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Zusammenfassung 

Das Wechselspiel zwischen Viren und ihren Wirtszellen beginnt meist an pattern recognition-

Rezeptoren (PRRs), die für die Erkennung unterschiedlichster Pathogene anhand bestimmter 

Strukturen, sogenannten pathogen-associated molecular patterns (PAMPs), zuständig sind. 

Nach Detektion lösen die PRRs über verschiedene Signalkaskaden eine antivirale Antwort 

aus, die zur Expression antiviraler Gene führt. RIG-I und MDA5 sind zytoplasmatisch lokali-

sierte PRRs und erkennen RNA-Strukturen, die insbesondere während der viralen Replikation 

und Transkription verfügbar sind. 

Hantaviren sind humanpathogene RNA-Viren mit einem einzelsträngigen, segmentierten Ge-

nom. Die Konsequenzen hantaviraler Infektionen auf molekularer Ebene wurden bereits de-

tailliert untersucht, aber die Mechanismen, die zur Induktion der Immunantwort führen, wie 

auch mögliche Immunevasionsstrategien, die wahrscheinlich in Zusammenhang mit der Pa-

thogenität des jeweiligen Hantavirusstamms variieren, konnten bisher nicht identifiziert wer-

den. Da Hantaviren im Cytoplasma ihrer Wirtszellen replizieren, stellen RIG-I und MDA5 

potentielle Detektoren dar. 

In dieser Doktorarbeit wird die Bedeutung von RIG-I und MDA5 für die Erkennung von Han-

tavirus-Infektionen untersucht. Wachstumskinetiken zeigten, daß RIG-I die Replikation von 

pathogenen wie auch apathogenen Hantaviren beeinträchtigt. Außerdem konnte die RNA han-

taviraler Nukleocapsid- (N-) ORFs als eine virale Komponente identifiziert werden, die Typ I 

Interferon über RIG-I induziert. Das Ausmaß der Interferon-Aktivierung korrelierte hierbei 

tendenziell mit dem Virulenzgrad der Virusstämme und war für die nicht-pathogenen Hantavi-

ren nicht nachweisbar. Unterschiede in der Aktivierungsstärke können anhand vorläufiger 

Daten wahrscheinlich auf noch nicht identifizierte Motive zurückgeführt werden, die am 3’-

Ende der N ORFs liegen. Im Gegensatz dazu wurde keine Interferon-Aktivierung durch han-

tavirale Komponenten über MDA5 festgestellt.  
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Abstract 

Host-virus interaction is usually initated by pattern recognition receptors (PRRs) which are 

responsible for the recognition of various pathogens based on so-called pathogen-associated 

molecular patterns (PAMPs). Upon detection, PRRs trigger an antiviral immune response 

through different signalling cascades that lead to the expression of antiviral genes including 

interferon genes. RIG-I and MDA5 are cytoplasmically localised PRRs and recognise RNA 

patterns that are particularly available during viral replication and transcription.   

Hantaviruses are RNA viruses with single-stranded segmented genomes. The consequences of 

hantaviral infections have been analysed in detail, but the mechanisms that lead to the induc-

tion of the innate immune response as well as immune evasion strategies depending on the 

pathogenicity of the respective hantavirus strains have not been identified yet. Since hantavi-

ruses replicate in the cytoplasm of their host cells, RIG-I and MDA5 represent potential PRRs 

for hantaviral detection.  

This thesis investigates the impact of RIG-I and MDA5 on recognition of hantaviral infec-

tions. Growth kinetics show that RIG-I impairs the replication of pathogenic as well as non-

pathogenic hantaviruses. Furthermore, the RNA of hantaviral nucleocapsid protein (N) ORF 

could be identified as a viral component responsible for the induction of RIG-I signalling. It is 

shown that the degree of interferon promotor activation correlates with the virulence of the 

hantavirus strain from which the N ORF was derived. Based on preliminary data, differences 

in activation strength may be attributed to not yet identified motifs at the 3’ end of the ORF. In 

contrast, no interferon activation through MDA5 could be observed.  
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Abbreviations 

aa amino acid 

APC  antigen presenting cell 

APS ammonium persulfate 
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BSA  bovine serum albumin 
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CARDIF CARD adaptor inducing IFN-β 

CD  cluster of differentiation 
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DV Dengue virus 

DNA  deoxyribonucleic acid 

EBOV Ebola virus 

EBV Epstein-Barr virus 

EDTA  ethylene-diamine-tetra-acetic acid 

ELISA  enzyme-linked immunosorbent assay 

EMCV Encephalomyocarditis virus 

ER  endoplasmic reticulum 

FACS fluorescence-activated cell sorting 

FADD Fas-associated protein with death domain 

FCS  fetal calf serum 

FFU focus forming unit 

FITC fluorescein isothiocyanate 

FLUAV Influenza A virus 

FLUBV Influenza B virus 

GM-CSF  granulocyte-macrophage colony-stimulating factor 
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HCl hydrochloric acid 

HCMV human cytomegalovirus 

HCPS  hantavirus cardiopulmonary syndrome 

HCV hepatitis C virus 

HEPES  N-2-hydroxyethylpiperazine-N'-2-ethane-sulfonic acid 

HFRS  hemorrhagic fever with renal syndrome 

HLA  human leukocyte antigen 

HMVEC-L human pulmonary microvascular endothelial cells 

HRP  horseradish peroxidase 

HSV-1 herpes simplex virus type 1 

HTNV Hantaan hantavirus 

HUVEC  human umbilical vein endothelial cells 

ICAM-1 intercellular adhesion molecule-1 

IF immunofluorescence 

IFN  interferon 

IFNAR IFN-α/β receptor 

IKKi IκB-binding kinase i 

IL  Interleukin 

IP-10 10 kDa IFN-inducible protein 

IPS-1 IFN-β promoter stimulator protein 

IRF  IFN regulatory factors 

ISGF IFN-stimulated gene factor 

ISRE  IFN-stimulated response element 

JAK Janus protein tyrosine kinase 

JEV Japanese encephalitis virus 

kb kilobase 

kbp kilobasepairs 

kDa  kiloDalton 

KHF  Korean hemorrhagic fever 

L large genome segment 

LASV Lassa virus 

LPS  lipopolysaccharide 

M medium genome segment  
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MAVS mitochondrial antiviral signalling 

MAP  mitogen-associated protein kinase 

MDA5 melanoma differentiation-associated gene 5 

MEM minimum essential medium 

MFI  mean fluorescence intensity 

MOI  multiplicity of infection 

MOPS 3-(N-morpholino)propanesulfonic acid 

MV Measles virus 

N  nucleocapsid 

NaCl  sodium chloride 

NaN3  sodium azide 

NDV New Castle disease virus 

NE nephropathia epidemica 

NK cell natural killer cell 

NiV Nipah virus 

N protein  nucleocapsid protein  

NS non-structural  

nt nucleotides 

OAS  2'-5'-oligoadenylate synthetase 

OD  optical density 

PAMP  pathogen-associated molecular pattern 

PAGE polyacrylamide gel electrophoresis 

PBS phosphate-buffered saline 

PDGF  platelet-derived growth factor 

PE phycoerythrin 

PFA  paraformaldehyde 

PHV Prospect Hill hantavirus 

PKR  protein kinase R 

PMBC  peripheral blood mononuclear cells 

PMSF  phenylmethanesulphonylfluoride  

polyI:C  polyinosinic-polycytidylic acid 

PRD positive regulatory domains 

PUUV Puumala hantavirus 
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RANTES regulated in activation, normal T cells expressed and secreted 

RIG-I  retinoic acid inducible gene I 

RNA  ribonucleic acid 

rpm  revolutions per minute 

RPMI 1640  Roswell Park Memorial Institute medium (for cell culture) 

RSV respiratory syncytial virus 

RT-PCR  reverse transcriptase-polymerase chain reaction 

RV Rabies virus 

RVFV Rift Valley fever virus 

S  small genome segment  
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SeV Sendai virus 

STAT  signal transducer of activation and transcription 
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TGF  transforming growth factor 

TLR Toll-like receptor 

TNF  tumor necrosis factor  
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1 Introduction 

1.1 Hantaviruses 

1.1.1 Overview 

The earliest descriptions of diseases possibly caused by hantaviruses were recorded in the 

10th century (Lee, 1982). During the Korean War (1950-1953), many UN soldiers were hospi-

talised with Korean hemorrhagic fever, resulting in mortality rates up to 7% (Jonsson and 

Schmaljohn, 2001; Smadel, 1953), but the causative agent still was not discovered until 1978 

when the Hantaan virus (HTNV) was isolated from its reservoir host Apodemus agrarius, the 

striped field mouse (Lee et al., 2004).  

In 1981, HTNV was the first hantavirus adapted successfully to cell lines for in vitro experi-

ments. Taxonomic investigations showed that it belonged to the family of Bunyaviridae 

(White et al., 1982). The clinical feature of New World hantaviruses, called hantavirus cardio-

pulmonary syndrome (HCPS), was detected in 1993 (Peters and Khan, 2002). Until today 

other hantavirus species are being discovered in Europe, Asia, the Americas and Africa 

(Figure 1). 

New York (NY-1)

Prospect Hill (PHV)

Sin Nombre (SNV)

Andes (ANDV)

Hantaan (HTNV)

Puumala (PUUV)

Tula (TULV)

Dobrava (DOBV)

Seoul (SeoV)

Thottapalayam (TPMV)

 
Figure 1. Global distribution of selected hantavirus strains (first isolation habitat) 
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Nowadays, hantaviruses are classified as emerging viruses, 20 of them being pathogenic for 

humans (Clement, 2003; Peters and Khan, 2002; Jones et al., 2008; Kruger et al., 2001). Al-

though hantaviruses are categorised as potential biological warfare agent by the US Centers 

for Disease Control and Prevention (CDC) (Clement, 2003), few data exist about their interac-

tions with the immune systems of their hosts.  

Furthermore, there are no antiviral drugs for curing hantavirus infections, only symptoms can 

be controlled until convalescence. The guanoside-analog Ribavirin (1-β-D-ribofuranosyl-

1,2,4-triazole-3-carboximide) initially showed promising results for antiviral therapy 

(Huggins et al., 1986; Huggins et al., 1991) which, unfortunately, could not be confirmed 

(Chapman et al., 1999; Chapman et al., 2002; Maes et al., 2004; Rusnak et al., 2008). 

1.1.2 Taxonomy and morphology 

Hantaviruses as well as four other virus genera form the family of Bunyaviridae. They are 

renowned for their negatively-orientated single-stranded RNA genome that is separated into 

three segments. The segments in turn differ in sequence and size; the longest segment (L) en-

codes the RNA-dependent RNA polymerase (RdRp), the intermediate segment M contains the 

coding sequences for both glycoproteins G1 and G2 or Gc and Gn, respectively, and the 

shortest segment S codes for the nucleocapsid protein (Figure 2) (Dunn et al., 1995; Elliott, 

1990; Maes et al., 2004; Schmaljohn and Hjelle, 1997). Arvicolinae- and Sigmodontinae-

associated hantaviruses possess an additional open reading frame (ORF) within the S seg-

ment, coding for a putative non-structural (NS) protein (Bowen et al., 1995; Plyusnin, 2002). 

Each segment is closed non-covalently due to complementary structures at its highly con-

served 3’ and 5’ ends, thereby forming the typical so-called panhandle (Pardigon et al., 1982). 

Furthermore, the 5’ termini of HTNV genome segments contain uridine monophosphates 

(UMP) (Garcin et al., 1995). 

The enveloped virions have a diameter of approximately 120 nm and are spiked with the gly-

coproteins, G1 and G2, as heterodimers that mediate cell attachment and fusion (Arikawa et 

al., 1985; Lee and Cho, 1981; Martin et al., 1985; Obijeski et al., 1976; Okuno et al., 1986; 

Tsai, 1987). The virions contain the viral ribonucleoprotein complexes (vRNPs) consisting of 

the three genome segments (vRNA) attached to N protein trimers, thereby protecting the RNA 

from nuclease degradation (Alfadhli et al., 2001; Kaukinen et al., 2001). Furthermore, the 
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viral RdRp, that also functions as replicase, transcriptase and endonuclease, is associated with 

the vRNPs (Figure 2) (Elliott, 1990; Gott et al., 1993; Obijeski et al., 1976). 

100-120 nm

RdRp

N protein

vRNA

G1, G2 protein

S segment

M segment

L segment

 
Figure 2. Hantavirus virion: Hantaviruses consist of a double-layer lipid membrane carrying the G protein 

heterodimers. The three vRNA segments coding for the four viral proteins are complexed with N protein, build-

ing the vRNPs, and viral RdRp. 

1.1.3 Life cycle 

Hantaviruses known to be pathogenic to humans enter the cells through β3 integrins (CD61) 

as receptors, found e.g. on endothelial cells, platelets and macrophages, whereas non-

pathogenic hantaviruses use the ubiquitous β1 integrins (CD29) (Gavrilovskaya et al., 1998; 

Gavrilovskaya et al., 1999; Gavrilovskaya et al., 2002). Further receptors are supposed to be 

involved in hantavirus entry (Kim et al., 2002; Krautkramer and Zeier, 2008; Choi et al., 

2008).  

Entry takes place via clathrin-dependent endocytosis, mediated by the viral glycoproteins (Jin 

et al., 2002). After release of vRNPs into the cellular cytoplasm, cRNAs, full-length comple-

mentary strands of each segment, are synthesized, serving as templates for vRNA synthesis. 

mRNAs are also transcribed by the viral RdRp after accumulation of vRNA and matured by 

the so-called “cap-snatching” mechanism, i.e. the viral polymerase cleaves methylated 5’ caps 

from cellular mRNAs and attaches them to the viral mRNAs (Dunn et al., 1995; Garcin et al., 

1995; Elliott et al., 1991).  

At first, the N proteins as well as the RdRp are translated in the cytoplasm at free ribosomes 

and accumulate (Alfadhli et al., 2001; Kaukinen et al., 2001; Schmaljohn and Hjelle, 1997). 

After synthesis of the glycoprotein precursor at the endoplasmic reticulum, the precursor is 

cleaved into two glycoproteins G1 and G2 (Lober et al., 2001). These are in turn transported 
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to the Golgi apparatus for glycosylation and accumulate as heterodimers (Ruusala et al., 1992; 

Shi and Elliott, 2002), ready for building new virions with the vRNPs.  

It has not been elucidated yet where the following assembly steps take place and how the viri-

ons leave the cells. The majority of the Bunyaviridae mature by budding into the Golgi cister-

nae (Ellis et al., 1988; Hobman, 1993; Jantti et al., 1997; Kuismanen et al., 1985; Rwambo et 

al., 1996), but some New World viruses also mature at the cell surface. For example, Sin 

Nombre virus (SNV) has been found to bud at the plasma membrane (Goldsmith et al., 1995; 

Ravkov et al., 1997; Ravkov et al., 1998). After maturation, the virions exocytose from the 

host cells through vesicles and are released into the cellular environment (Figure 3). 

1.1.

5.5.
cRNAcRNAmRNAmRNA

vRNAvRNA

6.6.

3.3.

2.2.
4.4.

7.7.

 
Figure 3. Replication cycle of Bunyaviridae (after Schmaljohn and Hooper 2001): 1. Entry, 2. Transcription, 3. 

Translation, 4. Replication, 5. Assembly, 6. Alternative assembly, Egress, 7. Egress 
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1.1.4 Phylogeny and hosts 

To date, more than 30 hantavirus species have been discovered (Hart and Bennett, 1999; Kan-

erva et al., 1998; Plyusnin, 2002). The strict reservoir host specificity of hantaviruses is re-

markable, indicating a stringent co-evolution of virus and host (Hjelle and Yates, 2001; Plyus-

nin and Morzunov, 2001; Plyusnin, 2002). The Old World viruses from Asia and Europe like 

HTNV, Puumala virus (PUUV), Seoul virus (SEOV) and Dobrava virus (DOBV) are mainly 

Murinae- and Arvicolinae-associated, whereas New World viruses found in the Americas are 

often carried by Sigmodontinae. Furthermore, latest investigations revealed insectivores as 

additional reservoir hosts next to the known rodent classes (Table 1) (Carey et al., 1971; Ya-

nagihara and Silverman, 1990; Song et al., 2007; Klempa et al., 2008; Rusnak et al., 2008). 

 

Table 1: List of selected hantaviruses 

Species Abbreviation Rodent host Distribution Disease Case 
fatality 

Murinae-associated      
Dobrava Belgrade 
virus 

DOBV (Aa) Apodemus agrarius Central and East 
Europe 

HFRS 0.9% 

 DOBV (Af) Apodemus flavicollis South-East Europe HFRS 9-12% 
 DOBV (Ap) Apodemus ponticus South-East Europe HFRS 6.5% 
Hantaan virus HTNV Apodemus agrarius Asia HFRS ≤ 15% 
Seoul virus SEOV Rattus norvegicus Asia HFRS 1-2% 
Arvicolinae-
associated 

     

Prospect Hill virus  PHV Microtus pennsyl-

vanicus 

North America - - 

Puumala virus PUUV Clethrionomys 

glareolus 

Eastern and South-
ern Europe 

HFRS 
(mild) 

< 1% 

  Clethrionomys rufo-

canus 

   

Tula virus TULV Microtus arvalis Central and East 
Europe 

? ? 

  Microtus rossi-

aemeridionalis 

   

Sigmodontinae-
associated 

     

Andes virus ANDV Oligoryzomys longi-

caudatus 

Argentina HCPS 43-56% 

New York virus NYV Peromyscus leuco-

pus 

North America HCPS ? 

Sin Nombre virus SNV Peromyscus manicu-

latus 

North America HCPS 35% 

Insectivore-
associated 

     

Thottapalayam vi-
rus 

TPMV Suncus murinus India ? ? 
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Nevertheless, phylogenetic analyses revealed inter- and intra-strain-dependent variabilities. 

Viruses in general have several possibilities to use genetic variations for increasing their “fit-

ness”, for example by genetic drift or genetic shift. For hantaviruses, one possibility of genetic 

variation is given by apparently impaired or absent proof reading activity of the viral RNA 

polymerase (Plyusnin et al., 1996; Choi et al., 2008; Ramsden et al., 2008). Furthermore, re-

assortment processes can be responsible for changes in the genetic background of hantavi-

ruses (Li et al., 1995). Interestingly, the exchange of genomic segments is not distributed 

normally for all three segments; apparently, M seems to undergo reassortment with higher 

probability whereas S and L reassort primilary together (Rizvanov et al., 2004; Rodriguez et 

al., 1998; Klempa et al., 2005) (Kirsanovs, unpublished data). 

1.1.5 Transmission, clinical features and epidemiology 

Hantaviruses establish persistent infections in their reservoir hosts without any apparent dis-

ease (Botten et al., 2000; Hutchinson et al., 1998; Tkachenko and Lee, 1991; Yanagihara et 

al., 1985). They are transmitted to humans through aerosols containing viruses derived from 

rodent feces, urine, or saliva (Tsai, 1987). Thus the respiratory tract represents the primary 

replication site (McCaughey and Hart, 2000; Schonrich et al., 2008). However, virus trans-

mission can also occur by rodent bites (Gonzalez et al., 1984; Hart and Bennett, 1999). Hu-

man-to-human transmissions usually do not occur and were only observed in individual cases 

for Andes virus (ANDV) (Padula et al., 1998; Wells et al., 1997). 

Hantaviruses show similar tropisms in rodents and humans. The vascular endothelium is pos-

tulated as the main target tissue in hantavirus infections since viral antigen could be detected 

in endothelial cells derived from lung, kidney, heart and lymphoid organs (Green et al., 1998; 

Zaki et al., 1995). Typical human disease patterns after infection with Old and New World 

hantaviruses are hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopul-

monary syndrome (HCPS), respectively.  

HFRS is characterised by fever, abdominal pain and drop in blood pressure and can even lead 

to vascular hemorrhage, kidney dysfunction, cardiogenic shock and renal failure which is 

mainly caused by HTNV, SEOV and DOBV (Cosgriff and Lewis, 1991; Kanerva et al., 1998; 

Tkachenko and Lee, 1991). The number of reported cases amounts to 100,000 per year with 

case fatality rates between 1 to 15% depending on the responsible hantavirus strain. In 

Europe, PUUV seems to be the major pathogenic hantavirus since it is responsible for ap-
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proximately 6,000 annual cases of mild HFRS, also called nephropathia epidemica (NE), with 

fatality rates of 0.1% (Vapalahti et al., 2003).  

HCPS is found in North and South America and caused by SNV and ANDV, respectively. The 

disease pattern is characterised by vascular hemorrhage, pulmonary edema and respiratory 

distress and can – in severe cases – lead to myocardial dysfunction; the case fatality rate 

reaches up to 50% (Khan and Young, 2001; Schmaljohn and Hjelle, 1997). However, clinical 

features of both disease patterns are not mutually exclusive and can also occur occasionally 

during infection with the respective other type of virus. Additionally, thrompocytopenia, pro-

teinuria and leukocytosis may arise during both infection courses (Kanerva et al., 1998; Zaki 

et al., 1995). Some hantaviruses are constituted as non-pathogenic, but their pathogenic poten-

tial is not completely clear yet; for example, Tula virus (TULV) and Prospect Hill virus (PHV) 

seem to be non-pathogenic, but recently, a HFRS case after infection with TULV has been 

reported (Klempa et al., 2003). 

1.2 Experimental systems for hantaviral studies in cell culture and animal models 

All procedures involving pathogenic hantaviruses have to be carried out under biosafety level 

3 (BSL3) conditions. Hantaviruses infect different cell types, for example A549 cells (human 

lung epithelial cells), VeroE6 cells (green monkey epithelial kidney cells), primary endothelial 

cells, monocytes, macrophages and megacaryocytes. However, inspite of strong dysregulation 

of endothelial cell function and an intense adaptive immune response in case of some patho-

genic hantaviruses in vivo, neither pathogenic nor non-pathogenic hantaviruses seem to cause 

a cytopathic effect in permissive cells, and endothelial cell permeability is not increased in 

vitro (Hjelle and Yates, 2001; Kitamura et al., 1983; Nagai et al., 1985; Pensiero et al., 1992; 

Sundstrom et al., 2001; Yanagihara and Silverman, 1990).  

Furthermore, the absence of appropriate animal models hampers in vivo-analyses of hantavi-

ruses. Therefore, it is quite difficult to investigate how hantaviruses increase endothelial per-

meability and thereby cause disease (Kanerva et al., 1998), indicating cytokines or similar 

molecules released from infected cells as factors for hantavirus pathogenesis. 
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1.3 Immunology 

1.3.1 Innate immunity 

1.3.1.1 Pattern recognition receptors 

The innate immune system provides a first line of defence against pathogens. In contrast to 

the specific adaptive immune system that comprises cellular (T cells) and humoral (B cells) 

mechanisms, the innate immune system senses broad spectra of pathogens with special char-

acteristic structural features, so-called pathogen-associated molecular patterns (PAMPs).  

The detection takes place through pattern recognition receptors (PRRs). There are two main 

receptor families involved in virus detection: Toll-like receptors (TLRs) and RIG-I-like recep-

tors (RLRs). TLRs are membrane-spanning non-catalytic molecules which contain a subclass 

that recognises for example RNA and DNA patterns derived from pathogens including bacte-

ria, viruses, parasites and fungi (Akira and Takeda, 2004; Janeway, Jr. and Medzhitov, 2002), 

whereas RLRs do not rely on membranes and are located in the cytoplasm of the cell. Both 

families induce signalling pathways after binding of PAMPs that for example merge in dimer-

isation of the transcription factor IRF3, followed by transport into the nucleus and transcrip-

tion of type I interferons (IFN). 

CARD CARD

CARDs

925 AA 

repressor domain helicase domain with
conserved motifs

CARD

1025 AA 

925 AA 

RIG-I

MDA5

 
Figure 4. Domains of RIG-I and MDA5: Structure of the RLRs RIG-I and MDA5 with conserved motifs 

within the helicase domain depicted dark red or dark orange, respectively (Saito et al., 2007) 

This study particularly focuses on RLRs and their influence on IFN-β activation by hantavi-

ruses. Retinoic acid inducible gene (RIG-I, also known as DDX58) and melanoma differentia-

tion-associated gene 5 (MDA5, also known as IFIH1) belong to the family of DexD/H box 
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helicases, both comprising two caspase recruitment domains (CARDs) located at the N-

terminus (Figure 4). After binding of PAMPs with RIG-I, homodimerisation and a conforma-

tional shift occur. The CARDs are then free to interact with the adaptor molecule anchored in 

the outer mitochondrial membrane, IFN-β promotor stimulator (IPS-1) (also called mitochon-

drial antiviral signalling (MAVS; KIAA1271), virus-induced signalling adaptor (VISA), or 

CARD adaptor inducing IFN-β (CARDIF) thereby activating downstream signalling proc-

esses through Fas-associated protein with Death Domain (FADD) and other proteins like the 

Iκ-β kinase family members TBK-1, IKKi and IKKα/β that lead to activation of the transcrip-

tion factors IRF3 and NFκB (Lin et al., 1998; Sato et al., 1998; Weaver et al., 1998; Li et al., 

1999) (Figure 5).  

MAVS

FADD

RIP1

TRAF6

TAB1 TAB2

TAK1

IKKαβαβαβαβ
IKKi

IRF3 NFκκκκBIκκκκB

TNFαααα etc.IFNββββ

TRAF2

CARD

RIG-I CARD CARD

TBK1

RIG-I CARD CARD

TRAF3

CARD CARDMDA5

5‘3p

 
Figure 5. Signal transduction pathway of RIG-I and MDA5 

IRF3 is phophorylated and then homodimerises for translocation into the nucleus (Akira and 

Takeda, 2004; Kawai et al., 2005; Meylan et al., 2005; Seth et al., 2005; Xu et al., 2005; Yo-

neyama et al., 2004). Coordinated binding of transcription factors leads to an induction of 

IFN-β expression, thus creating an antiviral status in the host. In addition, the RIG-I-

associated signal transduction triggers the expression of other cytokines like tumor necrosis 
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factor α (TNF-α) through NFκB activation, thereby activating natural killer (NK) cells, den-

dritic cells (DCs) and macrophages (Balachandran and Barber, 2004; Du and Maniatis, 1992; 

Kato et al., 2005; Maniatis et al., 1998; Meylan et al., 2005; Seth et al., 2005; Xu et al., 2005; 

Yoneyama et al., 2004). 

A third member of RLRs is LPG2, which is ubiquitously expressed like RIG-I and MDA5, 

but lacks the CARDs. It acts as a negative regulator of RIG-I when overexpressed in cells, 

but, on the other hand, features activating abilities when building heterodimers with RIG-I or 

MDA5 and their ligands (Komuro and Horvath, 2006; Saito and Gale, Jr., 2008b; Venkatara-

man et al., 2007; Yoneyama et al., 2005) (Figure 7).  

1.3.1.2 Ligands of RLRs 

The main PAMP recognised by RIG-I is single-stranded RNA (ssRNA) with a triphosphate at 

its 5’ end, whereas MDA5 detects double-stranded RNA (dsRNA) (Alexopoulou et al., 2001; 

Hornung et al., 2006; Pichlmair et al., 2006). However, RIG-I is also able to bind RNA inde-

pendent of 5’-triphosphates. MDA5 prefers longer dsRNAs of approximately 2 kbp whereas 

RIG-I shows only binding activity for short dsRNA of probably at least 70 bp to 1 kbp or 

short polyI:C (Kato et al., 2006; Kato et al., 2008). Furthermore, RIG-I has also been found to 

recognise homopolyuridine or homopolyadenine motifs for example within the 3’ non-

translated region of the hepatitis C virus (HCV) (Saito et al., 2008). For this kind of ligands, 

the 5’-triphosphate is necessary for triggering immune response, but not sufficient. In general, 

binding mainly relies on the ribonucleotide composition, length and structure (Saito and Gale, 

Jr., 2008a). In contrast, cellular RNAs, transcribed in the nucleus, are processed and modified, 

therefore not triggering innate immune mechanisms (Hornung et al., 2006; Kariko et al., 

2005; Pichlmair et al., 2006). 

1.3.1.3 Viruses and RLRs 

Many viruses provide appropriate PAMPs to RIG-I during their life cycle. Most of them are 

RNA viruses as shown in Figure 6. However, activation of RIG-I signalling has also been 

shown for Epstein-Barr virus (EBV), a DNA virus (Samanta et al., 2006). For wide-spread 

DNA viruses like for example Herpes simplex virus (HSV), no interaction with RLRs could 

be detected yet, although they are known to generate dsRNA during replication (Weber et al., 

2006). 
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MDA5 is known to be important for the detection of viruses belonging to the family of Picor-

naviridae (Gitlin et al., 2006). The specific structural component that is recognised by MDA5 

has not been defined yet. 

RIG-I CARD CARD

RIG-I CARD CARD CARDCARD MDA5

MAVSCARD MAVS CARD

ssRNA (-): Arenaviridae: LASV  Bunyaviridae: RVFV 
Filoviridae: EBOV  Orthomyxoviridae: FLUAV, FLUBV 
Paramyxoviridae: MV, NDV, NiV, RSV, SeV 

Rhabdoviridae: RV, VSV 
ssRNA (+): Picornaviridae: EMCV                                                
Flaviviridae: DV, WNV

poly (I:C)

ssRNA (+): 
Flaviviridae: 
DV, HCV, 
JEV, WNV

in vitro-transcribed RNA

poly (I:C)

DNA: 
Herpesviridae: 
EBV

 
Figure 6. Ligands of RIG-I and MDA5: Artificial ligands and viruses inducing signalling cascades through 

RIG-I and MDA5, sorted by virus families and genome classifications (see list for abbreviations) (Loo et al., 

2008). 

Furthermore, some viral immune evasion mechanisms targeting cytoplasmic sensors have 

been detected. The V proteins of the familiy Paramyxoviridae, for example, have been shown 

to counteract MDA5, and NS3/4A protease of HCV disrupts RIG-I signalling by cleaving 

MAVS off the mitochondria (Kaukinen et al., 2006). Recently, different hantaviral G proteins 

were found to inhibit RIG-I signalling as well. More precisely, the G1 cytoplasmic tail of New 

York virus (NYV) – but not G1 derived from PHV - blocks RIG-I signalling upstream of 

IRF3 in human endothelial cells by interaction with the TBK1-TRAF3 complex, resulting in 

inhibited transcription from IFN-β promotors and ISREs (Figure 7) (Alff et al., 2006; Spiro-

poulou et al., 2007).  
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Figure 7. Viral evasion mechanisms counteracting signal transduction of RLRs: Viruses und their particular 

proteins interfering with RIG-I and MDA5 signalling are depicted in the same colour as the respective molecule 

of the the signaltransduction pathway.  

1.3.2 Type I interferon 

According to their amino acid sequence, interferons are grouped in three classes: Type I IFN, 

comprising IFN-α, IFN-β, IFN-ω, Type II represented by IFN-γ and Type III interferon with 

IFN-λ. IFN-α, belonging to a multi-gene family, is produced by monocytes and macrophages, 

lymphoblastoid cells, fibroblasts, and some other cell types, whereas IFN-β, encoded by only 

one gene, is mainly synthesised by fibroblasts, epithelial and endothelial cells (Roberts et al., 

1998).  

Type I IFNs are of crucial importance for the antiviral response, and they are produced consti-

tutively in low amounts (Seth et al., 2006; Taniguchi and Takaoka, 2001). They link innate 

and adaptive immunity; for example, they modulate the differentiation of plasmacytoid 

(pDCs) and myeloid dendritic cells (mDCs), Th1/CD8+ T cell responses and cross priming 

and enhance the expression of costimulatory factors and major histocompatibility complex 

(MHC) class I molecules on antigen-presenting cells (APCs). Furthermore, they activate NK 
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cells and enhance primary antibody response (Le Bon et al., 2001; Le Bon et al., 2003; Mon-

toya et al., 2002).  

During the sensitisation phase, entering viruses can activate transcription factors, for example 

IRF3, NFκB and AP-1 through different signalling cascades that lead to production of IFN-β 

and other cytokines by coordinated binding to so-called positive regulatory domains (PRD) 

within the IFN-β promotor, thereby forming an “enhanceosome” (Yoneyama et al., 1998; Chu 

et al., 1999). In the late phase, secreted IFN-β binds to IFN-α/β receptors (IFNARs) in an 

autocrine and paracrine manner and initiates a positive feedback loop. IFNARs activate the 

Janus kinases JAK1 and Tyk-2 that in turn phosphorylate signal transducers and activators of 

transcription (STAT1 and STAT2), leading to a heterotrimeric complex with IRF9, called IFN-

stimulated gene factor 3 (ISGF3) (Samuel, 2001). ISGFs bind to IFN-stimulated response 

elements (ISRE) within the genome, resulting in expression of more than 100 IFN-stimulated 

genes (ISGs). ISGs are for example 2’-5’-oligoadenylate synthetase (OAS) and dsRNA-

dependent serin/threonin protein kinase R (PKR), causing degradation of viral RNAs and in-

hibition of viral protein synthesis (Williams, 2002) respectively, or Mx proteins. The latter are 

GTPases known to interfere with the replication of a broad range of RNA viruses by inhibi-

tion of viral replication (Frese et al., 1996).  

1.3.3 Hantaviruses and immunity 

Although hantaviruses do not necessarily induce strong type I IFN responses, IFNs inhibit 

hantavirus replication effectively (Kanerva et al., 1998; Nam et al., 2003; Temonen et al., 

1995). Therefore, hantaviruses counteract innate immunity by blocking signalling pathways 

which lead to IFN expression. The effectiveness of influencing signalling cascades and there-

fore the success of replication and expansion differs between pathogenic and non-pathogenic 

hantaviruses.  

Many ISGs are upregulated after infection of human endothelial as well as human lung 

epithelial cells with hantaviruses (Geimonen et al., 2002; Nam et al., 2003), but hantavirus 

strains differ in terms of impact on cellular gene expression patterns. Microarray studies 

showed high expressions of ISGs early after infection with non-pathogenic PHV, in contrast 

to pathogenic strains like HTNV and NYV that did not elicit immune response-related expres-

sions earlier than 4 days post infection (d p.i.) (Geimonen et al., 2002). However, data about 

interactions of different hantavirus strains with innate immunity are incomplete. 
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Kraus et al. found that HTNV showed an induction of IFN-β in human umbilical vein endo-

thelial cells (HUVECs) while this effect is only marginal for the less pathogenic TULV (Kraus 

et al., 2004). Furthermore, inefficient replication of TULV correlates with early MxA expres-

sion whereas strong replication of pathogenic HTNV goes along with retarded MxA expres-

sion.  

Oelschlegel et al. conclude that MxA is not necessarily responsible for an inhibition of HTNV 

through class I IFN (Oelschlegel et al., 2007), whereas Frese et al. (Frese et al., 1996) showed 

an inhibition of several members of the Bunyaviridae including HTNV by stably transfected 

MxA expressed in Vero cells, congruently to Kanerva et al. who received similar results for 

PUUV and TULV (Kanerva et al., 1996). However, the latter group could not reproduce the 

inhibitory effect ascribed to transfected MxA in cell clones derived from a human leukemic 

monocyte lymphoma cell line (U-937). 

Spiropoulou et al. observed high levels of IFN-β induced by PHV in human pulmonary mi-

crovascular endothelial cells (HMVEC-L), but no induction by ANDV early after infection, 

correlating with IRF3 activation, although both strains were able to downregulate IFN signal-

ling (Spiropoulou et al., 2007). The study by Alff et al. detected strong IFN-β responses early 

after infection of human endothelial cells with PHV, but not with HTNV and NYV (Alff et al., 

2006). 

Furthermore, several groups have investigated whether single hantaviral components interact 

with cellular immune signalling components. As already mentioned above, the cytoplasmic 

tail of the G1 protein of pathogenic NYV but not non-pathogenic PHV blocks RIG-I signal-

ling by disrupting the TBK1-TRAF3 complex and thereby inhibiting transcription from IFN-β 

promotors and ISREs (Alff et al., 2006; Alff et al., 2008; Spiropoulou et al., 2007).  

G proteins from ANDV and PHV were able to downregulate IFN signalling by blocking the 

phosphorylation of STAT1 and STAT2 (Spiropoulou et al., 2007). Additionally, in G1 tails of 

HCPS-inducing hantaviruses, immunoreceptor tyrosine-based activation motifs were found 

that are able to interact with cellular kinases (Geimonen et al., 2003). 

TULV- and HTNV-derived N proteins interact with ubiquitin-like modifier-1 (SUMO-1) 

(Kaukinen et al., 2003; Lee et al., 2003), whereas for PUUV N protein, interaction with an 

apoptosis enhancer, Daxx, has been observed (Li et al., 2002). Another recent finding indi-

cates that the NS proteins of TULV (which, until recently, were undefined) and PUUV could 

be involved in IFN inhibition (Jaaskelainen et al., 2007).  
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1.3.4 Pathogenesis of hantaviruses 

The immune response plays a crucial role for the pathogenesis of hantaviruses, although the 

exact mechanisms correlating with the severity of clinical symptoms caused by different han-

taviral strains have not been elucidated yet. Cells involved in virus detection are immune 

cells, but also endothelial cells that function as main target cells after virus infection. Hantavi-

ruses are also able to infect and to activate immature dendritic cells (DCs) thereby inducing 

cytokine secretion, for example TNF-α and Type I IFN, and upregulating MHC class I as well 

as adhesion molecules (Raftery et al., 2002). 

Expression of vascular endothelial growth factor (VEGF), regulated in activation, normal T 

cells expressed and secreted (RANTES, CCL5) and the 10 kDa IFN-inducible protein (IP-10, 

CXCL10) is increased after infection of HMVEC-Ls with HTNV and SNV (Sundstrom et al., 

2001). RANTES and IP-10 are known attract leucocytes, and IP-10 additionally plays an im-

portant role in the development of a Th1 response, whereas VEGF is a specific enhancer for 

microvascular permeability and can recruit monocytes (Khaiboullina and St Jeor, 2002; Sund-

strom et al., 2001; Gavrilovskaya et al., 2008).  

Activation of macrophages and monocytes triggers cytokine release. Many cytokines can be 

detected in significantly increased levels in human plasma such as IFN-β, IFN-γ, TNF-α, in-

terleukin 2 (IL-2) and IL-6 during the acute phase of infection (Geimonen et al., 2002; Khai-

boullina and St Jeor, 2002; Linderholm et al., 1996; Makela et al., 2004; Peters and Khan, 

2002; Zaki et al., 1995). Furthermore, other biochemically active substances like nitrogen 

oxide and reactive oxygen are induced that may lead to local tissue damage, increased perme-

ability of endothelial cells and possibly disturbed hemostasis (Kanerva et al., 1998). 

In HFRS patients, the early cellular immune response is mainly directed against the N pro-

teins, although epitopes against all structural proteins could be found. Hantaviral N protein is 

highly immunogenic and contains several B-cell as well as T-cell epitopes (Lundkvist et al., 

1995; Van Epps et al., 1999; Van Epps et al., 2002; Vapalahti et al., 1995). During the humoral 

response against hantaviruses, all Ig subclasses are involved (Gott et al., 1997; Vapalahti et 

al., 1995). In later phases, the amount of IgM declines. Meanwhile, levels of IgG directed 

against both hantaviral glycoproteins overbalance (Groen et al., 1992; Kanerva et al., 1998; 

Lundkvist et al., 1993). Antibodies cross-react for many hantavirus species. 

Nevertheless, the relation between adaptive immune response and pathogenesis has not been 

clarified yet. It has been suggested that the hantavirus-induced immunity plays a major role 

leading to microvascular leakage due to virus-specific CTL responses (Van Epps et al., 2002; 
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Schonrich et al., 2008). T lymphocyte activation is mainly triggered by dendritic cells in 

which hantaviruses are also able to replicate. After hantaviral infection, MHC I molecules are 

upregulated in both endothelial cells and DCs (Kraus et al., 2004; Raftery et al., 2002). The 

increased permeability of capillaries is in turn supposed to be the main cause of hantaviral 

symptoms, possibly caused by pathogenic hantaviruses in response to VEGF-directed regula-

tion processes (Vapalahti et al., 2003; Gavrilovskaya et al., 2008).  

It has been shown that in those reservoir hosts in which hantaviral infections remain asymp-

tomatic, the induction of regulatory T cells (Tregs) takes place. Tregs normally function as 

suppressor of immune response thereby contributing to the maintainance of immune homoeo-

stasis. By interfering with the proinflammatory immune response, Tregs possibly limit pa-

thology in the reservoir hosts, but avoid virus cleareance (Easterbrook et al., 2007; Schountz 

et al., 2007), whereas in humans, the opposite could be assumed due to lacking Treg activa-

tion. 

1.4 Aims and scope of this thesis 

The aim of this thesis is to clarify the early steps of hantavirus-directed innate immunity. To 

analyse the influence of RIG-I for hantavirus replication, growth kinetics with pathogenic and 

non-pathogenic hantavirus strains are carried out on wild-type, control and ∆RIG-I cells. Fur-

thermore, a respective hantaviral PAMP should be defined. For this purpose, single hantaviral 

components derived from strains of different pathogenicity are tested in a co-transfection sys-

tem with the PRR of interest and analysed by an IFN-β promoter-related luciferase readout. 
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2 Material 

2.1 Bacteria  

Escherichia coli, XL1-Blue Stratagene (LaJolla, Canada) 
Escherichia coli, One Shot Top10 Invitrogen (Karlsruhe, Germany) 

2.2 Cell lines 

A549 cells human epithelial lung cells ATCC nr.: CCL-185™ 
A549 ∆RIG-I knockdown human epithelial lung cells kindly provided by M. Matthäi, Berlin 
A549 control cells human epithelial lung cells kindly provided by M. Matthäi, Berlin 
293T cells human epithelial kidney cells ATCC nr.: CRL-11268™  
HEK293 cells human epithelial kidney cells  ATCC nr.: CRL-1573™ 
HeLa cells human cervix carcinoma cells ATCC nr.: CCL-2 
Huh7.5 human hepatoma cell line (Binder et al., 2007) 
Huh7.5 RIG-I wt_GUN human hepatoma cell line (Binder et al., 2007) 
Huh7.5 RIG-I ca_GUN human hepatoma cell line (Binder et al., 2007) 
Huh7.5 vector_GUN human hepatoma cell line (Binder et al., 2007) 
Huh7.5 Mda5_GUN human hepatoma cell line kindly provided by M. Binder, Heidelberg 
VeroE6 cells green monkey epithelial kidney cells  ATCC nr.: CRL-1586™ 

2.3 Plasmids 

pcDNA3   Invitrogen (Karlsruhe, Germany) 
pcDNA p125-luc (firefly)  (Yoneyama et al., 1996) 
pcDNA NAK (TBK) Flag (Tojima et al., 2000) 
pcDNA B/NS1 (Dauber et al., 2004) 
pEF-Bos h IKKi Flag (Shimada et al., 1999) 
pEF-Bos-RIG-I Flag (Yoneyama et al., 2004) 
pEF MDA5 myc  (Andrejeva et al., 2004) 
pISRE-Luc plasmid (Firefly) Stratagene (LaJolla, Canada) 
pRL-TK-Luc plasmid (Renilla)  Promega (Mannheim, Germany) 
pSHAG-magic2 Open Biosystems (Huntsville, USA) 
pSHAG-magic2 dRIG Open Biosystems (Huntsville, USA) 
pSCA Stratagene (LaJolla, Canada) 

2.3.1 Hantaviral expression plasmids 

The expression plasmids containing hantaviral N or G proteins were kindly provided by Dr. 

Rainer Ulrich (Berlin/island Riems). 
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2.3.1.1 G protein expression plasmids 

pcDNA DOB saarema G1  
pcDNA DOB slovenia G1  
pcDNA PUU Kazan G1  
pcDNA HTN-GPC  

2.3.1.2 N protein expression plasmids 

pcDNA DOB slovakia N 
pcDNA DOB slovenia N  
pcDNA Hantaan fojnica N  
pcDNA PUU Vranica N  
pcDNA Tula N 

2.4 Hantavirus strains 

A6 reassortant Sina Kirsanovs, Berlin 
A36 reassortant Sina Kirsanovs, Berlin 
DOBV Sk/Aa  (Klempa et al., 2005) 
DOBV Slo/Af  (Avsic-Zupanc et al., 1995) 
HTNV (strain 76-118)  Dr. Åke Lundkvist, Stockholm 
PHV (type-3571)   Dr. Robert Tesh, Galveston 
PUUV  Dr. Åke Lundkvist, Stockholm 
TULV (strain Moravia) Dr. Åke Lundkvist, Stockholm 

2.5 VSV 

VSV was kindly provided by Prof. Dr. Friedemann Weber (Freiburg). 

2.6 Reagents  

Aceton Roth (Karlsruhe, Germany) 
Agarose  VWR (Darmstadt, Germany) 
APS Roth (Karlsruhe, Germany) 
Avicel FMC Biopolymer (Philadelphia, USA) 
Bacto-Agar Gibco/ Invitrogen (Karlsruhe, Germany) 
BME 10x Biochrom AG (Berlin, Germany)  
BSA PAA (Pasching, Austria) 
Bromphenol blue  Serva (Heidelberg, Germany) 
CaCl2  Roth (Karlsruhe, Germany) 
Ciprofloxacin MP Biomedicals (Illkirch, France) 
Coomassie blue Serva (Heidelberg, Germany) 
D-MEM  Biochrom AG (Berlin, Germany) 
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DMSO Roth (Karlsruhe, Germany) 
dNTPs Bioline (Luckenwalde, Germany) 
EDTA AppliChem (Darmstadt, Germany) 
Eisessig Roth (Karlsruhe, Germany) 
Ethanol Roth (Karlsruhe, Germany) 
Ethidiumbromid  Roth (Karlsruhe, Germany) 
FCS  Biochrom AG (Berlin, Germany) 
Formaldehyd Merck (Darmstadt, Germany) 
Formamid Merck (Darmstadt, Germany) 
Glutamin Merck (Darmstadt, Germany) 
Glycerol Roth (Karlsruhe, Germany) 
Glycin  Roth (Karlsruhe, Germany) 
GM-CSF ImmunoTools (Friesoythe, Germany) 
G418-Sulfat Geneticin PAA (Pasching, Austria)  
HBSS Gibco/Invitrogen (Karlsruhe, Germany)  
Hefeextrakt Roth (Karlsruhe, Germany) 
HEPES  Biochrom AG (Berlin, Germany)  
HCl Roth (Karlsruhe, Germany) 
H2SO4  Merck (Darmstadt, Germany) 
Isopropanol  Roth (Karlsruhe, Germany) 
Kanamycin Boehringer-Ingelheim (Ingelheim, Germany) 
KCl Merck (Darmstadt, Germany) 
K2HPO4 Merck (Darmstadt, Germany) 
Lipofectamine 2000 Invitrogen (Karlsruhe, Germany) 
MgCl2 J.T. Baker (Griesheim, Germany) 
MEM Biochrom AG (Berlin, Germany) 
Mercaptoethanol Merck (Darmstadt, Germany) 
Methanol  Roth (Karlsruhe, Germany) 
Milk powder Sufocin (Zeven, Germany) 
MOPS Merck (Darmstadt, Germany) 
N6 primer Amersham Pharmacia Biotech (Piscataway, USA) 
Natriumacetat Merck (Darmstadt, Germany) 
NaCl Roth (Karlsruhe, Germany) 
Na2HPO4  Roth (Karlsruhe, Germany) 
NaN3 Roth (Karlsruhe, Germany) 
NaOH Merck (Darmstadt, Germany) 
Na-Pyruvat Biochrom AG (Berlin, Germany)  
Non-essential amino acids Biochrom AG (Berlin, Germany) 
Nuclease-free water Promega (Mannheim, Germany) 
OptiMEM Gibco/Invitrogen (Karlsruhe, Germany) 
PBS PAA (Pasching, Germany) 
Penicillin/Streptomycin (10000 U/ml) Biochrom AG (Berlin, Germany)  
PolyI:C Sigma-Aldrich (Deisendorf, Germany) 
Propidiumiodid (95-98%)  Sigma-Aldrich (Deisendorf, Germany) 
Protease-Inhibitor-Cocktail  Roche (Mannheim, Germany) 
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Protector RNase inhibitor Roche (Mannheim, Germany) 
Puromycin PAA (Pasching, Germany) 
Rainbow molecular weight marker RPN 800  Amersham Pharmacia Biotech (Piscataway, USA) 
Restore™ Western Blot Stripping Buffer Pierce (Rockford, USA) 
Rnase A Qiagen (Hilden, Germany) 
RNA safe Fermentas (St. Leon-Rot, Germany) 
Rotiphorese-Acrylamid Roth (Karlsruhe, Germany) 
RQ DNase Promega (Mannheim, Germany) 
SDS  Merck (Darmstadt, Germany) 
Sodium bicarbonate Biochrom AG (Berlin, Germany) 
TEMED ICN Biomedicals (Irvine, USA) 
Tetrazyclin Invitrogen (Karlsruhe, Germany) 
TNF-α Roth (Karlsruhe, Germany) 
Tris-Aminomethan Roth (Karlsruhe, Germany) 
Tris-HCl Roth (Karlsruhe, Germany) 
Triton X-100 Roche (Mannheim, Germany) 
Trypanblau Serva (Heidelberg, Germany) 
Trypsin/EDTA Invitrogen (Karlsruhe, Germany) 
Trypsin (TPCK-treated) Sigma-Aldrich (Deisendorf, Germany) 
Tween 20 Merck (Darmstadt, Germany) 
Ultra pure water PAA (Pasching, Germany) 

2.7 Equipment 

Autoclave  
Durchreicheautoklav Getinge (Rastatt, Germany) 
Centrifuges  
Biofuge fresco  Heraeus (Kleinostheim, Germany)  
Centrifuge 5415D  Eppendorf (Hamburg, Germany) 
Megafuge 1.0 Heraeus (Kleinostheim, Germany) 
Multifuge H  Heraeus (Kleinostheim, Germany) 
Optima LE-80K Ultrazentrifuge Beckman Coulter (Krefeld, Germany) 
Sorvall RC24 Superspeed DuPont Instruments (Delaware, USA) 
Sorvall RC-5B DuPont Instruments (Delaware, USA) 
SpeedVac Univapo 150 H UniEquip (Martinsried, Germany) 
Tischzentrifuge Biofuge pico Heraeus (Kleinostheim, Germany) 
Ultrazentrifuge Beckton Dickinson (San José, USA) 
Counting chamber 
Neubauer improved  Marienfeld (Lauda-Königshofen, Germany) 
Cryo container 
CryoContainer Cryo Nalgene Nunc (Wiesbaden, Germany) 
Detection systems 
CCD-Kamera  Bioblock Scientific (Illkirch, France) 
DIANA II-CCD Raytest (Strabenhardt, Germany) 
Electrophoresis and blot systems 
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Elektrophorese-Kammer Mini Trans-Blot Cell  Bio Rad (München, Germany) 
Mini-Protean III  Bio Rad (München, Germany) 
Semi-Dry Blot-Kammer  Owi (Porthmouth, Netherlands) 
FACS  
FACScalibur Becton Dickinson (Heidelberg, Germany) 
Incubators  
Cellstar Heraeus (Kleinostheim, Germany) 
CO2 water-jacketed incubator Nuaire (Plymouth, USA) 
CO2–Inkubator Heraeus (Kleinostheim, Germany) 
Hera Cell 150 Heraeus (Kleinostheim, Germany) 
Laminar flows 
Laminarbox Herasafe Heraeus (Kleinostheim, Germany) 
Sterilbank BSB4A  Gelaire (Sydney, Australia) 
Luminometer  
Berthold Mithras LB940 Berthold (Bad Wildbach, Germany) 
Luminometer LB96V Berthold (Bad Wildbach, Germany) 
Microscopes 
CLSM Leica Microsystems (Wetzlar, Germany) 
Fluoreszenzmikroskop BX60  Olympus (Hamburg, Germany)  
Lichtmikroskop Axiovert 40C  Zeiss (Oberkochen, Germany) 
Mikroskop Axiovert 25 CFL Zeiss (Oberkochen, Germany) 
Mixer  
Innova 4330 New Brunswick (Nürtingen, Germany) 
Polymax 1040 Heidolph (Schwabach, Germany) 
Test tube rotator 34528 Snijders Scientific (Tilburg, Netherlands) 
Vibrax VXR  IKA (Staufen, Germany) 
Vortexer MS1 Minishaker IKA (Staufen, Germany) 
Vortexer Reax 2000 Reax Heidolph (Schwabach, Germany) 
PCR cyclers 
LightCycler® 1.5 system Roche (Mannheim, Germany) 
Thermocycler GeneAmp 9700  Applied Biosystems (Foster, Canada) 
pH meter  
pH-Meter pH 320 WTW (Weilheim, Germany) 
Photometer  
Photometer Ultraspec 3300 pro  Amersham Pharmacia Biotech (Piscataway, USA) 
Spektrophotometer Ultraspec 4000  Amersham Pharmacia Biotech (Piscataway, USA) 
Power supplies 
Powersupply EPS 300  Amersham Pharmacia Biotech (Piscataway, USA) 
Model 200/2.0 Power Supply Bio Rad (München, Germany) 
Pump  
Typ ME2  Vacuubrand (Wertheim, Germany) 
Vakuumpumpe KNF Laboport (New Jersey, USA) 
Refrigerator combinations 
Kombi-Kühlschrank Glasline Liebherr (Ochsenhausen, Germany) 
Liebherr Comfort NoFrost Liebherr (Ochsenhausen, Germany) 
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Liebherr Premium Liebherr (Ochsenhausen, Germany) 
Scales  
Feinwaage  Sartorius (Göttingen, Germany) 
MC1 Laboratory LC 2200P Sartorius (Göttingen, Germany) 
Universalwaage  Sartorius (Göttingen, Germany) 
Thermostats  
Blockheater H250 Roth (Karlsruhe, Germany) 
BT100 Kleinfeld Labortechnik (Gehrden, Germany) 
UBD2 Grant Instruments (Cambridge, UK) 
Transilluminator 
BioDoc Analyze  Biometra (Göttingen, Germany) 
Water bath  
Lauda A100 Lauda (Königshofen, Germany) 
Wasserbad WTE var 3185 Assistent (Sondheim/Rhön, Germany) 

2.8 Buffers and solutions 

2.8.1 Bacterial media  

LB-Medium  
1.5% (w/v) Bacto-Agar 
 

After autoclaving and cool-down to 50 °C, 100 µg/µl of canamycine or ampicillin were added 

and casted into Petri dishes. 

2.8.2 DNA and RNA purification  

2.8.2.1 DEPC water 

0.1% DEPC was ressolved in water, mixed and incubated at RT over night. Sterilisation was 

carried out by autoclavation. 

2.8.2.2 6x DNA sample buffer 

0.1% (w/v) Bromphenol blue 
0.1% (w/v) Xylencyanol 
30% Glycerol 
10 mM  EDTA (pH 8.0) 
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2.8.2.3 1x TAE buffer  

40 mM  Tris acetate  
1 mM EDTA 
pH 8.5  

2.8.2.4 0.5x TBE buffer  

45 mM  Tris 
45 mM  Boric acid 
1 M EDTA 
pH 8.0  

2.8.2.5 10x FA buffer 

200 mM MOPS  
50 mM Natrium acetate 
10 mM EDTA 
pH 7  

2.8.2.6 1x FA buffer 

100 ml 10x FA buffer 
20 ml 37% Formaldehyde 
880 ml DEPC water 

2.8.2.7 5x RNA loading buffer 

32 µl saturated bromphenol solution 
80 µl EDTA (5 mM, pH 8) 
720 µl 37% Formaldehyde 
2 ml glycerole 
3.084 ml formamide 
4 ml 10x FA buffer 

2.8.3 FACS analysis  

2.8.3.1 Blocking solution 

10% FCS 
0.02%  sodium azide 
 PBS 
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2.8.3.2 Fixation solution 

0.37% formaldehyde 
 PBS 

2.8.3.3 Washing solution 

1% FCS 
0.002%  sodium azide 
 PBS 

2.8.4 Focus purification assay 

2.8.4.1 Avicel (2.4%) 

24 g  Avicel 
ad 1 l  aqua bidest 

2.8.4.2 2x BME 

100 ml  10x BME 
10 ml L-Glutamin 
40 ml  NaHCO3 
350 ml ultra pure water 

2.8.5 Hantavirus titration 

2.8.5.1 Agarose overlay 

01:01 1% agarose and BME (with 2% streptomycin and penicillin) 
10% FCS  
2.5% HEPES  

2.8.5.2 Antibody dilution buffer 

0.1% Tween 
5% FCS  
 PBS  
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2.8.5.3 Avicel Overlay 

01:01 1% agarose and BME (with 2% streptomycin and penicillin) 
5% FCS 
2.5% HEPES 
 streptomycin/penicillin 

2.8.5.4 Virus dilution buffer 

25 ml HBSS 
500 µl HEPES 
500 µl streptomycin/penicillin 
250 µl FCS 

2.8.5.5 Washing buffer 

0.15%  Tween 
 PBS 

2.8.6 Immunofluorescence 

2.8.6.1 Fixation solution 

30% methanol 
10% acetic acid 

2.8.6.2 Triton lysis buffer 

20 mM Tris-HCl (pH 7.4) 
137 mM  NaCl 
10% Glycerol 
1% Triton X-100 
2 mM  EDTA 
50 mM  Na-ß-Glycerophosphate 
20 mM  Na-Pyrophosphate 
1 mM  Na3VO4 
1 mM  Pefablock 

2.8.6.3 Mowiol 

2.4 g Mowiol  
6 ml  Glycerol 
7 ml  dH2O 
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• incubate over night 
12 ml Tris (0.2 M), pH 8.5 

• dissolve at 50-60 °C 
• centrifuge for 15 min, 4000 rpm and add 10% (w/v) DABCO   
• storage of aliquots at -20 °C 

2.8.7 SDS-PAGE and Western blot  

2.8.7.1 Ponceau Red 

0.1% Ponceau red  
1% Acetic acid 

2.8.7.2 2x SDS sample buffer 

1.2 ml H2O  
8.3 ml  0.5 M Tris-HCl (pH 6.8) 
6 ml  10% SDS (w/v) 
1.5 ml  Glycerin 
9 mg/ml  Bromphenol blue  
5% ß-Mercaptoethanol 

2.8.7.3 10x SDS electrophoresis buffer 

250 mM Tris  
1.92 M Glycine  
10 g/l SDS  

2.8.7.4 Semidry blotting buffer 

48 mM Tris 
39 mM Glycine 
1.3 mM SDS 
20% Methanol 

2.8.7.5 TBST 

100 mM  Tris-HCl (pH 8.0) 
1.5 M  NaCl 
0.5% Tween 20 
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2.8.7.6 Western blot lysis buffer 

10 mM  Tris-HCl (pH 7.4) 
1 mM  EDTA 
100 mM NaCl 
1 mM  PMSF 
1% Triton X-100 
 

2.9 Antibodies 

2.9.1 Antibodies for immunofluorescence and Western blot 

Table 2: Primary antibodies for immunofluorescence and Western blot 

Dilution 
Title Manufacturer Species 

IF  WB 
α-β-Actin Acris mouse  1:10000 
α-FLAG (M2) Sigma-Aldrich  mouse 1:600 1:3000 
α-HA Upstate rabbit  1:1000 
α-Hanta N (Razanskiene et al., 2004) rabbit  1:500 
α-Influenza B/NS1 BioGenes rabbit 1:300 1:5000 
α-MAVS Axxora rabbit 1:500 1:1000 
α-myc (9E10) Santa Cruz mouse 1:100 1:1000 
α-RIG-I Axxora rabbit 1:500 1:1000 
α-Tubulin Sigma mouse  1:1000 

 

Table 3: Secondary antibodies for immunofluorescence and Western blot 

Title Manufacturer Target species Species Dilution 
Alexafluor 488 Molecular Probes mouse goat 1:1000 (IF) 
Alexafluor 594  Molecular Probes rabbit goat 1:1000 (IF) 
HRP DAKO mouse rabbit 1:15 000 (WB) 
HRP DAKO rabbit pig 1:15 000 (WB) 
HRP Cell Signalling/NEB rabbit goat 1:10 000 (WB) 

2.9.2 Antibodies for FACS analysis 

Table 4: Antibodies for FACS analysis 

Modification Manufacturer Target species Species Dilution 
CD29 purified Immunotools human mouse 1:50 
CD61 purified Immunotools human mouse 1:50 
IgG1 purified Immunotools human mouse 1:50 
PE IgG/IgM Immunotools mouse goat 1:67 
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2.9.3 Antibodies for focus purification assay 

Table 5: Antibodies/sera for focus purification assay 

Virus strain antibody reference dilution incubation time [d] 
DOBV Slo rabbit (Razanskiene et al., 2004) 1:500 10 
DOBV Sk rabbit (Razanskiene et al., 2004) 1:500 8 
HTNV rabbit (Razanskiene et al., 2004) 1:1000 7 
PHV rabbit strain Malacky (Sibold et al., 1999) 1:1000 8 
PUUV rabbit strain Malacky (Sibold et al., 1999) 1:1000 8 
TULV rabbit strain Malacky (Sibold et al., 1999) 1:1000 10 
A6 rabbit (Razanskiene et al., 2004) 1:500 8 
A36 rabbit (Razanskiene et al., 2004) 1:500 8 
HRP α Rabbit IgG goat Dianova 1:1000  

2.10 Kits 

Albumin Standard Pierce (Rockford, USA) 
Antarctic Phosphatase NEB (Frankfurt, Germany)  
BCS Protein Assay Kit Pierce (Rockford, USA) 
BigDye Terminator 3.1 Kit Applied Biosystems (Foster, Canada) 
Dual-Luciferase Reporter Assay System Promega (Mannheim, Germany) 
EndoFree Plasmid Maxi Kit Qiagen (Hilden, Germany) 
Erase-a-Base® Promega (Mannheim, Germany) 
Expand High Fidelity PCR System Roche (Mannheim, Germany) 
GeneRuler™ DNA Ladder Mix Fermentas (St. Leon-Rot, Germany) 
LightCycler®Fast Start DNA MasterPLUS HybProbe Kit Roche (Mannheim, Germany) 
MagNA Pure LC mRNA isolation Kit I Roche (Mannheim, Germany) 
M-MLV-RT Invitrogen (Karlsruhe, Germany) 
OneStep RT-PCR Kit Qiagen (Hilden, Germany) 
QIAamp MinEluteTM Virus Spin Kit Qiagen (Hilden, Germany) 
QIAamp Viral RNA Mini Kit Qiagen (Hilden, Germany) 
QIAEXII Gel Extraction Kit Qiagen (Hilden, Germany) 
QIAfilter Plasmid Maxi Kit Qiagen (Hilden, Germany) 
Qiagen RNAeasy Mini Kit Qiagen (Hilden, Germany) 
QIAprep Miniprep Kit Qiagen (Hilden, Germany) 
QIAquik PCR Purification Kit Qiagen (Hilden, Germany) 
Qiagen RNeasy Kit Qiagen (Hilden, Germany) 
Superscript III Reverse Transcriptase Invitrogen (Karlsruhe, Germany) 
Super Signal West Dura Extended duration substrate Pierce (Rockford, USA) 
T7 Transcription Kit Fermentas (St. Leon-Rot, Germany) 
TRIZOL Invitrogen (Karlsruhe, Germany) 
Venor®

GeM-Mykoplasmen Detektions Kit Minerva Biolabs (Berlin, Germany) 
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2.11 Software 

Adobe Photoshop 7.0 software (Adobe Systems Incorporated, San Jose, CA, USA) 
CellQuest Pro® Becton Dickinson (Heidelberg, Germany) 
MacVector  Apple (Cupertino, USA) 
LightCycler Software 4.05 Roche (Mannheim, Germany) 
Expasy http://www.expasy.org/ 
Multalin http://bioinfo.genopole-toulouse.prd.fr/multalin/multalin.html 
NCBI National Center for Biotechnology Information (NCBI) 

http://www.ncbi.nlm.nih.gov/ 
TINA Raytest (Strabenhardt, Germany) 

2.12 Consumables 

6-, 12-, 24-well plates Becton Dickinson (Heidelberg, Germany) 
Bulbs Ratiolab (Dreieich-Buchschlag, Germany) 
Cell culture flasks T25 Greiner (Frickenhausen, Germany) 
Cell culture flasks T75, T125 Nunc (Wiesbaden, Germany) 
Cell culture dishes Greiner (Frickenhausen, Germany) 
Cell scraper TPP (Trasadingen, Switzerland) 
Eppendorf tubes Eppendorf (Hamburg, Germany) 
FACS tubes VWR (Darmstadt, Germany) 
Falcon tubes TPP (Trasadingen, Switzerland) 
Microscope slides Roth (Karlsruhe, Germany) 
Nitrocellulose membranes Whatman (Dassel, Germany) 
Parafilm Pechiney Plastic Packaging (Chicago, USA) 
Petri dishes TPP (Trasadingen, Switzerland) 
Pipet tips Roth (Karlsruhe, Germany) 
Serological pipets TPP (Trasadingen, Switzerland) 
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3 Methods 

3.1 Molecular biology 

3.1.1 Plasmid preparation 

Single colonies of plated bacteria were picked and grown overnight in appropriate selection 

media at 37 °C on a shaker. Plasmid DNA was processed with QIAprep Miniprep Kit 

QIAfilter, Plasmid Maxi Kit or with EndoFree Plasmid Maxi Kit for transfection according 

to the manufacturer’s instructions. The purified DNA was diluted in an appropriate volume of 

water.  

3.1.2 Transformation 

To insert DNA into bacteria, appropriate amounts of plasmid DNA (20-200 ng) were added to 

competent bacteria and incubated on ice for 30 min. Afterwards, a heat shock was carried out 

at 42 °C for 30 s and 500 µl pre-warmed SOC-medium was added. After 30 min of incubation 

at 37 °C on a shaker, the suspension was plated on petri dishes containing LB-Agar with the 

appropriate antibiotics for selection and incubated at 37 °C overnight. 

3.1.3 Preparation of competent E. coli XL1 blue 

200 ml of LB medium was inoculated with 10 ml of an overnight pre-culture and incubated at 

37 °C on a shaker. When an OD600 of 0.5 was reached, the suspension was centrifuged (10 

min, 4000 rpm) at 37 °C. After resuspending the pellet in 20 ml ice-cold MgCl2 solution (100 

mM) and chilling on ice for 1 h, the centrifugation was repeated. The pellet was resuspended 

in 8 ml ice-cold CaCl2 solution (100 mM) and again chilled on ice for 1 h. After addition of 

glycerol, the competent bacteria were aliquoted and shock frozen in liquid nitrogen. The ali-

quots were stored at -80 °C. 

3.1.4 Agarose gel electrophoresis 

At least 500 ng DNA of the samples were mixed with 6x sample buffer and loaded on agarose 

gels (1%). The DNA was separated with 90-110 V and 300 mA for 30-60 min. Following 
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staining in ethidium bromide solution for 15 min, the DNA bands were visualised on a transil-

luminator. 

3.1.5 Determination of DNA and RNA concentration 

Dissolved DNA and RNA show an absorption maximum at 260 nm that is used for photomet-

ric analyses to determine the sample concentration. For this purpose, the sample was diluted 

and measured. 

A = absorption value  

1 OD = 50 µg/ml 

DNA concentration [µg/µl] = A260 x 50 µg/ml x dilution factor / 1000 

1 OD = 40 µg/ml 

RNA concentration [µg/µl] = A260 x 40 µg/ml x dilution factor / 1000 

3.1.6 Sequencing of hantavirus expression plasmids 

The nucleotide sequence for the entire ORF of each N expression plasmid was confirmed with 

the BigDye DNA sequencing kit. The principle of this kit is based on the classical chain-

termination method by Sanger. The integrities of the constructs were confirmed by DNA cycle 

sequencing by using an ABI Prism 3100 genetic analyzer (Applied Biosystems) and evaluated 

with Sequencing Analyses 3.7 Software.  

PCR program: 

95 °C  1 min 
96 °C 10 s 
55 °C 5 s 
60 °C 4 min 
4 °C  
25 cycles  
 

PCR master mix for one reaction: 

200 ng plasmid 
0.5 µl  T7 primer (20 pM) or Sp6 
1 µl  BigDye 
1.5 µl 5x buffer 
ad 10  Ultra pure water 
 

The histogram data were evaluated with MacVector. 
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3.1.7 Generation of deletion mutants 

To analyse the sections of HTNV N ORF important for activating RIG-I signalling, truncated 

N protein expression plasmids were generated with the Erase-a-Base®-Kit according to the 

manufacturer’s instructions with support of Pritesh Lalwani. Briefly, plasmids were linearised 

by digestion with two different restriction enzymes (XbaI and ApaI) that leave a 4-base 3’ 

overhang resistent to exonuclease activity and a 5’ overhang or blunt end sensitive to exonu-

clease activity. The reaction was stopped according to the designated truncation since there 

are temperature-dependent digestion rates. Samples during exonuclease activity were taken at 

0, 1, 2, 3 and 4 minutes after starting the reaction. After ligation, the plasmids were expanded 

and tested. 

3.1.8 In vitro-transcription and removal of 5’-triphosphates 

In vitro-transcription was carried out with G and N protein expression plasmids after digestion 

with ApaI according to the manufacturer’s instructions (Fermentas). After treatment with 

DNase, the RNA was purified by Phenol/Chloroform extraction or with Qiagen RNAeasy 

Mini Kit, washed with ice-cold 75% ethanol and used immediately for experiments. To test 

the influence of 5’-triphosphates, the transcribed RNAs were digested with phosphatase for 15 

min at 37 °C. Therafter, the samples were purified by Phenol/Chloroform extraction as de-

scribed above. 

3.1.9 RNA gel electrophoresis 

First, the electrophoresis equipment was washed with 0.5% SDS and DEPC water and desin-

fected with ethanol. The gel containing 1.2 g agarose, 10 ml 10x FA buffer and 100 ml DEPC 

water was melted, cooled down to 60 °C in a water bath and mixed with 1.8 ml of 37% for-

maldehyde solution before casting. The gel was equilibrated for 30 min at 65 V. After addition 

of loading buffer to the samples, the samples were incubated for 10 min at 65 °C, chilled on 

ice and run for 1 h at 65 V. Following staining in ethidium bromide solution for 30 min, the 

RNA bands were visualised on a transilluminator. 
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3.2 Cell biological methods 

3.2.1 Cell culture 

VeroE6 cells, African green monkey kidney cells, were maintained in EMEM supplemented 

with 10% FCS, 100 IU penicillin, 100 µg/ml streptomycin and 4.5 mM L-glutamine. A549 

cells, Hela cells, 293T cells, HEK293 cells and Huh7.5 cell lines were grown in DMEM sup-

plemented with 10% FCS, 100 IU penicillin, 100 µg/ml streptomycin and 4.5 mM L-

glutamine. For A549 ∆RIG–I and control cells, 2 µg/ml puromycin was added. For transfected 

Huh7.5 cell lines except for the parental cells, 1 mg/ml G418 was added. Medium and FCS 

were endotoxin-free as certified by the manufacturer.  

To passage confluent monolayers, cells were washed with PBS and treated with Tryp-

sin/EDTA at 37 °C until they detached from the bottom of the flask. Then the cells were re-

suspended in appropriate medium and transferred into a new cell culture flask, plate or dish.  

3.2.2 Freezing cells 

To maintain cell stocks, confluent cells (T75 flask) were trypsinised and washed in PBS. After 

centrifugation (3 min, 800 rpm), they were resuspended in 1 ml FCS with 10% DMSO and 

maintained in a cell culture freezing box at –80 °C over night before transferring them into 

liquid nitrogen. 

3.2.3 Transfection of cells 

Confluent cells were splitted one day before transfection at a ratio of 1:2. DNA and Lipofec-

tamine2000 (2 µl/1 µg DNA) were added to 100 µl Optimem, respectively, mixed and incu-

bated for 5 min at RT. Then the two mixes were combined and incubated for 15 min at RT. 

Meanwhile, the cells were trypsinised and washed with PBS. After centrifugation for 3 min at 

800 rpm, the pellet was resuspended in 10 ml of transfection medium (appropriate medium 

without antibiotics) and seeded into culture dishes or plates. The transfection mix was added 

dropwise. After 6 hours of incubation at 37 °C, the transfection medium was replaced by full 

DMEM. 
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3.3 Virus treatment 

3.3.1 Infection of cells 

Appropriate cells were infected with viral stocks for 1 h at 37 °C as indicated. The virus was 

removed, monolayers were washed with PBS, and cells were maintained in complete media. 

3.3.2 Hantavirus expansion 

Stocks of all hantavirus strains were propagated on VeroE6 cells grown in 25 cm² cell culture 

flasks. Vero cells are not able to produce Type I IFN due to chromosomal deletions (Diaz, 

1988). The cells were inoculated with virus of MOI 0.1 in a total volume of 5 ml medium and 

incubated at 37 °C/5% CO2. After 7 to 10 days (depending on the respective virus strain), the 

cell culture supernatant was transferred to 75 cm² cell culture flasks containing confluent 

VeroE6 cells in a total volume of 20 ml medium. After 7 to 9 days, the cell culture supernatant 

was harvested, centrifuged to remove cell debris, aliquoted and stored at -80 °C. Concentrated 

viral stocks were prepared by pelleting virus from the supernatant of infected cells (4 h, 130 g, 

4 °C). Virus pellets were resuspended in MEM supplemented with 5% FCS and stored at -80 

°C. Virus stocks were free of mycoplasma contamination as tested by PCR. 

3.3.3 Titration of hantaviruses 

Virus titration was carried out as previously described (Heider et al., 2001). In short, VeroE6 

cells were seeded into 6-well plates. When nearly confluent, cell medium was discarded and 

replaced by inoculums of 0.2 ml/well viral stock in ten-fold dilutions. After an incubation 

time of 1 h at 37 °C in a humidified 5% CO2 atmosphere, cells were overlaid with 1.2% 

Avicel 1:1 mixture with BME. The plates were incubated for 7 to 10 days (depending on the 

virus strain) under conditions as indicated above. Thereafter, the overlay was discarded, cells 

were washed twice with PBS supplemented with 0.15% Tween and finally fixed for 10 min 

with 2 ml/well methanol. After the methanol had been removed, the cells were allowed to dry 

and washed again twice. 1 ml of suitable anti-hantaviral serum was added to each well, di-

luted in PBS containing 10% FCS, and incubated for 1 h at 37 °C. After washing five times, 1 

ml of goat anti rabbit IgG conjugated with horseradish peroxidase diluted 1:1000 in PBS with 

10% FCS was added per well, incubated for 1 h at 37 °C, and washed five times. After adding 

0.5 ml/well of chemiluminescence substrate diluted 1:1 in water, the plates were evaluated 
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using a DIANA Chemiluminescence System (Figure 8). Thus, focus forming units (FFUs) 

could be enumerated for titer determination. 

10-1 10-2 10-3

10-4 10-5 NC  
Figure 8. Chemiluminescent detection of hantaviral FFUs: Titration of HTNV in a 6-well plate in ten-fold 

dilutions 

3.3.4 Focus purification assay 

To obtain genetically homogeneous virus stocks of high purity, a focus purification was car-

ried out (Rang et al., 2006), an indirect method similar to plaque picking normally used for 

expansion of CPE-causing viruses. When nearly confluent, VeroE6 cells seeded into 6-well 

plates were infected with inoculums of 0.2 ml/well viral stock in ten-fold dilutions containing 

HBSS supplemented with 2% HEPES, 2% FCS, 100 IU/ml penicillin and 100 µg/ml strepto-

mycin. After virus adsorption for one hour at 37 °C in a humidified 5% CO2 atmosphere, cells 

were overlaid with 2.5 ml/well of a pre-warmed (42 °C) agarose overlay. The plates were in-

cubated for 7 to 10 days (depending on the virus strain) under conditions as indicated above. 

The overlay was then removed carefully and kept at 4 °C while washing the cells with PBS 

and fixing them with methanol for 10 min. After the methanol had been removed, the cells 

were allowed to dry and washed again twice. 1 ml of suitable anti-hantaviral serum was added 

to each well, diluted in PBS containing 10% FCS, and incubated for 1 h at 37 °C.  

Following five washing cycles, 1 ml of goat anti rabbit IgG conjugated with horseradish per-

oxidase diluted 1:1000 in PBS with 10% FCS was added per well, incubated for 1 h at 37 °C, 

and washed five times. After adding 0.5 ml/well of chemiluminescence substrate diluted 1:1 

in water, the foci could be visualised with the DIANA Chemiluminescence System. A mir-

rored printout of the detected foci with the same size as the original overlay was used to trace 
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the foci on the agarose overlay and to pick them at the respective position (Figure 9). The 

picked material was resuspended in 200 µl medium. Thereafter, the purified focus was used 

for repeated focus purification and virus expansion. 

 
Figure 9. Focus purification procedure (Rang et al., 2006) 

3.3.5 Kinetics 

3.3.5.1 A549 cells 

To examine the physiological importance of RIG-I for hantaviruses, growth kinetics with dif-

ferent hantaviral strains were carried out. A549 wild-type, ∆RIG-I and control cells were gen-

erated and kindly provided by Markus Matthäi (Robert Koch-Institute, Berlin). ∆RIG-I and 

control cells contain the plasmid pSM2c with RIG-I specific and non-target shRNA expres-

sion cassettes (Expression ArrestTM human retroviral shRNAmir individual contructs), oligo ID 

V2HS 199776 and RHS1707, respectively (Open Biosystems).  

All three cell lines were seeded into 6-well plates and infected with HTNV, PHV, TULV, 

DOBV Slo, DOBV Sk (MOI 1) and the reassorted DOBV strains (MOI 0.5). Uninfected cells 

treated with the same medium used for production of virus stocks were maintained as mock 
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control. At certain points in time, 200 µl of the supernatant of each well were taken for later 

titration analyses of virus load. 

3.3.5.2 Huh7.5 cells 

To test the relevance of RIG-I and MDA5 for hantaviral expansion, growth kinetics with 

HTNV, DOBV Slo and DOBV Sk were carried out on different Huh.7.5 cell lines. GUN 

stands for GFP-Ubi-NeoR, the selection cassette of the lentiviral vector. Huh7.5 RIG-

wt_GUN contains the wild-type RIG-I sequence whereas Huh7.5 ca-GUN comprises a consti-

tutive active construct of RIG-I. Huh7.5 vector_GUN is the vector control, and the vector of 

Huh7.5 Mda5_GUN contains the MDA5 ORF. All cell lines were kindly provided by Dr. 

Marco Binder (Institute of Virology, Heidelberg). 

All cell lines were seeded into 6-well plates and infected with HTNV, DOBV Slo and DOBV 

Sk (MOI 1). Uninfected cells were maintained as mock control. At 0 hours post infection (h 

p.i.) and 2, 3, 5 and 7 d p.i., 200 µl of the supernatant of each well were taken for subsequent 

titration analyses of virus load. 

3.3.6 Isolation of total viral RNA 

Total viral RNA from supernatant of infected VeroE6 cells (HTNV, PHV, TULV (MOI 1) or 

mock-infected), was isolated with Trizol RNA isolation method 8 d p.i. according to the 

manufacturer’s instructions (Invitrogen).  

3.3.7 Expansion of VSV 

VeroE6 cells were infected with viral stocks (MOI 0.1) for 1 h at 37 °C as indicated. The virus 

was removed, monolayers were washed with PBS, and cells were maintained in complete me-

dia until virus harvest by collecting the supernatant and freeze/thaw method for remaining 

cells 2 to 4 d p.i.. 

3.3.8 Titration of VSV 

VeroE6 were cultured in 96-well plates until confluence and inoculated with dilutions of 

herpesvirus suspensions from 10-1 to 10-6 in ten-fold increments (8 wells per dilution). The 

final volume was 100 µl/well. The cells were observed for a cytopathic effect (CPE) daily. 

Titers were determined by TCID50.  
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3.4 Protein chemistry 

3.4.1 Dual luciferase assay 

To assess the promotor activity induced by viruses or transfected viral components, dual 

luciferase assays were carried out. The reporter plasmids contain either a luciferase gene 

derived from firefly under control of an IFN-ß (pcDNA p125-luc plasmid) or ISRE promotor 

(pISRE-Luc plasmid) and a constitutive active luciferase gene derived from the jellyfish 

Renilla (pRL-TK-Luc plasmid). For dual luciferase assays, duplicate 12-wells were trans-

fected with 50 ng IFN-β luciferase reporter p125-luc plasmid and 5 ng of the renilla-derived 

pRL-TK-Luc plasmid. To assess the activities of viral components in their interplay with par-

ticular cellular signalling molecules, cells were co-transfected with the indicated amounts of 

expression plasmid (viral protein expression plasmids: 1 µg; cellular molecule expression 

plasmids: 100 ng; RNA: 500 ng). Cells were lysed at 24 h post transfection in 1x passive lysis 

buffer by incubation at 25 °C (15 min) with gentle agitation. Lysates received from transfected 

cells were centrifugated (10 min, 12,000 rpm) and then pipetted into white flat-bottom 96-

well plates (20 µl).  

Dual luciferase assays were performed at least three times in independent experiments and 

duplicates. Empty vector (pcDNA3) was used as negative control, non-structural protein of 

influenza B virus (B/NS1) was used as positive control for inhibition. The firefly luciferase 

activity was normalised with the renilla luciferase activity. Finally, the ratio between each 

respective RIG-I transfected and untransfected sample was calculated to obtain the fold acti-

vation. Efficient transfections were proven by detection of viral antigen, tags or direct detec-

tion of molecules by Western blot. 

3.4.2 Western blot 

The proteins were separated by denaturing SDS-PAGE according to their relative molecular 

mass during discontinuous gel electrophoresis. Then they were blotted on a membrane and 

visualised by indirect antibody detection. Cell extracts were prepared by lysing cells in lysis 

buffer containing protease inhibitor cocktail or taken from luciferase samples resuspended in 

passive lysis buffer provided within the dual luciferase kit (Promega). The samples were cen-

trifuged for 10 min at 12,000 rpm and 4 °C to remove cell debris. Total protein concentrations 

were determined according to the Bradford procedure. Samples were then resuspended in 
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loading buffer containing β-mercaptoethanol and boiled at 95 °C for 5 min for protein denatu-

ration. Proteins in the mass range from 30 to 150 kDa were separated on 10% polyacrylamide 

gels and run at 25 mA/gel. Following electrophoretic separation, proteins were transferred 

onto methylcellulose membranes by semidry blotting method at 75 mA/gel. 

 

Table 6: Gel composition for discontinuous SDS-PAGE 

 resolving gel 10% stacking gel  
30% Acrylamid/Bis (29:1) 3.3 ml 0.83 ml  
1.5 M Tris-HCl, pH 8.8 2.5 ml X  
 X 1.25 ml 0.5 M Tris-HCl, pH 6.8 
10% SDS 100 µl 50 µl  
10% APS 100 µl 50 µl  
TEMED 6 µl 6 µl  
H2O 4 ml 2,8 ml  

 

After verifying the transfer efficiency by staining the membranes with Ponceau red, blots 

were blocked for 1 h at RT in TBST containing 5% milk powder. Blots were incubated for 1 h 

till overnight at 4 °C with specific primary antibodies. Thereafter, they were washed three 

times with TBST, followed by incubation with appropriate secondary antibodies for 1 h at 

room temperature. After five final washing steps, detection was performed by enhanced 

chemiluminescence. 

3.5 Immunological methods 

3.5.1 FACS (fluorescence-activated cell sorting) 

To analyse the receptors on the surface of cells which are important for hantavirus attachment 

and entry, confluent cells were harvested by trypsinisation, centrifuged (4 min, 2,500 rpm) 

and washed with ice-cold washing solution (PBS, 1% FCS, 0.002% sodium azide). Then they 

were incubated with the first antibody for 1 h at 4 °C (1 µl in 50 µl blocking solution (PBS, 

10% FCS, 0.02% sodium azide)). The washing step was repeated twice before staining the 

cells with PE-coupled secondary antibody for 1 h at 4 °C. After two additional washing steps, 

the cells were resuspended in fixation solution (PBS with 0.37% formaldehyde). The meas-

urement was carried out with FACScalibur; for evaluation of obtained results, CellQuest Pro® 

was used. 
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3.5.2 Immunofluorescence 

To observe the localisation of cellular and viral proteins, an immunofluorescence analysis was 

carried out. For this purpose, 1x106 Hela cells were transfected with 2.5 µg RIG-I expression 

plasmid and, if necessary, other expression plasmids (hantaviral N proteins) in 35 mm dishes 

(4 cover slips). 24 hours post transfection, the cells were washed twice with PBS, fixed with 

2.5% formaldehyde and permeabilised with 0.2% Triton in PBS for 10 min, respectively, then 

washed with PBS again three times. Cover slips were incubated with 20 µl of primary anti-

body solution for 1 h at RT. After rinsing the cover slips three times with PBS, secondary an-

tibodies were added and after 1 h rinsed again three times. Then the cover slips were mounted 

on slides using one drop Mowiol and stored at 4 °C until immunofluorescence analysis. 
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4 Results 

4.1 Effects of RIG-I on hantavirus replication  

4.1.1.1 A549 cell lines 

4.1.1.2 Tests of A549 wild-type, RIG-I knockdown and control cells on integrin 

expression and functionality  

To elucidate the physiological role of RIG-I for hantaviruses, virus growth in A549 wild-type, 

A549 RIG-I knockdown (∆RIG-I) and A549 control cells which express a non-target shRNA, 

was investigated. Unfortunately, the A549 control cells could not be involved until the third 

experiment. Therefore, A549 wild-type cells served as control in the first two experiments. 

For all three experiments, different clones of ∆RIG-I cells were used. All cell lines were 

kindly provided by Markus Matthäi (Robert Koch-Institute, Berlin). To assess the amounts of 

RIG-I in the cell lines, Western blot with RIG-I specific antibody was carried out (Figure 10).  

RIG-I

β-Actin

∆RIG-I

A549

control wt

 
Figure 10. RIG-I expression in A549 wild-type, control and ∆RIG-I cells: Western blot of A549 wild-type, 

control and ∆RIG-I cells. Lysates were prepared from T25 flasks with confluent cells in early passages treated 

with type I IFN (500 U/ml). 

As expected, RIG-I was not detectable in the ∆RIG-I cells, whereas a strong expression could 

be shown in the wild-type as well in the control cells. In addition, it has to be mentioned that 

the growth of the ∆RIG-I and the control cells was impaired in comparison to the wild-type 

cells. 

Furthermore, the levels of β3 (CD61) and β1 (CD29) integrins on the surface of the tested 

cells were analysed by FACS to exclude differences in hantaviral growth due to different 

amounts of integrins since these molecules are important for the entry of pathogenic and non-

pathogenic hantaviruses, like for example HTNV and PHV, respectively (Figure 11). 
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(Gavrilovskaya et al., 1999; Gavrilovskaya et al., 1998). Interestingly, the expression of CD61 

was not detectable on the surface of any cell line. CD29, however, was strongly expressed on 

all cell lines. Nevertheless, there are several hints that other receptors are also involved in 

hantavirus attachment and entry (Krautkramer and Zeier, 2008; Kim et al., 2002; Choi et al., 

2008). 

wild-type∆RIG-Icontrol

CD61

A549

435.26 645.89 517.80

CD29CD29

HEL

PC

340.21

64.49

 
Figure 11. Density of CD29 and CD61 on the surface of A549 wild-type, control and ∆RIG-I cells: Surface 

expression of CD29 (blue) and CD61 (red) on all three cell lines involved into the growth kinetics was measured 

by FACS. The mean fluorescence intensities (MFI) is given above shifted peaks. Filled graphs represent isotype 

controls of respective antibodies. The graph shows the number of cell counts on the Y-axis and the level of emit-

ted fluorescence by labeled cells on the X-Axis. PC means positive control that is represented by unstimulated 

HEL cells (kindly provided by Nina Lütteke), a human megakaryocyte-like cell line, which expresses both CD29 

and CD61 on their surface. These data are representative for the two independent experiments that has been 

carried out.   

As an additional control, VSV growth curves were analysed (Figure 12). As expected, the 

TCID50 values obtained after infection of the ∆RIG-I cells at 1, 3 and 5 d p.i. were up to 1 to 2 

log steps higher than those from the other cell lines. 



  Results 

  43 

1,00E+00

1,00E+01

1,00E+02

1,00E+03

1,00E+04

1,00E+05

1,00E+06

1,00E+07

1,00E+08

1,00E+09

10 h p.i. 1 d p.i. 3 d p.i. 5 d p.i.

T
C

ID
5
0
/m

l

∆RIG-I

wild-type

control

 
Figure 12. VSV growth curves on A549 cell lines: A549 wild-type, ∆RIG-I and control cells were infected 

with VSV (MOI 1). Supernatant was collected at different points in time after infection and titrated to assess the 

amount of virus. The experiments were carried out twice with two different ∆RIG-I cell clones. 

For the growth kinetics with hantaviruses, supernatants of infected wild-type and ∆RIG-I cells 

were harvested at 1, 2, 3, 4, 5, 6, and 7 d p.i. for the first two experiments. For the third ex-

periment, supernatant from all three cell lines (wild-type, ∆RIG-I knockdown and control 

cells) was collected and analysed after 2, 3, 5 and 7 d p.i.. To assess the production and secre-

tion of progeny of different hantavirus strains in presence and absence of RIG-I, the super-

natants taken at different time points as described above were titrated in duplicates.  

4.1.1.3 HTNV 

In the first experiment HTNV growth curves showed an increasing drift between virus expan-

sion in wild-type and ∆RIG-I cells up to 3 log steps on day 7. In the second experiment, no 

production of virus, neither in the wild-type nor in the ∆RIG-I cells could be detected. The 

titer reduction for all viruses in the second and third experiment could be explained by re-

peated thawing and freezing of the virus supernatants since the titrations had to be carried out 

several times due to problems with cells prepared for the titrations. 

In the third experiment, the HTNV titer peaked at day 3 after infection and then decreased for 

unknown reasons. In general, HTNV did not replicate well in the wild-type cells, although it 

has been shown before that A549 cells can be productively infected with HTNV. Additionally, 

HTNV as one of the more pathogenic strain is more potent to expand in A549 cells than non-

pathogenic strains (Figure 14). As expected, the growth behaviour in the control cells was 

similar to the wild-type A549 cells (Figure 13). 
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Figure 13. HTNV growth curves on A549 cell lines: A549 wild-type, ∆RIG-I and (for the third experiment) 

control cells were infected with HTNV (MOI 1). Supernatant was collected at different points in time after infec-

tion to determine the virus titers. The experiments were carried out with three different ∆RIG-I cell clones.  

4.1.1.4 PHV 

In the supernatant of ∆RIG-I cells infected with non-pathogenic PHV, only few foci could be 

detected, up to 3 log steps at day 6 after infection in comparison to the wild-type cells (Figure 

14). PHV did not produce virions in the wild-type cells. This is not surprising, since non-

pathogenic hantavirus strains replicate less efficiently than pathogenic ones as a result of, for 

example, inadequate immune evasion mechanisms. The third experiment could not be evalu-

ated because of technical problems that will be discussed later. 
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Figure 14. PHV growth curves on A549 cell lines: A549 wild-type and ∆RIG-I cells were infected with PHV 

(MOI 1). Supernatant was collected at different points in time after infection and titrated. The experiments were 

carried out with three different ∆RIG-I cell clones. The third experiment could not be evaluated due to technical 

problems (data not shown). 

4.1.1.5 TULV 

The kinetics with TULV, which is regarded as non-pathogenic, could only be carried out once 

due to insufficient virus titers of the expanded stocks. Virus levels reached their maximum of 

5x104 FFU/ml at day 7 after infection in the absence of RIG-I whereas in the control as well 

as in the wild-type cells, almost no replication was detected (Figure 15). TULV is known to 

replicate slowly in cell culture compared to other hantavirus strains. Therefore, the late in-

crease in progeny virions is not surprising.  
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Figure 15. TULV growth curve on A549 cell lines: A549 wild-type, ∆RIG-I and control cells were infected 

with TULV (MOI 1). Supernatant was collected at different points in time after infection and titrated.  

4.1.1.6 DOBV Slo 

DOBV Slo, the most pathogenic strain among the Dobrava strains, was the only virus tested 

that showed high replication efficiency in both ∆RIG-I as well as in the wild-type cell line. 

The virus load in the supernatant of ∆RIG-I cells was higher than of the wild-type cells, 

reaching its maximum at day 5 after infection (2.25x105 FFU/ml) for the first experiment 

(Figure 16). Productive infection of the ∆RIG-I cell line, however, could only be proven for 

the first experiment. In the second experiment, few virus progeny was detectable in any su-

pernatant of the infected cells, comparable to the respective experiment with HTNV. Probably, 

similar technical problems can be assumed for these results. In the third experiment, the FFU 

of DOBV Slo peaked at day 3 after infection with 7x104 FFU/ml in the wild-type cells but 

declining rapidly towards the initial values. 
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Figure 16. DOBV Slo growth curves on A549 cell lines: A549 wild-type and ∆RIG-I cells were infected with 

DOBV Slo (MOI 1). Supernatant was collected at different points in time after infection and virus titers were 

determined. The experiments were carried out with three different ∆RIG-I cell clones.  

4.1.1.7 DOBV Sk 

For DOBV Sk, ∆RIG-I cells showed production of virus progeny in all three experiments, 

whereas in the first two experiments, the titers tended towards zero for supernatant from in-

fected wild-type cells (Figure 17). In the third experiment, slight virus replication could also 

be detected in the wild-type cells. Differences were observed in the time-dependent pattern of 

detected virions. In the first experiment, the titer peaked at day 5 after infection with 2x105 

FFU/ml and reached the maximum at day 7 after infection with 4.5x105 FFU/ml, whereas the 

virus levels in both following experiments reached their highest values at day 3 after infection 
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and then declined. However, control cells in the third experiment produced even higher virus 

counts than the ∆RIG-I cells at day 3 after infection. This value could probably be interpreted 

as outlier. 
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Figure 17. DOBV Sk growth curves on A549 cell lines: A549 wild-type and ∆RIG-I cells were infected with 

DOBV Sk (MOI 1). Supernatant was collected at different points in time after infection and titrated. The experi-

ments were carried out with three different ∆RIG-I cell clones. 

4.1.1.8 DOBV reassortants 

To assess the relevance of different segment settings for viral interactions with RIG-I signal-

ling, reassorted virus strains generated by Sina Kirsanovs were involved in the growth studies. 

Briefly, the DOBV mutants A6 and A36 were generated by artificial reassortment processes 

between DOBV Slo and DOBV Sk. A6 contains the S and L segment from DOBV Sk whereas 



  Results 

  49 

the M segment is derived from DOBV Slo. The segment layout of the reassortant A36 is the 

reverse of A6 (Figure 18). 

 

DOBV Sk DOBV Slo

A36 A6

 
Figure 18. Reassortment scenarios of A6 and A36 with parental strains DOBV Slo and DOBV Sk 

The kinetics could only be carried out twice with the reassorted strains due to low titers of 

virus stocks. Both strains do not replicate as well as their parental strains in VeroE6 which are 

used for virus expansion. Therefore, they could only be involved in the first and the third ex-

periment (Figure 19). 
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Figure 19. A6 growth curves on A549 cell lines: A549 wild-type, ∆RIG-I and control cells were infected with 

the reassortant A6 (MOI 0.5). Supernatant was collected at different points in time after infection and titrated. 

The experiments were carried out with two different ∆RIG-I cell clones. 
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Interestingly, A6 showed a different growth ratio in ∆RIG-I and wild-type cells similar to the 

respective experiment with DOBV Sk (approximately one log difference) as both virus strains 

did not replicate well in the wild-type cell line (Figure 17, Figure 19). In comparison to 

DOBV Sk, A6 replication started earlier and resulted in higher numbers of virus progeny with 

a maximum of 9x106 FFU/ml at day 4 after infection compared to the maximum of DOBV Sk 

with 4.5x105 FFU/ml at day 7 after infection. In the third experiment, A6 also replicated in the 

∆RIG-I cells, but scarcely in wild-type and control cells.  
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Figure 20. A36 growth curves on A549 cell lines: A549 wild-type, ∆RIG-I and control cells were infected with 

the reassortant A36 (MOI 0.5). Supernatant was collected at different points in time after infection and titrated. 

The experiments were carried out with two different ∆RIG-I cell clones. 

A36 was able to replicate in wild-type as well as in ∆RIG-I cells, similar to DOBV Slo 

(Figure 16, Figure 20), with more efficient replication in the ∆RIG-I cells. In the other ex-

periment (experiment 3), almost no replication could be detected. In general, all experiments 

revealed differences in the growth pattern of pathogenic as well as non-pathogenic hantavirus 

strains in wild-type and control cells as compared to ∆RIG-I cells. 



  Results 

  51 

4.1.2 Huh7.5 cell lines 

To investigate the physiological importance of RIG-I for hantavirus replication in an addi-

tional cell line, virus growth in different Huh7.5 cell lines was assessed. Huh7.5 cells are not 

able to express functional RIG-I due to a point mutation in the RIG-I gene (Bartenschlager 

and Pietschmann, 2005; Blight et al., 2002).  

Huh7.5 wild-type cells, Huh7.5 cells stably transfected with a lentiviral vector expressing 

functional RIG-I, constitutive active RIG-I or MDA5 were infected with HTNV, DOBV Slo 

and DOBV Sk. Huh7.5 cells transfected with the empty vector were treated in the same way. 

Supernatants were harvested at distinct points in time. All cell lines were kindly provided by 

Marco Binder (Institute of Virology, Heidelberg). Since the experiment has been carried out 

only once, the results have to be regarded as preliminary data. 

4.1.2.1 HTNV 

 

HTNV growth reached its maximum in Huh7.5 wild-type cells at day 5 p.i. with a titer of 

7.26x106 FFU/ml whereas in Huh7.5 vector control, the virus titer peaked at day 3 p.i. with 

4.2x106 FFU/ml (Figure 21), both immediately declining. All RIG-I- and as well as MDA5-

expressing cells exhibited a strongly reduced virus growth. 
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Figure 21. HTNV growth curves on Huh7.5 cell lines: Huh7.5 cells containing lentiviral vectors expressing 

RIG-I, constitutive active RIG-I (RIGca) or MDA5 and Huh7.5 wild-type (wt) cells were infected with HTNV 

(MOI 1). Supernatant was collected at different points in time after infection and titrated.  
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4.1.2.2 DOBV Slo 

For DOBV Slo, increasing titers over time could be shown in all cell lines except for RIG-I-

expressing Huh7.5 (Figure 22). In general, DOBV Slo proliferated best in Huh7.5 wild-type 

cells. The amount of FFU found in the supernatants of the other cell lines remained similarly 

low although the titers of virus from the Huh7.5 vector control were comparatively higher. 

Surprisingly, the FFU value for the supernatant of MDA5-expressing cells at day 7 p.i. 

exceeded all other values at the same day. 
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Figure 22. DOBV Slo growth curves on Huh7.5 cell lines: Huh7.5 cells containing lentiviral vectors express-

ing RIG-I, constitutive active RIG-I (RIGca) or MDA5 and Huh7.5 wild-type (wt) cells were infected with 

DOBV Slo (MOI 1). Supernatant was collected at different points in time after infection and titrated. 

4.1.2.3 DOBV Sk 

As already shown for DOBV Slo, the DOBV Sk titers from supernatants of all cell lines 

increased over time (Figure 23) except for the constitutive active RIG-I-expressing cell line. 

At day 7 p.i., the supernatant from cells expressing RIG-I showed the highest virus load, even 

higher than the supernatant taken from cell lines lacking RIG-I. The vector control titers 

remained at the level of the respective titers derived from RIG-I-expressing cell lines.  
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Figure 23. DOBV Sk growth curves on Huh7.5 cell lines: Huh7.5 cells containing lentiviral vectors expressing 

RIG-I, constitutive active RIG-I (RIGca) or MDA5 and Huh7.5 wild-type (wt) cells were infected with DOBV 

Sk (MOI 1). Supernatant was collected at different points in time after infection and titrated. 

 

4.2 Impact of single hantaviral components on PRR signalling 

4.2.1 Interaction of viral genomic RNA with cytoplasmic PRRs  

Nucleic acids belong to the main structures recognised by PRRs leading to a type I IFN re-

sponse which is known to be of relevance for innate immunity after hantaviral infection. Han-

taviruses provide RNA in the form of their genome and during their life cycle as m-, v- and 

cRNA. To determine whether they act as PAMP for either RIG-I or MDA5, viral genomic 

RNAs prepared from the supernatant of VeroE6 cells infected with different hantavirus strains 

were investigated. They were co-transfected into 293T cells with luciferase reporters (consti-

tutive active luciferase reporter and IFN-β promotor-controlled luciferase reporter) and PRRs 

in definite amounts. As negative controls, pcDNA3 without N ORF (NC) and supernatant 

prepared from uninfected cells (NC (cell)) were used (Figure 24).  
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Figure 24. Influence of hantaviral genomic RNAs on IFN-β promotor activation through RIG-I: Total RNA 

from the supernatant of infected or uninfected (NC (cell)) VeroE6 cells (MOI 1) was isolated with Trizol RNA 

isolation method 8 d p.i. and transfected into 293T cells together with IFN-β-activated luciferase reporter plas-

mid (firefly), luciferase reporter plasmid (renilla) and RIG-I expression plasmid. As transfection control, an 

additional sample was transfected with empty expression plasmid (NC). 24 hours after transfection, dual 

luciferase assay was carried out. Standard deviations are based on the mean values of three independent experi-

ments with transfections performed in duplicates. Appropriate expression of transfected RIG-I and consistent 

protein load were verified by Western blot. 
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Figure 25. Effect of hantaviral genomic RNAs on IFN-β promotor activation through MDA5: Preparation 

of RNA, transfection, dual luciferase assay and Western blot were carried out as described in Figure 24. Instead 

of RIG-I-expressing plasmid, MDA5 expression plasmid was co-transfected into the cells.  

Only genomic RNAs of HTNV (6.6-fold) and TULV (4.6-fold) virions had a slight, but not 

significant effect on IFN-β promotor activation through RIG-I (Figure 24), whereas none of 

the tested viral RNAs triggered the signalling pathway through MDA5 (Figure 25).  

4.2.2 Induction or inhibition of RIG-I or MDA5 signalling by hantaviral G expressing 

plasmids 

Other investigations have already shown inhibitory effects of hantaviral G1 on RIG-I signal-

ling (Alff et al., 2006; Alff et al., 2008). Based on these findings, several G1 and G protein 

expression plasmids derived from different hantavirus strains were tested in dual luciferase 

assays as described above. Furthermore, a strong inhibitor of RIG-I signalling, the Influenza 

B/NS1 protein, was used as a positive control for inhibition, expecting similar inhibitory ca-

pacity for the tested G proteins.  
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Figure 26. Influence of hantaviral G proteins on IFN-β promotor activation through RIG-I: 293T cells 

were transfected with hantaviral G protein expression plasmids, empty plasmid (NC) or B/NS1 expression plas-

mid and IFN-β-activated luciferase reporter plasmid (firefly), luciferase reporter plasmid (renilla) and RIG-I 

expression plasmid. 24 hours after transfection, dual luciferase assay was carried out. Standard deviations are 

based on the mean values of three independent experiments with transfections performed in duplicates. Appro-

priate expression of transfected RIG-I and consistent protein load were verified by Western blot. 
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Figure 27. Effect of hantaviral G proteins on IFN-β promotor activation through MDA5: Transfection, dual 

luciferase assay and Western blot were carried out as described in Figure 26. Instead of RIG-I-expressing plas-

mid, MDA5 expression plasmid was co-transfected into the cells. 

In contrast to B/NS1, in our system the investigated G expression plasmids had neither a 

stimulatory nor an inhibitory effect on IFN-β promotor activation through RIG-I (Figure 26) 

or MDA5 (Figure 27).  

4.2.3 RIG-I pathway triggering by expression of hantaviral nucleocapsid ORFs 

To examine whether N expression from different hantaviruses affects signalling by cytoplas-

mic sensor molecules, the influence of N ORF expressing plasmids was studied in dual 

luciferase assays.  
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Figure 28. Induction of IFN-β promotor activity through RIG-I by hantaviral N expression plasmids: 293T 

cells were transfected with hantaviral N protein expression plasmids, empty plasmid (NC) or B/NS1 expression 

plasmid together with IFN-β-activated luciferase reporter plasmid (firefly), luciferase reporter plasmid (renilla) 

and RIG-I expression plasmid. 24 hours after transfection, dual luciferase assay was carried out. Standard devia-

tions are based on the mean values of three independent experiments with transfections performed in duplicates. 

The probability of significance concerning the fold activation of negative control was determined by Student’s t-

test (* = p ≤ 0.05). Appropriate expression of transfected RIG-I and consistent protein load were verified by 

Western blot. 

Surprisingly, expression of N ORFs derived from pathogenic hantaviruses showed a signifi-

cant deviation from the negative control. HTNV and DOBV Slo, both strains with compara-

tively high virulence and lethality of infected patients, for example, showed significant pro-

motor activations of 34- and 45-fold, respectively, whereas TULV which is normally not 

implicated in cases of illness, stayed in the range of the negative control (12-fold) (Figure 28). 

In contrast, slight, but not significant activation linked to MDA5 could be detected after ex-

pression of DOBV Slo N protein, whereas all other samples had no impact in relation to this 

PRR. TULV even declined below the level of negative control down to inhibition control level 

(Figure 29). 
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Figure 29. Influence of hantaviral N expression plasmids on IFN-β promotor activation through MDA5: 

Transfection, dual luciferase assay and Western blot were carried out as described in Figure 28. Instead of RIG-I 

expressing plasmid, a MDA5 expression plasmid was co-transfected into the cells. 
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4.2.4 Activation of RIG-I by RNAs encoding hantaviral nucleocapsids  

Since the hitherto known PRRs localised cytoplasmically recognise RNA patterns, it was ex-

amined how the N proteins nevertheless were able to trigger IFN promotor activation through 

RIG-I. To prove the hypothesis that the N mRNA is the real activator of RIG-I signalling all N 

protein and – for the sake of completeness – G protein expression plasmids were transcribed 

in vitro and exposed to RIG-I in dual luciferase assays (Figure 31, Figure 32). The integrity of 

generated RNA was tested in a RNA gel (Figure 30). Only N protein expression plasmid-

derived RNAs activated the reporter system, tending to result in similar patterns like the as-

sayed N proteins, again correlating with pathogenicity of the original virus.  
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Figure 30. RNA gel of in vitro-transcribed N ORFs 
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Figure 31. Triggering of IFN-β promotor activity by in vitro-transcribed nucleocapsid RNAs through RIG-

I: RNAs from in vitro-transcribed N protein expression plasmids or empty plasmid (NC) were transfected into 

293T cells together with IFN-β-activated luciferase reporter plasmid (firefly), luciferase reporter plasmid 

(renilla) and RIG-I. 24 hours after transfection, dual luciferase assay was carried out. Standard deviations refer to 

the mean values of three independent experiments with transfections performed in duplicates. The probability of 

significance concerning the fold activation of negative control was determined by Student’s t-test (* = p ≤ 0.05). 

Appropriate expression of transfected RIG-I and consistent protein load were verified by Western blot. 

Nevertheless, one exception could be observed: DOBV Slo only showed a slight activation 

similar to TULV, although revealing the highest activation level in the previous experimental 

setting.   
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Figure 32. Influence of in vitro-transcribed G RNAs on IFN-β promotor activation through RIG-I: Trans-

fection, dual luciferase assay and Western blot were carried out as described in Figure 31. Instead of in vitro-

transcripts of the N ORFs, in vitro-trancribed G RNAs were transfected into the cells. Standard deviations are 

mean values of two independent experiments with transfections performed in duplicates. 

The G protein-derived RNA, however, induced RIG-I signalling only marginally (Figure 32), 

as already shown for the respective expression plasmids.  

4.2.5 Importance of 5’-triphosphates and inner-sequential structures of in vitro-

transcribed N ORFs on induction of RIG-I signalling 

RIG-I is preferentially activated by single-stranded RNA with 5’-triphosphates that are also 

generated during in vitro-transcription. However, RIG-I is also is able to bind to other RNA 

types depending on length, nucleoside motifs and secondary structures (Kato et al., 2006; Ka-

to et al., 2008; Saito et al., 2008). Since the gradual differences in strain-dependent luciferase 

activation could not be explained only by considering the 5’-triphosphates, the importance of 

the 5’-triphosphates for the observed RIG-I signalling was examined. Therefore, the tran-

scribed RNAs were digested with alkaline shrimp phosphatase to remove the phosphate end-

ings and again co-transfected and analysed in the dual luciferase system (Figure 33). 
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Figure 33. Importance of 5’-triphosphates at nucleocapsid RNAs on IFN-β promotor activation through 

RIG-I: In vitro-transcribed, phosphatase-treated N RNAs or empty plasmid (NC) were transfected into 293T 

cells together with IFN-β-activated luciferase reporter plasmid (firefly), luciferase reporter plasmid (renilla) and 

RIG-I. 24 hours after transfection, dual luciferase assay was carried out. Standard deviations are based on the 

mean values of three independent experiments with transfections performed in duplicates. The probability of 

significance concerning the fold activation of negative control was determined by Student’s t-test (* = p ≤ 0.05). 

Appropriate expression of transfected RIG-I and consistent protein load were approved by Western blot. 
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Again, differences of the activation pattern could be observed despite of lacking 5’-

triphosphates. However, the activation level was in each case lower than in the previous ex-

perimental setting, and the signalling strength of HTNV (16-fold) and DOBV Slo (2-fold) 

decreased and declined even under the level of PUUV (21-fold).  

4.2.6 Altered levels of RIG-I activation by 3’ truncated N ORF mutants 

In general, there are no obvious sequence homologies of the tested N expression plasmids to 

allow for a conclusion concerning a stimulatory or inhibitory motif. However, to assess the 

questions whether and which parts of the N protein itself or its RNA are responsible for induc-

tion of RIG-I signalling, deletion mutants of HTNV N protein expression plasmid were gen-

erated in cooperation with Pritesh Lalwani using the exonuclease approach. Three candidate 

plasmids with truncations of different length at their 3’ ends were tested in a DNA gel, West-

ern blot and dual luciferase assay (Figure 34).  
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Figure 34. Impact of 3’ deletion in HTNV N ORF on IFN-β promotor activation through RIG-I: HTNV N 

expression plasmid and expression plasmids with 3’ truncated ORFs as well as empty plasmid (NC) were trans-

fected into 293T cells together with IFN-β-activated luciferase reporter plasmid (firefly), luciferase reporter 

plasmid (renilla) and RIG-I. 24 hours after transfection, dual luciferase assay has been carried out. Standard 

deviations are based on the mean values of three independent experiments with transfections performed in dupli-

cates. The probability of significance concerning the fold activation of negative control was determined by Stu-

dent’s t-test (* = p ≤ 0.05). Appropriate expression of transfected RIG-I, N proteins and consistent protein load 

were approved by Western blot (B). Furthermore, the undigested plasmids were visualised in a DNA gel (C). 
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The deletion mutant ∆H1 with the longest truncation showed a strongly reduced activation of 

RIG-I signalling in comparison to the untruncated N protein and remained even below the 

level of the negative control. In contrast, the deletion mutant ∆H3 with a short truncation in-

duced levels of luciferase activity similar to the untruncated protein of HTNV despite of its 

weak espression. Although ∆H2 showed a strange band-pattern in the DNA gel and no expres-

sion in the Western blot, it was carried through the experiments as additional control and 

stayed on NC level. 

4.2.7 Analyses of downstream activation of RIG-I signalling pathway by hantaviral N 

ORF expression 

To examine further components involved in signalling downstream of RIG-I and MDA5, the 

pathway was analysed with all hantaviral N expression plasmids in relation to TBK1 and 

IKKi. The experimental settings were the same as described in the previous sub-chapters, the 

only difference was the exchange of RIG-I as overexpressed molecule with TBK1 (Figure 35) 

or IKKi (Figure 36).  
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Figure 35. Influence of hantaviral N expression plasmids on IFN-β promotor activation through TBK1: 

293T cells were transfected with hantaviral N protein expression plasmids, empty plasmid (NC) or B/NS1 ex-

pression plasmid together with IFN-β-activated luciferase reporter plasmid (firefly), luciferase reporter plasmid 

(renilla) and TBK1 expression plasmid. 24 hours after transfection, dual luciferase assay was carried out. Stan-

dard deviations are based on the mean values of two independent experiments with transfections performed in 

duplicates. Appropriate expression of transfected TBK1 and consistent protein load were verified by Western 

blot. 
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Figure 36. Effect of hantaviral N expression plasmids on IFN-β promotor activation through IKKi: 293T 

cells were transfected with hantaviral N protein expression plasmids, empty plasmid (NC), B/NS1 expression 

plasmid, IFN-β-activated luciferase reporter plasmid (firefly), luciferase reporter plasmid (renilla) and IKKi 

expression plasmid. 24 hours after transfection, dual luciferase assay was carried out. Standard deviations are 

based on the mean values of three independent experiments with transfections performed in duplicates. Appro-

priate expression of transfected IKKi and consistent protein load were verified by Western blot. 

Although background activation levels were higher compared to the previous experiments,  

the gradually increasing activation depending on pathogenicity of the respective strain resem-

bled those of the previous experiments by trend, with exception of PUUV that remained on or 

below the level of the negative control (110-fold for TBK1 (Figure 35) and 70-fold for IKKi 

(Figure 36)). TULV (1-fold for TBK1 and 11.6-fold for IKKi) even declined below the of 

B/NS1 activation level (8.5-fold for TBK1 and 29.3–fold for IKKi) (Figure 36). For TBK1, 

DOBV Slo again showed the highest activation with nearly 692.5-fold (Figure 35). For IKKi, 

HTNV headed the activation level with 1378.7-fold, whereas DOBV Slo only reached 946.6-

fold activation (Figure 36).  

To test the protein expression of the transfected plasmids, Western blots were carried out for 

each experiment. However, in all experiments, each transfected hantaviral expression plasmid 

seemed to interfere strongly with TBK1 expression for unknown reasons (Figure 35, Western 

blot). Interestingly, IKKi expression tested in Western blots was impaired by PUUV and 

TULV N, respectively (Figure 36, Western blot). 

4.2.8 Influences of hantaviral N expression on IFN feedback loop through RIG-I 

Virus-induced IFN expression is enhanced by a positive feedback loop through the JAK-STAT 

signalling pathway resulting in transcriptional activation of ISREs. To assess the downstream 

activation levels induced through RIG-I, all N expression plasmids were co-transfected with 

an ISRE-controlled luciferase reporter, transfection control and RIG-I expression plasmid 

(Figure 37). 
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Figure 37. Influence of hantaviral N expression plasmids on ISRE-promotor activation through RIG-I: 

293T cells were transfected with hantaviral N protein expression plasmids, empty plasmid (NC) or B/NS1 ex-

pression plasmid together with ISRE-activated luciferase reporter plasmid (firefly), luciferase reporter plasmid 

(renilla) and RIG-I expression plasmid. 24 hours after transfection, dual luciferase assay was carried out. Stan-

dard deviations are based on the mean values of two independent experiments with transfections performed in 

duplicates. Appropriate expression of transfected RIG-I and consistent protein load were verified by Western 

blot. 

Interestingly, ISRE activation through RIG-I signalling by N expression was not detectable. 

The activation levels of all tested N expression plasmids remained in range of the negative 

control, those of TULV and PUUV even declined below.  

4.3 Influence on RIG-I localisation by HTNV N expression plasmid  

N ORF expression leads to IFN-β promotor activation and the putative activating agent is the 

N ORF-derived RNA according to the results of this study. However, it cannot be excluded 

that the N proteins also play a role for a way of RIG-I signalling which is unkown yet. To ex-

amine possible sterical interactions between RIG-I and the hantaviral N proteins as well as 

their spacial distribution, HeLa cells were transfected with RIG-I and N protein expression 

plasmids. One day after transfection, the cells were stained with antibodies specifically bind-

ing to RIG-I and hantaviral N protein and prepared for confocal microscopy. As controls, un-

infected cells were co-transfected with RIG-I and empty expression plasmid. Additionally, 

they were stained with antibody against ubiquitious MAVS instead of N protein. 
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Figure 38. Altered localisation of RIG-I in presence of hantaviral N proteins: HeLa cells were co-transfected 

with RIG-I and N protein expression plasmids (HTNV, TULV) or empty vector as mock control. 24 hours after 

transfection, the cells were harvested and stained against RIG-I (green) and hantaviral N protein (red) or against 

MAVS (red) for the control cells and analysed with confocal immunofluorescence microscopy.  

In all samples, cytoplasmic localisation of RIG-I and hantaviral N protein could be detected. 

For cells expressing HTNV N protein, RIG-I seemed to be distributed homogeneously 

whereas in TULV N protein containing as well as in the control cells, RIG-I was localised 

more granularly in the cytoplasm. Co-localisation of N protein with RIG-I could not be ob-

served (Figure 38). 
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5 Discussion 

5.1 Physiological role of RIG-I for restriction of hantavirus replication 

In this thesis, the interplay between hantaviruses and cytoplasmically localised PRRs was 

analysed. Although type I IFN undoubtedly plays an important role for cellular defence to-

wards hantaviruses (Kraus et al., 2004; Pensiero et al., 1992), the details of hantavirus-related 

type I IFN induction still remain unclear. Since hantaviruses replicate in the cellular cyto-

plasm thereby revealing putative PAMPs, cytoplasmic PRRs seem to be likely molecules for 

hantavirus detection. Moreover, an evasion mechanism mediated by the cytoplasmic tail of 

hantavirus G1 protein targeting the RIG-I signalling pathway was revealed recently (Alff et 

al., 2006; Alff et al., 2008; Spiropoulou et al., 2007).   

RIG-I and MDA5 stand at the beginning of a cascade that involves several transcription fac-

tors merging in expression of IFN. They are more widespread PRRs than for example TLRs 

that are mainly expressed by macrophages and DCs (Kadowaki et al., 2001). For many RNA 

viruses, their involvement as sensor molecules has already been shown. 

To assess their relevance for hantaviruses, the growth of pathogenic (Figure 13, Figure 16) 

and non-pathogenic (Figure 14, Figure 15) strains in A549 cells lacking RIG-I expression as 

compared to the respective wild-type cell line was examined. In addition to original Murinae- 

and Arvicolinae-associated virus strains, reassorted virus strains generated from DOBV Slo 

and DOBV Sk as parental strains (unpublished data of Sina Kirsanovs) were involved in the 

growth studies (Figure 19, Figure 20). The experiment was carried out three times, under 

utilisation of three different knockdown clones. For the third experimental setting, a cell line 

containing the lentiviral vector with a control shRNA instead of RIG-I-directed shRNA was 

added as additional control. The validity of the experimental system was verified by carrying 

out growth kinetics with VSV, a virus for which RIG-I is known to be the relevant PRR. As 

expected, VSV replicated better in the ∆RIG-I cells whereas the growth was limited in wild-

type as well as in the control cell line (Figure 12). Therefore, off-target effects by the vector 

can probably be excluded for our read-out since VSV growth behaviour was similar in wild-

type and control cells. In addition, clonal variability of the ∆RIG-I cell clones is not very 

likely as only slight variations for VSV titers were observed (Figure 12). 

For hantaviruses, the comparability of the three single experiments is hampered for several 

reasons. Firstly, different clones of the ∆RIG-I cells were employed although no distinctive 
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features could be noticed in growth kinetics with VSV or FACS analyses of surface mole-

cules. Secondly, the cells provided by the cell culture lab for titration of the supernatant of 

infected cells were of varying quality. In the first experiment, logistical problems did not oc-

cur so that the data could be evaluated after the first titrations and the supernatants had not to 

be frozen and thawn repeatedly.  

In general, the control cells involved in the third experiment showed similar curves for virus 

progeny as the wild-type cell line except for DOBV Sk where one value even exceeded the 

respective value of the ∆RIG-I cells after infection, which most likely can be taken as an out-

lier (Figure 17). Interestingly, the reassortant A6 containing the M segment of DOBV Slo and 

the S and L segments of DOBV Sk replicated best in the ∆RIG-I cells compared to all other 

viruses. In addition, A6 showed growth differences in ∆RIG-I and wild-type cells similar to 

DOBV Sk, approximately 1 to 2 logs (Figure 17, Figure 19, first experiments, respectively). 

A36 and DOBV Slo, in turn, which both were able to replicate in ∆RIG-I as well as in wild-

type cells, also showed similar growth differences up to only a half log (Figure 16, Figure 20, 

first experiment, respectively). This hints at a special relevance of the S and/or the L segment 

for viral expansion.  

To exclude growth differences based on differential integrin expression on the cell lines, the 

density of CD29 and CD61, regarded as important for the entry of non-pathogenic and patho-

genic hantaviruses, respectively (Gavrilovskaya et al., 1998; Gavrilovskaya et al., 1999; 

Gavrilovskaya et al., 2002), were measured by FACS analyses (Figure 11). Surprisingly, the 

quantification of integrins revealed that CD61 was not present at all on the cell surface of 

∆RIG-I, wild-type as well as of control cells. This was also observed by other groups 

(Hamada et al., 2001). In contrast, CD29 could be detected on the surfaces of all three cell 

lines. Nevertheless, productive infection with pathogenic HTNV was observed. These results 

hint at other receptor molecules involved in hantavirus entry (Krautkramer and Zeier, 2008; 

Choi et al., 2008). In general, despite of high differences in virulence, pathogenic and non-

pathogenic hantaviruses could better replicate in the ∆RIG-I cells than in the A549 wild-type 

cell line. 

To confirm the observed effects, a similar kinetic was carried out in another cell line, Huh7.5 

cells that contains a point mutation in the RIG-I gene (Bartenschlager and Pietschmann, 2005; 

Blight et al., 2002). For gain-of-function experiments, the same cell line complemented with a 

RIG-I and a constitutive active RIG-I expressing lentiviral vector or with empty vector and 

MDA5 was infected with HTNV, DOBV Slo and DOBV Sk. Preliminary data show that all 
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three hantavirus strains proliferate better in cells lacking RIG-I (Figure 21, Figure 22, Figure 

23). The value for cells infected with DOBV Sk at day 7 p.i. is taken as an outlier. Highest 

titers were found in Huh7.5 wild-type cells, slightly reduced titers in supernatants derived 

from the infected Huh7.5 vector control cells. This suggests that the lentiviral vector influ-

ences hantavirus entry and/or replication to some extent. Virus growth in RIG-I and constitu-

tive RIG-I expressing cells was generally low except for cells infected with DOBV Sk RIG as 

described above. Hence, in this experimental setting, it does not seem to be important for vi-

rus proliferation whether RIG-I is constitutively active or initially has to be activated by infec-

tion. The role of MDA5 is not clear yet, since for HTNV and DOBV Sk, the titers remained 

on the level of RIG-I expressing cells whereas for DOBV Slo MDA5, the value of FFU/ml 

even exceeded all other titers at 7 d p.i.. 

In general, there was no clear correlation between virus growth and pathogenicity of the cor-

responding hantavirus strain as we did not find significantly higher replication of pathogenic 

hantaviruses compared to the non-pathogenic strains in the respective cell line. Most of the 

investigated hantavirus strains grew better in cells with impaired RIG-I expression in com-

parison to control cells. Therefore, we can conclude that RIG-I seems to play a role as sensor 

molecule for pathogenic as well as for non-pathogenic hantaviruses in cell culture. However, 

the mechanism and possible influences by other PRRs are not understood yet due to delicate 

balances between viral defence mechanisms and the cellular detection system initiating an 

antiviral response. 

5.2 Interaction of hantaviral components with RIG-I and MDA5 

To define potential hantaviral PAMPs, all available components of several hantaviruses differ-

ing in pathogenicity, epidemiology and reservoir hosts, were examined. Their ability of trig-

gering or blocking innate immune response through cytoplasmic PRRs was investigated. It 

had been assumed that RIG-I and MDA5 are activated mainly by interaction with 5’-

triphosphate single-stranded RNA and double-stranded RNA, respectively. However, the pos-

sibility of a certain redundancy in recognition of different RNA patterns cannot be excluded 

(Imaizumi et al., 2005; Yoneyama et al., 2004). For example, RIG-I could also be activated by 

dsRNA dependent on its length, and a polyuridine motif in the non-coding region of HCV was 

found to play a role for RIG-I induction (Saito et al., 2008). In addition, involvement of both 
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RIG-I und MDA5 in recognition of West nile virus (WNV) (Fredericksen et al., 2008) and of 

dsDNA was observed (Cheng et al., 2007).  

5.2.1 Relevance of genomic RNA as ligand of RIG-I 

Viruses with a negatively orientated RNA genome do not necessarily form detectable double-

stranded RNA structures. Furthermore, neither hantaviral genomes nor the viral mRNAs nor-

mally contain free 5’-triphosphates at their end. The genome is structured as a panhandle 

bound by the viral N protein, thus preventing detection by RIG-I by masking the RNA (Mir 

and Panganiban, 2006). Therefore, it is not surprising that only weak or no activation of RIG-I 

signalling by hantaviral genomic RNAs could be detected (Figure 24), as also observed by 

Habjan et al. (Habjan et al., 2008). 

Although vRNA did not activate the IFN-β promotor through MDA5 either (Figure 25), the 

relative fold activations were much higher than for respective RIG-I samples. This could be 

explained by the fact that MDA5 does not possess a C-terminal repressor domain like RIG-I 

therefore inducing high background activity (Pichlmair et al., 2006; Saito et al., 2007). 

5.2.2 Role of hantaviral glycoproteins in the interplay between hantaviruses and 

cytoplasmic sensor molecules 

The hantaviral G proteins examined in our experimental setting neither triggered nor inhibited 

signalling through MDA5 or RIG-I (Figure 26, Figure 27). In comparison to another inhibitor, 

the Influenza B/NS1 protein (Opitz et al., 2007; Dauber et al., 2004), blocking properties of 

the hantaviral G proteins could hardly be detected. However, it has to be mentioned that no 

challenge for proving or excluding specific inhibition as carried out by other groups was in-

cluded into our experimental setting. In contrast to our findings, it has been shown by Alff et 

al. that G1 protein tails derived from pathogenic hantavirus strains inhibit RIG-signalling after 

transfection of a constitutive active RIG-I deletion mutant, whereas the G1 protein from non-

pathogenic PHV was not able to suppress the signalling cascade (Alff et al., 2006; Alff et al., 

2008).  

Activation of PRR signalling by G proteins could not be observed either. Interestingly, even 

the in vitro-generated G ORF RNA did not result in IFN-β induction through RIG-I (Figure 

32), although it contains 5’-triphosphates. Possibly, the RNA derived from G encoding ORF 

has structural or sequential properties that abrogate the impact of 5’-triphosphates on detec-
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tion by RIG-I. If hantaviral G proteins provide PAMPs, then the respective PRRs are probably 

localised on the surface of the host cell or in the endosomes like for example TLRs which 

could be activated during attachment and entry processes.  

5.2.3 Induction of RIG-I signalling by hantaviral N ORF expressing plasmids  

5.2.3.1 Activation of RIG-I signal transduction by expression of hantaviral N ORFs 

For many viruses, the interplay between PRRs or downstream molecules and a viral protein 

has been discovered. For example, an interaction of RIG-I and NS1 of Influenza viruses was 

recently described (Dauber et al., 2006; Pichlmair et al., 2006). For hantaviruses, similar co-

herences could be assumed as well. A potential candidate for interactions with PRRs is the 

hantaviral N protein. It plays an important role during the life cycle of hantaviruses, function-

ing as an RNA chaperon and recognising the viral genomic panhandle (Alminaite et al., 2006; 

Mir and Panganiban, 2006). It potentially binds to other RNA structures, thus protecting or 

sequestering target structures that stimulate cytoplasmic sensors, thereby establishing a dy-

namic equilibrium between induction and inhibition of innate signalling. Furthermore, it is the 

most considerable target to initiate innate immune response since it is the first viral gene to be 

transcribed. RNA derived from the S segment as for example shown for SNV can be detected 

4 to 6 h p.i. when the hantavirus-related innate response is induced (Hutchinson et al., 1998; 

Schmaljohn and Hjelle, 1997; Hutchinson et al., 1996). In addition, it is the most conserved 

structural protein of hantaviruses and the main target of cellular and humoral immune re-

sponse (Kaukinen et al., 2005). Therefore, the N protein or the corresponding RNA could play 

a pivotal role in interaction with PRRs. 

In fact, different effects on RIG-I signalling could be observed, depending on the origin of the 

N ORF (Figure 28). RIG-I-mediated activation levels of the IFN promotor increased with the 

degree of pathogenicity of the hantavirus strain from which the N protein was derived. The 

highest activation was induced by the DOBV Slo N protein expression plasmid. In contrast, 

only slight but not significant activation could be detected after expression of DOBV Slo N 

protein in combination with MDA5, while the other N protein expression plasmids induced no 

activation or rather diminished IFN-β promotor activity as seen for TULV N (Figure 29). 
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5.2.3.2 Determination of the hantaviral component stimulating RIG-I   

To assess whether the N protein itself or its RNA is the inducing component, the expression 

plasmids were in vitro-transcribed and examined in the same experimental setting (Figure 31). 

Although the fold activations were slightly lower than in the previous described experiments, 

the same induction pattern could be observed, except for DOBV Slo N RNA. The integrity of 

the transcripts has been tested in an RNA gel ensuring that the DOBV Slo N RNA was not 

degraded (Figure 30). A possible explanation could be altered secondary structures of the in 

vitro-transcribed RNA that affect the influence on RIG-I signalling, for example by hiding 

stimulatory motifs or exposing inhibitory sequences. In contrast, in vivo appropriate binding 

of cellular RNA chaperons to DOBV Slo N RNA could allow for the formation of additional 

RIG-I stimulatory structures. Nevertheless, it cannot be entirely excluded that the N protein 

itself also interacts with RIG-I signalling. 

Usually, hantaviral mRNA is capped and tailed by cap snatching mechanism. Accordingly, 

possible 5’-triphosphate ends should only be available in a short time frame for recognition by 

PRRs (Elliott et al., 1991). Since in vitro-transcribed RNA also possess triphosphates at their 

5’ ends that are known as ligands of RIG-I (Hornung et al., 2006), in a subsequent experimen-

tal setting, the transcripts were digested to remove the triphosphates to assess their influence 

on signalling (Figure 33). Activation levels decreased for all digested samples, and the pattern 

also was altered, but still, differences in activation levels could be shown. This observation 

leads to the assumption that certain motifs – maybe in addition to 5’-triphosphates – within 

the RNA and/or the protein derived from the S segment are responsible for activation or even 

inhibition of RIG-I signalling (Figure 31, Figure 33).  

Unfortunately, there was no possibility to verify the amount of 5’-triphosphates for a better 

evaluation of their relevance for signalling induction, but there should not be large differences 

between the samples since all plasmids were treated identically. Furthermore, for example 

JEV mRNA is known to be 5’ capped and no triphosphates are exposed at the 5’ end. How-

ever, it is still detected by RIG-I (Chang et al., 2006; Kato et al., 2006). It has been suggested 

before that RIG-I-mediated RNA recognition is not only dependent on 5’-triphosphates (Cui 

et al., 2008). Motifs inducing or interfering with RIG-I signalling are also liable for viruses, as 

already shown for the 3’-untranslated region of HCV (Saito et al., 2008).  
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5.2.3.3 Definition of a potential RIG-I stimulating motif within the hantaviral N ORF 

To define a potential motif within the N ORF, random deletion mutants of the HTNV N ORF 

with truncated 3’ ends were generated. The candidates were tested for appropriate expression 

and for IFN-β promotor activation through RIG-I signalling (Figure 34). Interestingly, the N 

ORF mutant ∆H1 did not activate the reporter system at all and declined even below negative 

control level, although expression could be proven in Western blot. ∆H2 behaved almost like 

the negative control and was not detectable in Western blot, whereas the third mutant ∆H3 

lacking only a short 3’ end of the ORF reached nearly the IFN-β promotor activation level of 

the full-length plasmid. However, it was expressed much weaker than HTNV N or ∆H1 N. 

Since the deleted sequence is not yet characterised, it is difficult to define the distinct se-

quence or structure which is possibly responsible for activation of RIG-I signalling.  

5.2.3.4 In silico analyses of N ORFs 

For theoretical predictions, sequences of all N ORFs involved in our experiments were sub-

jected to a similarity test in comparison to either DOBV Slo or HTNV N ORF (Figure 39) 

which showed the highest activation levels in our experimental setting. Basically, we hoped to 

see conserved domains for the pathogenic hantavirus strains and/or for the non-pathogenic 

ones. Although homologies could be observed, they do not necessarily correlate with the RIG-

I signalling activation levels. For example, DOBV Slo and DOBV Sk, differing in the strength 

of IFN induction resemble each other strongly. On the other hand, the relations of Murinae- 

and Arvicolinae-associated hantavirus strains are very obvious in the distance plots.   

Therefore, we cannot explain different activation patterns by conserved motifs in the primary 

RNA sequence, and it can be expected that more complex motifs are possibly involved in sig-

nalling induction like for example secondary structures and charges depending on the length 

of the nucleotides. A better knowledge of the binding and activating capacities of RIG-I may 

help to draw conclusions about potential ligands.  
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Figure 39. Distance plots of N ORFs against DOBV Slo and HTNV 

5.2.3.5 Significance of RIG-I for hantaviruses 

We propose that the observed different patterns of RIG-I activation are related to inhibitory or 

stimulatory motifs on the hantaviral RNA molecules as mentioned above. The exact nature of 

these motifs still has to be elucidated, but the activation patterns of phosphatase-treated tran-

scripts and of the deletion mutants suggest that not only the 5’ ends regulate RIG-I and sup-

port the motif hypothesis (Figure 33). Furthermore, viruses that are detected by RIG-I do not 

all possess triphosphates at their 5’ ends or present them only during a very short time frame. 

Although pathogens are characterised by their high diversity, all of them have nucleic acids in 

common (Kato et al., 2006), independent of their modifications. Thus, many cellular detection 

systems make use of the viral genomes during entry or of their products generated by replica-

tion and expression processes of the viruses. For example, endosomally located TLR3 recog-

nises dsRNA independently from its sequence (Alexopoulou et al., 2001; Matsumoto et al., 

2003). Therefore, virus genomes are mostly protected by viral proteins to prevent detection. 

In contrast, mRNA is often uncovered to be accessible for translation complexes. It may be 
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possible that for activation of RIG-I, the 5’-triphosphates of viral RNAs are sufficient and 

necessary whereas for others, intrinsic motifs play an important role. It is also imaginable that 

these motifs show accumulative effects, whether stimulating or inhibiting. Furthermore, there 

are first hints that for longer RNAs, the 5’-triphosphate is less important for detection by RIG-

I, and structures within the sequence play a crucial role.  

The relevance of RIG-I for hantaviruses could also be shown on the functional level. How-

ever, it was not possible to investigate the particular relevance of N ORFs within the context 

of virus infections because up to now a system for reverse genetics is not available for hanta-

viruses. Furthermore, cellular mechanisms responsible for hantavirus detection and subse-

quent triggering of antiviral immune response have not been completely defined either. There-

fore, the impact of N ORF expression on hantavirus-related immune response cannot be 

evaluated yet. Possibly, non-pathogenic hantaviruses trigger innate immunity early as shown 

by different groups (Alff et al., 2006; Kraus et al., 2004; Spiropoulou et al., 2007) because of 

lacking evasion mechanisms whereas pathogenic strains interfere with the immune system 

more aggressively thereby getting the opportunity to replicate more efficiently. In addition, 

different or additional PRRs may be responsible for the recognition of pathogenic and non-

pathogenic hantaviruses, merging in the same signalling cascades to achieve synergistic ef-

fects for virus clearance in simultaneous or successive manners whereas single PRRs show 

only comparatively weak signalling induction.  

5.3 Hantavirus-associated modulation of signalling downstream of PRRs 

After investigating the relations between hantaviral components and innate immune response 

by overexpression of PRRs, the effect on molecules downstream of RIG-I and MDA5 like 

TBK1 and IKKi has been examined. However, the activation levels induced by the tested N 

expression plasmids changed and were not congruent to the RIG-I-related pattern. For over-

expression of both TBK1 and IKKi, TULV declined to inhibition control level whereas PUUV 

activation decreased to the negative control level. Expression plasmids containing N ORFs 

from the two DOBV strains showed similar fold activations. Surprisingly, TBK1 was strongly 

downregulated on protein level in presence of all N protein expression plasmids. It is not clear 

yet whether this finding is due to reduced TBK1 expression which would be surprising con-

sidering the high amounts of transfected TBK1 expression plasmid. Alternatively, antibody 

detection of TBK1 could be impaired by hantaviral nucleocapsid expression (Figure 35).  
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For IKKi, TULV and PUUV N expression plasmids reduced IKKi expression for unknown 

reasons. The weak fold inductions by both plasmids could be explained by the downregula-

tion of IKKi (Figure 36). No induction of the ISRE-coupled luciferase reporter could be ob-

served, although the feedback mediated by IFN secretion should enhance the IFN-β expres-

sion (Figure 37). A possible explanation could be a yet unknown viral evasion mechanism that 

interferes with signalling elements of the feedback loop. Alternatively, a merge of different 

innate signalling cascades triggered by hantaviruses could be necessary for detectable type I 

IFN production. Such synergistic effects may lack in our experimental systems.  

To assess direct interactions and subsequent changes in the localisation of RIG-I by hantaviral 

N protein, co-transfections with RIG-I and N protein expression plasmids derived from 

pathogenic HTNV and non-pathogenic TULV were carried out and analysed by confocal mi-

croscopy. Expression of HTNV N protein led to homogeneous distribution of RIG-I. In con-

trast, co-transfection with TULV N protein resulted in a similar RIG-I localisation as the con-

trol. Thus, HTNV N protein seems to influence the distribution of RIG-I (Figure 38). More 

detailed investigations are necessary to demonstrate a potential interaction, for example by 

immunoprecipitation, and to define the mechanism and subsequent consequences for virus 

and cell.   

5.4 Importance of innate mechanisms upstream from PRRs 

Other mechanisms that may be involved in activation of RIG-I signalling by hantaviruses also 

have to be considered. So far, only the PRRs and the molecules downstream have been dis-

cussed, but upstream molecules and the control of PRR expression could also play a role. 

RNA processing mechanisms could be of importance for PRR signalling since RNAs of dif-

ferent lengths and modifications are potential ligands (Kato et al., 2008). Longer RNA may 

also be less stable, therefore, cellular and viral proteins are possibly involved in forming sec-

ondary RNA structures, providing or hiding potential PAMPs. For viruses, it has been shown 

that MDA5 only recognises EMCV, whereas RIG-I detects RNA viruses with longer ge-

nomes. In general, the precise viral PAMPs are mostly undefined yet for the cytoplasmically 

located PRRs. RIG-I is able to bind double-stranded as well as single-stranded RNA, nucleo-

tide overhangs and 5’ end modifications seem to play a role with varying importance depend-

ing on the RNA length. Recently, a viral motif has been found (Saito et al., 2008), but it is 

difficult to assess the activation potentials of the different PAMPs. Furthermore, it is not yet 
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clear whether PAMPs synergise in the signalling through one or more PRRs. Once more de-

tailed information about these relations becomes available, RNA processing mechanisms lo-

cated upstream of RIG-I and MDA5 and the influence of chaperons will be of special interest.  

5.5 Conclusion and outlook 

The identification of hantaviral nucleocapsid expression as a trigger of RIG-I signalling is a 

further step to a better understanding of hantavirus-related innate immunity. In detail, IFN-β 

promoter activation increases depending on the virulence of the hantavirus strain from which 

the expressed N ORF is derived. More precisely, the N ORF RNA seems to be the component 

responsible for the activation of RIG-I.  

The pathogenicity-dependent activation pattern can be explained by inhibitory or stimulatory 

motifs within the N RNA. Our results give first hints on the nature of such motifs that are 

possibly located at the 3’ end of the N ORF and will be proven by gain- and loss-of-function 

experiments. Furthermore, still unknown PRRs (Paladino et al., 2006) could be involved in 

the detection of hantaviruses as N ORF expressing plasmids or mRNA derived from non-

pathogenic hantaviruses did neither trigger RIG-I nor MDA5 signalling pathways. 

However, it has to be analysed as well whether the low IFN-β promotor activation by some 

expressed N ORFs is the result of missing activation by stimulatory motifs or of active inhibi-

tion by inhibitory structures and the N protein itself. Similarly, the G ORF expression did not 

lead to an activation or an inhibition of RIG-I or MDA5 signalling. Even in vitro-transcribed 

G ORFs, containing 5’-triphosphates, did not trigger IFN promotor signalling, possibly due to 

the reduced importance of 5’-triphosphates for the recognition of longer RNAs by RIG-I.  

Therefore, the discovery of other PRRs involved in hantavirus detection and their degree of 

redundancy would be quite interesting. Induction of innate immunity leads to differential acti-

vation of signal transduction pathways depending on the triggered PRR. Hence, adaptive im-

mune response may vary in strength and efficiency. Our growth kinetics revealed that replica-

tion of non-pathogenic strains was also affected in RIG-I expressing cells compared to cells in 

which RIG-I expression is impaired. To explain these findings, the functions of all hantaviral 

components and their interplay during infection have to be investigated in more depth. Re-

verse genetic systems and appropriate animal models could be of great advantage for such 

studies. In general, partial redundancy of PRRs responsible for hantavirus detection would not 

be surprising for the induction of an important antiviral defence system like the type I IFN 



  Discussion 

  75 

response and for the benefit of synergistic effects. However, the delicate regulation mecha-

nisms of the type I IFN system do not simplify respective investigations. The role of IFN is 

ambiguously critical for the host since it has to operate fast to contribute successfully to virus 

clearance, but a prolonged expression can also lead to autoimmune reactions (Le Bon et al., 

2003; Ronnblom et al., 2006; Taniguchi and Takaoka, 2001).  

In addition, RIG-I and MDA5 signal transduction may not “only” be involved in IFN induc-

tion, but also other pathways. For example, their adaptor molecule MAVS seems to be in-

volved in regulation of apoptosis and of surface molecules (Kumar et al., 2006). 

Furthermore, differences in PRR distribution and function do not only occur in different cell 

types of the same organism, but also in comparable cell types of different species. This fact is 

of special interest for the comparison of hantavirus-related immune response in reservoir 

hosts and humans: hantaviral infection remains apathogenic in rodents and persists, whereas 

in humans, the virus is cleared under (partially severe) courses of disease (Botten et al., 2000).  

All these analyses may contribute to an understanding of differences in immune responses and 

divergent cytokine expression patterns caused by hantaviruses differing in virulence towards 

humans. Thus, they could build a basis for a better understanding of the differences in severity 

of clinical symptoms and furthermore elucidate the asymptomatic persistence in reservoir 

hosts. Finally, these findings could help to develop improved treatments after hantaviral infec-

tion or prophylactic means like vaccines.  
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