µm 

from plane 4336 and by 24.8 µm from plane 6375). 

 

The field of view of the P90 sample was centered to L2 of the MEC, containing parts of L3. 

In low-resolution overview images, the beginning of L2 is clearly distinct from the almost 

cell free L1. 5545 consecutive image planes were acquired, interleaved by microtome cuts 

set to 30 nm cutting thickness. For the final 262 slices of the dataset, the field of view was 

shifted by ~112 µm toward the pia to compensate for a slight tilt of the sample in the 

tangential plane. The incident electron energy was set to 2.8 keV. The beam current settings 

were chosen to yield 0.16 nA nominal beam current (resulting in a nominal dose of ~ 22.27 

electrons/nm2). Focus and astigmatism were constantly monitored and adjusted 2-4 times / 

day.  

 

3.4.7 Image Alignment 

First, all images obtained from one image plane and motortile (i.e., 10 x 7 = 70 images sized 

2048 x 3072 voxels each) were aligned separately using Speeded Up Robust 

Features (SURF) detected on the overlap regions of neighbouring image pairs (P25). For 

the P90 dataset, in – plane alignment was performed with FIJI/ImageJ using the 

‘Grid/Collection stitching’ plugin (Preibisch et al., 2009).  
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To match aligned images from consecutive planes, a region sized 70% of the horizontal MT 

size and 50% of the vertical MT size, located at the MT center, was cross-correlated with 

the same region from the next image plane. The translation vector between the cross-

correlation peaks was applied to the second image, respectively. In 565 slices (P25), debris 

from previous cuts was present on the block surface. These slices were excluded from 

alignment, yielding a total of 7807 slices that were used for reconstruction. For the P90 

dataset, the first 3399 slices were used for reconstruction (24 slices excluded because of 

debris, yielding a total of 3375 slices). 

 

After alignment, the four resulting 3D image stacks for each of the four motortiles (referred 

to as MT1 to MT4 in the following) of the P25 dataset, as well as the aligned image stack 

for the P90 dataset, were each converted to the KNOSSOS data format (Helmstaedter et al., 

2011; www.knossostool.org) by splitting into data cubes sized 128 x 128 x 128 voxels each. 

This data was then uploaded to the online data annotation software webKnossos (Boergens 

et al., 2017) for in-browser distributed data visualization, neurite skeletonization and 

synapse identification. 

 

3.4.8 Reconstruction of axons and dendrites 

First, we identified 665 neuronal cell bodies in all four MTs of the P25 dataset and 

reconstructed all dendrites with the help of 24 undergraduate students using webKnossos. 

Annotators were instructed to reconstruct all dendrites starting from the soma without 

spines, be especially cautious as not to miss branches and place comments whenever the 

dendrite reached a MT border for subsequent matching of neurites across MTs. All students 

were trained on at least 3 neurons including 1-2 cells from this MEC dataset (total training 

time about 10 hours per student). Only after successfully finishing training the annotators 

were allowed to continue with new tasks. The same procedure applied to the reconstruction 

of the 91 identified neuronal cells in the P90 dataset.  

 

All axons in the P25 dataset were reconstructed by one expert annotator; one axon was 

independently reconstructed by two additional expert annotators, whose results agreed with 

the original annotation. Axons were terminated either at the border of the dataset, by an 

axonal termination (found always in an end bouton synapse) or could not be followed 

further due to focus issues.  

http://www.knossostool.org/
http://www.knossostool.org/
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All axons in the P90 dataset were reconstructed independently by two expert annotators and 

10 undergraduate students. The two expert tracers then formed a consensus reconstruction 

based on these 12 annotations per axon.  

 

To match dendrites and axons across motortiles of the P25 dataset the following procedure 

was applied. First, the dendrite or axon was identified in the overlap region of the adjacent 

motortile. Prominent processes like myelinated fibers, somata and large-diameter dendrites 

in the same cutting plane were used as landmarks to constrain the search region. The first 

node of the continuing process was then placed at the same position within the neurite. The 

difference between the coordinates of these two matching points was then used to transform 

the skeletons into one coordinate system for further analysis. This procedure was repeated 

whenever the tracing reached an MT border. All axons and all dendrites of the 15 neurons 

and 3 inhibitory cells (shown in Fig. 3.3a, Fig. 3.4, Fig. 3.9, and Fig. 3.10a) were 

reconstructed completely across all motortiles.  

 

3.4.9 Synapse identification and target classification 

Synapses were identified by following the trajectory of axons in webKnossos (Boergens et 

al., 2017). First, vesicle clouds in the axon were identified as accumulations of more than 

about 10 vesicles. Then, the most likely postsynaptic target was identified by the following 

criteria: direct apposition with vesicle cloud; presence of a darkening and broadening of the 

synaptic membrane, indicative of a postsynaptic density (PSD); vesicles very close to 

membrane at site of contact (see Fig. 3.1 for examples). Synapses were classified as 

uncertain whenever the signs of a broadened and darkened stain at the synaptic membrane 

(resembling a PSD) could not be clearly identified. All analyses in this study were 

conducted on synapses classified as certain, only. To measure inter-expert variability in 

synapse annotation, 3 additional experts annotated all synapses and their targets for 1 of the 

ExN axons (Fig. 3.4, 7th row). For each of the 4 expert annotations, independently, PLASS 

was found (the path length distribution of synapses onto spines and synapses onto shafts 

was significantly different, p<0.02, 0.01, 0.04, 0.03, respectively). 39/44 synapses were 

identified as certain by all 4 annotators, 3 additional synapses by 3 of 4 annotators, and 2 

by 2 of 4 annotators. In the P90 dataset, two additional experts independently annotated 30 

randomly selected synapses (agreement with the initial expert annotator: 28/30 and 30/30 

for the two experts, respectively). 
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The postsynaptic targets of axonal synapses (n=310, P25; n = 284, P90) were classified as 

ExN, IN, or glia (for each apparent postsynaptic spine head, the corresponding dendritic 

trunk was searched to distinguish from glial targets). For this, the target dendrites were 

identified by the corresponding soma, which had been reconstructed before and classified 

as ExN or IN. For the classification as ExN or IN, dendrite morphology and the origin of 

the axon was evaluated. ExN axons exited the soma towards the white matter, while IN 

axons frequently originated from dendrites. For the remaining targets, the postsynaptic 

dendrites were classified as smooth vs. spiny by reconstructing them at least in one MT/ 

whole volume (P90) and measuring the rate of spines on two 10 µm – long dendritic 

segments. Dendrites were either clearly spiny or carrying few spines and filopodial 

protrusions without a clear spine head, or lacking spines entirely. We used dendrites of 

clearly identified INs and ExNs to calibrate spine density, yielding a definition of spiny 

dendrites with a spine density of ≥0.6 per µm, and smooth dendrites with a spine density of 

≤0.2 per µm. 

 

3.4.10 Dense dendritic reconstruction, dendrite density measurement, classification of 

smooth and spiny dendrites 

For the measurement of IN dendrite density in the P25 dataset, 7 regions sized (10 µm)3 

each were selected along the radial cortex axis within L2 (Fig. 3.4h, Fig. 3.5b,c). Regions 

were chosen to avoid cell bodies or blood vessels. Within these regions, all dendritic shafts 

were densely skeleton-reconstructed. Then, each dendrite was classified as smooth or spiny 

based on the above criteria. When a dendrite did not show spines locally, it was followed 

for at least 10 µm. If none or 1-2 spines were found, the dendrite was continued for at least 

30-40 µm to assure the lack of spiny regions. Only then the dendrite was classified as 

smooth / IN. Dendrite path length was measured from the reconstructed shaft skeletons (thus 

excluding spine path length). 

 

3.4.11 Pyramidal and stellate cell classification 

Two previously reported (Fuchs et al., 2016) parameters for classification of pyramidal vs. 

stellate cells in MEC L2 were investigated: the number of primary dendrites and the size of 

the cell body. First, two experts were asked to assign the morphology of dendritic 

reconstructions as clear pyramidal, clear stellate, or unsure. For 29 of 67 reconstructions, 

both experts agreed in the assignment to the high-confidence categories. For these neurons, 

soma volume (Fig. 3.1i,j) was measured by placing 2 nodes in each of the three orthogonal 
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viewports in webKnossos to mark the extent in the three main axes, of which the geometric 

mean was used for volume approximation. Also, the number of primary dendrites was 

counted for a subset of 15 neurons (6 clear pyramidal cells, 4 clear stellates, 5 intermediate 

cells, Fig. 3.4b), but not found to be distinctive. The more distinct distributions of soma size 

(Fig. 3.1i) were each fitted by a Gaussian, and the simple probability of a neuron belonging 

to the clear stellate cell class pStellate calculated by dividing the Gaussian fit to the stellate 

cells by the sum of both fits. 

 

3.4.12 Local circuit analysis 

Local circuit analysis was based on the connectivity data reporting the number of synapses 

between pairs of neurons or neurites in the P25 dataset. The synaptic connectivity between 

the four largest ExN axons, three fully reconstructed INs and 58 ExN targets that had their 

soma in the dataset was analyzed. Briefly, the connectivity matrix between these neurons 

was binarized to represent the presence or absence of synaptic connectivity. Then, indirect 

triadic connections ExN->IN->ExN were identified by squaring the connectivity matrix 

with all ExN->ExN connections set to zero. Then all full cFFI triads were identified by 

element-wise multiplication of the squared connectivity matrix with the ExN->ExN 

connectivity matrix. The resulting number of cFFI configurations (n=31) was then divided 

by the total number of ExN->ExN connections (n=41), yielding 76% cFFI ratio.  

 

3.4.13 Axon diameter measurements 

Contours of axonal cross sections (Fig. 3.9g) were reconstructed from all axonal branches 

at a distance of 170 µm from soma of 6 ExN axons (4 from P25, 2 from P90) and 4 IN axons 

(3 from P25, 1 from P90, 74 contours total) using webKnossos. Contours were traced in the 

orthogonal viewport most perpendicular to the local axon axis.  

The diameter of axons was measured for the four excitatory axons with most path length 

and three interneuron axons in the P25 dataset; and for 3 excitatory neurons, 1 IN axon in 

the P90 dataset. To obtain the analyses shown in Fig. 3.9h, for the ExN axons, 4 synapses 

onto ExN targets were chosen, each (16 synapses in P25, 12 synapses in P90); of the four 

synapses chosen per axon, three were randomly drawn, and one was at a close-to-maximum 

path length distance from the soma. Then, for each synapse, skeleton nodes spaced 25 µm 

apart were selected along the path from that neuron’s soma to the respective synapse and 

the diameter of the axon was measured at these locations in webKnossos. In case of 

myelinated segments the inner unmyelinated axon diameter was measured. In case of 



Axonal Synapse Sorting in Medial Entorhinal Cortex 68 

 

branchpoints the diameter was measured slightly before the branchpoint. This procedure 

was similar for 6 synapses from each of the 3 inhibitory axons in P25 and 7 synapses from 

one inhibitory axon in P90. All measurements are shown in Fig. 3.9h (P25) and Fig. 3.10b 

(P90). For reporting mean and s.e.m., diameter measurements were linearly interpolated, 

and mean and s.e.m. were calculated for 0 to 400 µm distance from cell body in 25 µm 

intervals (Fig. 3.9h). For comparison of axon diameters between excitatory and inhibitory 

axons, the average diameters were computed between the point where the IN axons started 

their main branches, and the point where most synapses were made (defined as the range 

between the position of the 4th axonal branchpoint and the point at which 10% of the 

cumulative output synapses (from all IN) were reached; these ranges were 134 µm to 261 

µm, P25; and 83 µm to 188 µm, P90). 

 

3.4.14 Estimates of local circuit convergence and divergence 

Bounds on local circuit convergence and divergence (used for circuit modeling, Fig. 3.6 and 

Fig. 3.11) were estimated as follows: for divergence of excitatory projections onto local 

interneurons, we used as a lower bound the number of unique INs (with identified soma in 

the dataset) that were targeted by the largest 6 presynaptic axons in P25 (each more than 

600 µm in length), which was 5 per axon. Then we asked how many synapses were likely 

made between a given connected pair of excitatory and inhibitory neuron. This number was 

2.6 in P25 for identified ExN-to-IN connections; but about 4 at P90 (assuming that single-

hit connections were due to artificially pruned axons, since none such connections are 

reported in the literature). We then scaled the total number of synapses made onto INs per 

ExN axon to an expected local ExN axon path length of about 2 mm (based on the likely 

local truncations and inspection of single-cell fills in (Burgalossi et al., 2011)), and divided 

this by the number of synapses per connection (about 40-50 synapses onto INs divided by 

4 yields a divergence of about 10-12 INs). We then screened the circuit models for an ExN-

to-IN divergence of 5-10 INs. We did not use higher IN numbers, since at the same time the 

effective conductance in the IN-to-ExN connection was screened between 950-1950 pS per 

contact (see below), yielding an additional regime of factor 2. For the estimate of ExN-to-

ExN convergence, we did not use the measured synapse numbers, because we had found 

that ExN outputs are positioned more distally in the presynaptic axons (Fig. 3.4), making it 

likely that most ExN-to-ExN connectivity is established beyond the local reconstructions. 

We rather used the reported connectivity in (Fuchs et al., 2016), which ranged from about 

5-10% local ExN-to-ExN connectivity. Given about 600 local ExNs (about 90% of about 
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660, Fig. 3.1), this yields 30-60 ExN to converge onto a postsynaptic ExN. We used 60 and 

40 in the two main simulations (Fig. 3.4 and 3.11), and screened stability over ExN 

populations from 20-80 (Fig. 3.7b,c). 

 

3.4.15 Numerical simulations 

As stated in the contributions, the numerical simulations used for a quantitative 

interpretation of the anatomical findings were not carried out by the author of this thesis. 

Please see (Schmidt et al., 2017) for methodological details. 

 

3.4.16 Statistical tests 

All statistical tests were performed using MATLAB and Statistics Toolbox Release 2014b, 

2015b, or 2016a (The MathWorks, Inc., Natick, Massachusetts, US). The distributions of 

soma volume for pyramidal vs stellate cells (Fig. 3.1i) were compared using a two-sided t-

test for unpaired samples (function ttest2) and, because of small sample sizes (n=15,14), 

using a Wilcoxon ranksum test (function ranksum). The distributions of output synapse 

locations for inhibitory vs excitatory targets (Fig. 3.4c,f; see also Fig. 3.5a) were compared 

using a two-sided t-test for unpaired samples (n=136 and 140, Fig. 3.4c; n=90 and 189, Fig. 

3.4f); a Wilcoxon ranksum test (function ranksum) as well as a randomization test for 1,000 

random draws (random shufflings of the target assignment for all measured synapse 

positions; none of 1000 draws yielded a class separation equal to or larger than the observed 

separation between synapses onto IN and ExN targets, Fig. 3.4c,f). Gaussian curves were 

fit to the initial peak of each distribution by constraining the fit range to 0-300 µm (output 

to INs) and 0-400 µm (output to ExNs) in Fig. 3.4c, and to 0-250 µm (output to INs) and 0-

400 µm (output to ExNs) in Fig. 3.4f. The test of the Euclidean distances of the excitatory 

vs inhibitory synapses to the soma (Fig. 3.4g) was performed as a two-sided t-test for 

unpaired samples (n=136 and 140) as well as a Wilcoxon ranksum test. IN dendrite fraction 

over cortical depth (Fig. 3.4h; see also Fig. 3.5b) was fitted by a line fit (n=7 datapoints, fit 

in MATLAB) yielding a linear approximation of slope -0.08/100 µm and y-axis intersection 

at 0.36.  

For the statistical comparison of cFFI vs opponent inhibition (Fig. 3.6a-c), the following 

model was used. Given a triad of connections ExNi-to-ExNj and ExNi-to-IN (of which we 

had 114 in the data), only two cases can follow: either the connection IN-to-ExNj also exists 

(corresponding to cFFI, 54 cases in the data), or not (corresponding to opponent inhibition, 

60 cases in the data). Assume an underlying biological probability pb that IN-to-ExNj exists 
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(pb=0 would correspond to strict opponent inhibition; pb=1 to strict cFFI; pb=0.25 could be 

interpreted as opponent inhibition with a biological wiring noise of 25%, a level of wiring 

noise e.g. seen in (Helmstaedter et al., 2013)). Furthermore, the truncation of IN axons 

yields a  connection detection probability pdet (this we estimated to be about 70% based on 

the completeness of the axonal trees of the INs, Fig. 3.10a). Together, the model implies a 

probability pmeas= pb*pdet of finding the connection IN-to-ExNj in a given triad. Then, 107 

sets of 114 triads were drawn, and the cases recorded in which at least 54 of 114 triads had 

the additional ExNj-to-IN connection, in dependence of pb and pdet=[65%, 70%, 75%]. A 

strict opponent inhibition model (pb≈0) was refuted at p<10-7, as were connection 

probabilities pb up to 30% (interpretable as opponent inhibition with 30% wiring noise). But 

even the chance model pb=0.5 was refuted at p=7*10-4, p=4*10-3, p=0.02 for pdet=[65%, 

70%, 75%], respectively, due to the limited detection probabilities pdet.  

The effect of cFFI vs pFFI on the width of the postsynaptic AP timing distribution (Fig 3.6j) 

and number of APs (Fig 3.6 k) was compared using a two-sided t-test for unpaired samples 

(function ttest2).  There, the mean and s.d. was calculated by dividing the total of 8000 

simulations (2000 trials/cell) into n=20 blocks of 400 trials each (100 trials/cell).  

The comparison of pathlength positions of IN output synapses involved in cFFI circuits with 

all output synapses of INs (Fig. 3.9c) was performed using a two-sided t-test for unpaired 

samples (n=884 and 131). The distribution of excitatory vs inhibitory axon diameters (Fig. 

3.9h, inset; Fig. 3.10b) were compared using a two-sided t-test for unpaired samples (n=15 

and 18) and Wilcoxon ranksum test. The test of the bias in number of inhibitory (IN) 

synapses over excitatory (ExN) synapses in the convergent cFFI circuits (Fig. 3.11c) was 

performed as a one-sided, right tailed, t-test (function ttest) of the relative IN/ExN number 

per connection against 1 (n=54 circuits). The distribution of dendritic Euclidean distance of 

excitatory vs inhibitory synapses onto the converging cell (Fig. 3.11d), as well as the 

pathlength distribution of inhibitory vs excitatory synapses of the same presynaptic axon 

(Fig. 3.11e), were compared over all n=54 cFFI circuits using a two-sided t-test for paired 

samples (function ttest2). 
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4 General Discussion 

 

 

 

 

 

 

 

 

 

This thesis provided data on the mechanistic basis of the circuit operations in medial 

entorhinal cortex. It contributed to the discovery of modular organization of layer 2 (L2) 

neurons in the medial entorhinal cortex (MEC) in rat (chapter 2, (Ray et al., 2014; Tang et 

al., 2014b)) and the anatomical relation to the parasubiculum (chapter 2, (Tang et al., 2016)). 

The thesis furthermore provides a first detailed connectomic study of L2 in MEC, reporting 

the discovery of high-precision axonal architecture (path-length dependent axonal synapse 

sorting, PLASS) of excitatory and inhibitory neurons and the circuitry they are embedded 

in (chapter 3, (Schmidt et al., 2017)).  

 

4.1 Structural modules in the medial entorhinal cortex (MEC) 

Layer 2 of the MEC, which has been shown to contain grid cells (Hafting et al., 2005) is 

populated by two major principle cell types: pyramidal cells and stellate cells. Based on 

their intrinsic properties (Alonso and Klink, 1993), long-range projections to the 

hippocampus (Lingenhohl and Finch, 1991), and the disruption of spatial memory 

formation after activity manipulations (Rowland et al., 2013; Yasuda and Mayford, 2006), 

mainly stellate cells had been considered to exhibit temporally precise grid-like discharges. 

The results presented in chapter 2 of this thesis, however, found that, conspicuously, 

pyramidal cells (marked by calbindin immunoreactivity) bundle their dendrites together and 

form regularly arranged clusters, resembling the hexagonal firing pattern of grid cells in the 

environment. These clusters were aligned to the parasubiculum and the parallel, axonal 

bundles of deep layer 1. Further, calbindin-positive pyramidal cells showed a high overlap 

with parasubicular axons (Tang et al., 2016) and cholinergic inputs, and showed 2-fold 
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stronger theta-modulation in comparison to stellate cells, properties that are considered 

essential for the generation of grid-cell activity (Boccara et al., 2010; Brandon et al., 2011; 

Koenig et al., 2011; Sargolini et al., 2006).  These findings suggest that pyramidal cells may 

contribute to the grid-like representation of space. Future studies have to show if the 

structural modules as identified by the pyramidal cell patches correspond to functional units 

in the medial entorhinal cortex. 

 

4.1.1 Comparison to modular organization of primary sensory cortices 

In primary sensory cortices, a modular organization of neurons into presumed functional 

units, called cortical columns, has been a major concept in neuroscience (Hubel and Wiesel, 

1963; Mountcastle, 1957; Woolsey and Van der Loos, 1970). One pinnacle example of such 

cortical modules is the somatosensory cortex of rodents, in which the representation of the 

primary large whiskers in vertically aligned cellular units has been found to be easily 

detectable (Woolsey and Van der Loos, 1970). In rat, the modular unit at the level of the 

input layer 4 (“barrel”) has a size of about 300 µm diameter in the tangential plane and 

about 200-400 µm in height (Meyer et al., 2010b). At first sight, the discovery of modularly 

arranged cell clusters in L2 of MEC seems stunningly similar to the barrels in layer 4 of 

primary somatosensory cortex. Therefore, both types of modular units made the dense 

circuit analysis an attractive goal in connectomics, where the minimal volume containing 

entire circuits is strongly limited. When considering this equivalence in more detail, 

however, numerical differences occur. First, the number of neurons in each patch in MEC 

is ~200 (Ray et al., 2014), but the number of neurons per barrel is an order of magnitude 

more (2000-4000, (Meyer et al., 2010b)). Secondly, the barrel units are clearly defined by 

thalamic input axons (see e.g. (Wimmer et al., 2010)). In the case of MEC, calbindin+ 

patches co-localize with cholinergic and parasubicular innervation. Importantly, barrels 

have so far been found in rodents and a small set of other species (but for example not in 

cats, primates or humans) while the MEC patches have already been described in species 

ranging from the smallest land-borne mammals (shrews) to humans (Naumann et al., 2016). 

So, while both patches in MEC and barrels in S1 are indications of modular organization in 

the mammalian cerebral cortex, their quantitative composition and evolutionary generality 

may be rather different. In both cases, however, the interior structure of these modules at 

the level of neuronal circuits is largely unknown. 
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4.1.2 MEC layer 2 modules: Patches vs. islands 

The results on hexagonally arranged modules in MEC (chapter 2, (Ray et al., 2014)) were 

accompanied by a back-to-back report on cellular clusters in MEC and their long-range 

connectivity (Kitamura et al., 2014). In (Kitamura et al., 2014), the authors report similar 

findings on cell-type specific segregation in MEC. They find clusters of cells (“curvilinear 

matrix of 130-µm-diameter bulblike structures in tangential MEC”), containing mostly 

pyramidal neurons that express the protein Wolframin (the product of the gene Wfs1 

(Kawano et al., 2009) associated with the Wolfram syndrome, a rare genetic disorder with 

a broad neurological and non-neurological phenotype) and calbindin (the authors refer to 

these as “island cells”). Stellate cells, surrounding the “islands” and therefore called “ocean 

cells”, were identified as reelin-positive, dentate-gyrus projecting cells, confirming 

previous studies (Couey et al., 2013; Tamamaki and Nojyo, 1993; Varga et al., 2010) and 

the results in (Ray et al., 2014). 

 

While (Ray et al., 2014) mostly investigated the arrangement of cell clusters, their inputs 

and the functional contributions of stellate and pyramidal cells, Kitamura et al. focused on 

the long-range outputs of “island” neurons in hippocampus and their role in fear 

conditioning. They found these cells to primarily project to the CA1 subregion of the 

hippocampus, with weaker projections detected in the subiculum, parasubiculum, and the 

contralateral CA1 and entorhinal cortex. The main input from the MEC to CA1 pyramidal 

cells is known to arise mainly from layer 3 neurons. Interestingly, Kitamura et al discovered 

that island cell axons preferentially target interneurons in CA1, which inhibit the same 

apical dendrites of CA1 pyramidal cells that are excited by entorhinal layer 3 cells. Thus, 

pyramidal cell clusters in layer 2 MEC may be in place to control the excitation of CA1 

neurons mediated through entorhinal layer 3 cells.          

 

4.2 Connectomic analysis, path length-dependent axonal synapse sorting 

(PLASS) 

Evidently, an investigation of the underlying circuits was required in order to make progress 

at a mechanistic level understanding of MEC modules (chapter 3, Schmidt et al, 2017). This 

study, the main focus of this thesis, discovered a novel level of specificity in neuronal 

circuits of the mammalian cerebral cortex: (1) Output synapses are sorted along the axonal 

path (PLASS) of excitatory neurons in L2 of MEC with respect to the postsynaptic target 

(excitatory vs inhibitory neurons). (2) These axons participate in a cellular feed-forward 



General Discussion 74 

 

inhibition circuit. (3) Synapses cluster on the postsynaptic partner, especially onto 

interneurons. (4) The involved inhibitory neurons appear to be optimized for fast AP 

transmission, possessing myelinated, large-diameter axons. (5) A 2-fold excess of inhibitory 

synapses converging onto the postsynaptic neuron, positioned closer to the soma. These 

unexpected findings point to an even more intricate wiring in L2 MEC and emphasize the 

importance of connectomic analysis. 

 

4.2.1 Sample size and reproduction 

An important advance of this study was to replicate findings from large-scale 

reconstructions in two datasets, one from a P25 animal and one from a P90 animal. Such 

replication reflects the fact that connectomic analysis becomes increasingly more 

manageable and is especially relevant in a field in which so far most dense reconstruction 

studies have to be performed on single datasets, since the acquisition and analysis of even 

one dataset are so time consuming. 

 

4.2.2 Comparison to other species and systems 

The utilization of differential axonal conduction delay for precise temporal computations 

has been theoretically predicted (Jeffress, 1948) and experimentally observed (Carr and 

Konishi, 1988, 1990) in the bird auditory system where interaural time differences are 

compensated by synapse sequences along antiparallel axons, thus utilizing morphologically 

implemented delay lines. In the mammalian auditory system, however, such computational 

employment of axonal conduction delay has not been found. Rather, alternative models for 

interaural processing are being discussed (Ashida and Carr, 2011; Grothe et al., 2010; 

McAlpine and Grothe, 2003).  Thus, the discovery of path length-dependent synapse sorting 

in the cerebral cortex of a mammal was most surprising. PLASS is different from synaptic 

target sorting based only on the spatial arrangement of neuronal target populations, such as 

when an axon passes through several subcortical nuclei, makes synapses first in cortex and 

then millimeters away in thalamus for cortico-thalamic neurons, or synaptic targets depend 

on the origin of the axon (e.g. CA1 vs CA3 in the hippocampal formation, (Takacs et al., 

2012)). Similarly, a recent study from the bird brain (Kornfeld et al., 2017) described 

differential target innervation by axons along their trajectory through HVC, first targeting 

interneurons, and at a larger distance presumably excitatory neurons. This effect was 

distance (not exclusively path-length) dependent, and operated on spatial scales that yielded 

an interpretation as a winner-take all (opponent inhibition) model (their Fig. 3h, (Kornfeld 
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et al., 2017)). In contrast, PLASS constitutes synapse sorting at the local circuit scale, 

obvious only when analyzing local axonal path length at high resolution and sufficient 

spatial extent. Further, PLASS in mammalian cortex operates in a cellular feed-forward, not 

opponent inhibition, circuit.  

 

 

4.2.3 Axonal conduction velocity 

The measured offset of about 120 μm between the output synapses onto inhibitory and 

excitatory neurons along the presynaptic excitatory axon appears marginal to compensate 

for the time required to generate and conduct APs in the inhibitory branch of the circuit. 

The performed simulations indicate that a PLASS based delay of 0.5-1 ms would be 

sufficient to reliably suppress the propagation of highly synchronous presynaptic activity. 

This would imply low axonal AP conduction velocities of about 120-240 μm/ms. In most 

studies, axons are reported to exhibit larger conduction velocities (230-270 μm/ms: dentate 

granule neurons, (Kress et al., 2008; Schmidt-Hieber et al., 2008); 360 μm/ms: CA3 

pyramidal neurons at 25°C – 450 μm/ms at 33°C (Meeks and Mennerick, 2007). An indirect 

estimate from rat S1 cortex however also provided 190 μm/ms (Helmstaedter et al., 2008d). 

Together with the data on axon diameters this makes it possible that excitatory neurons in 

MEC L2 exhibit especially thin and unmyelinated axons for reduced conduction velocity, 

enhancing the effect of spatial synapse sorting on conduction delay. 

 

4.2.4 Non-linear dendritic integration 

The simplified model of the PLASS-cFFI circuit (Fig. 3.11f) did not yet include the effect 

of local nonlinearities along the postsynaptic dendrites – the degree of synaptic clustering 

along the postsynaptic dendrites makes it well possible that NMDA- and Ca2+-dependent 

dendritic nonlinearities (Branco and Hausser, 2011; Larkum et al., 2009; Major et al., 2013; 

Major et al., 2008; Nevian et al., 2007) could further contribute to precisely timed 

postsynaptic activation of interneurons and excitatory neurons in this circuit. 

 

4.2.5 Fast inhibition 

One class of theoretical models proposed for the generation of grid cell activity is that of 

the attractor models. Typically, attractor models are based on the collective behavior of a 

neuronal network that can be abstracted via a Mexican hat connectivity (Burak and Fiete, 

2009; Fuhs and Touretzky, 2006; McNaughton et al., 2006), yielding a wide distribution of 
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connectivity strength. Based on the finding that stellate cells are interconnected via 

inhibitory interneurons, a contemporary study proposed an inhibitory attractor model for 

grid formation that follows an all-or-none inhibitory connectivity (Couey et al., 2013). In 

fact, the discovery of PLASS and the properties of the cellular feed-forward inhibition 

circuit confirm and strengthen the importance of inhibition in L2 MEC. In addition, 

however, it emphasizes that not only the existence or strength of synaptic connections 

matters but also the timing in which inhibition operates. Furthermore, the fact that the results 

of this thesis imply substantial connectivity between excitatory neurons, that is however 

paired by strong inhibition, makes a pure inhibition-based attractor model less likely. It can 

even be speculated, that the lack of excitatory connectivity in slice-based 

electrophysiological connectivity studies could be a result of the strong parallel inhibition 

and only distal excitatory connectivity as found in this thesis.  

 

4.2.6 Comparison to Cerebellum 

An important feed-forward inhibitory circuit has been described in the cerebellum. There, 

excitatory mossy fibers excite granule cells as well as Golgi cells that in turn inhibit granule 

cells. Unlike the cellular feed-forward circuit that was found in the MEC, where one and 

the same presynaptic cell targets the inhibitory and excitatory neuron, inhibition in the 

cerebellar circuit was found to precede the excitatory input, with the implication of 

segregated and functionally distinct mossy fiber inputs onto granule and Golgi cells (Duguid 

et al., 2015). This data reported an offset of inhibition and excitation at the level of synaptic 

potentials. Such an offset could not be plausibly caused by PLASS as found here. Rather, 

the effect of PLASS becomes most clear when the integration of dozens of postsynaptic 

potentials is considered, and inhibitory effects can modulate the sequential input from 

excitatory synaptic sources. 

 

4.3 Overall Conclusion 

This thesis explores the architecture of the rat medial entorhinal cortex layer 2 at the light 

microscopic level (chapter 2) and at a more detailed level of description using state-of the-

art 3-dimensional electron microscopy (chapter 3). The first study investigated the structure-

function dichotomy in layer 2 of the medial entorhinal cortex, challenging the view that 

stellate cells are the major principle cell type in generating grid cell activity. The second 

study performed for the first time a detailed connectomic analysis of L2 MEC. The findings 

of modular cellular organization, path length-dependent axonal synapse sorting and cellular 
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feed-forward inhibitory circuits provide a novel level of insight into an intricate neuronal 

system. They emphasize that detailed connectomic analysis is required to make progress on 

a mechanistic understanding of circuits in the cerebral cortex. Both studies inspire future 

research of the microcircuits underlying grid formation, their generality across species, with 

a focus on the contribution of inhibition to activity propagation in MEC.        
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