
Distributed Abstract State Machines and
Their Expressive Power

Andreas Glausch, Wolfgang Reisig

January 30, 2006

Gurevich’s sequential Abstract State Machines (ASMs) are taken as a basis
for the construction of distributed ASMs as sets of sequential ASMs.

A theorem on the expressive power of distributed ASM is proven in analogy
to Gurevich’s classical theorem on the expressive power of sequential ASM.

1 Introduction

Abstract State Machines have been introduced as a “computation model that is more
powerful and more universal than the standard computation models” by Yuri Gurevich
in 1985 [11]. This is achieved by adopting classical concepts from logics and universal
algebra, and their conservative extension to describe sequential steps. A number of
variants of ASMs evolved over time, in particular parallel, distributed, and interactive
versions [6, 2, 1]. In addition to theoretical considerations, ASMs have proven their
practical benefits for the specification and analysis of real-world systems [4, 3].

Gurevich introduced in [7] the class of sequential small-step algorithms by only a
few intuitive and amazingly liberal requirements, and proved every sequential small-
step algorithm to be represented by a sequential small-step ASM. “Small-step” means
intuitively that the amount of change is bounded for all steps of the algorithm. [10]
reexamines Gurevich’s theorem, and provides some further explanations and examples.
Later, the results for sequential ASMs have been extended by Blass and Gurevich to
parallel and interactive versions of ASMs [2, 1].

In the “Lipari Guide” [6], Gurevich describes the central constructs of distributed
ASMs. In particular, a single run of a distributed ASM is defined as a partially ordered
set of actions of sequential ASMs, called moves in [6]. These definitions have been
examined in more detail in [12], and were applied for the specification and verification
of several distributed algorithms [12, 5, 8].

This paper investigates distributed small-step ASMs. It translates, to some extent,
Gurevichs characterization of sequential small-step algorithms to distributed small step
algorithms. It turns out that this can be achieved indeed, even as a conservative exten-
sion of the sequential case.
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This paper is organized as follows: The next section reexamines the established funda-
mentals of Abstract State Machines and identifies stores as a basic concept. Calling them
“updates”, Gurevich employed stores in [6] already to describe the effect of assignment
statements. We furthermore use them here to describe entire states.

Section 3 defines the syntax and the semantics of sequential ASMs as given in [6].
This prepares the notion of distributed ASMs, as given in Sec. 4.

Finally, Sec. 5 characterizes distributed ASMs in analogy to Gurevich’s character-
ization of sequential ASMs. The decisive aspect is the requirement corresponding to
bounded exploration as introduced in [7]: Actions of distributed ASMs are bounded in
size. The proof of the main theorem and of a couple of preparing lemmata requires a
bit of formal arguments and is confined to Sec. 6.

2 States, stores, and steps

In this section we motivate and exemplify the fundamental notions of ASMs. The most
important and new aspect of this section is the decomposition of states into stores,
presented in Sec. 2.3.

2.1 States are structures

In the computation model of ASMs, a system state is conceived as a structure S, i.e. a
set U (the universe of S), and finitely many functions ϕi : Uni → U (i = 1, . . . , k), each
with its arity ni ≥ 0. From the perspective of computer science, each function ϕi may
be conceived as an ni-dimensional array (albeit, in general, with an infinite index set).
The universe of a given structure S is denoted by U(S).

The universe U may be infinite, even uncountable. We assume no particular properties
of the functions ϕi. In particular, we do not assume any means to syntactically represent
the functions of a state.

2.2 Structures have signatures

As usual, a signature Σ is used to address the functions of a structure: Σ comprises
finitely many symbols f1, . . . , fk, each fi with its arity ni (i = 1, . . . , k). A structure S
is a Σ-structure if its functions ϕi correspond bijectively to symbols fi of the same arity.
In this case, ϕi is usually written as

fiS

and called the interpretation of fi in S. In case fi is a symbol with arity ni = 0, fi

denotes a single element fiS ∈ U(S), i.e. fi denotes a constant.
Hence, in the sequel,

a state is a Σ-structure. (1)

As an example, assume a state where we want to apply a bisection algorithm to find
a zero x0 of a continuous function f , i.e.

find x0 such that f(x0) = 0.
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The bisection algorithm works as follows: Given a continuous function f , start with
two real numbers a, b such that f(a) and f(b) are both different from 0 and have different
leading signs. Then compute the arithmetic mean m of a and b and check the value of
f(m): If f(m) = 0, we are done. Otherwise, check the leading sign of f(m): if f(m) and
f(a) have the same leading sign, set a to m, otherwise set b to m. This step is iterated
until the distance of a and b drops below a bound ε. Figure 1 represents two steps of
the bisection algorithm.

0

f

b’=
mean(a,b)

mean(a,b’)

step 2step 1

start

=a’a

b

Figure 1: Two steps of the bisection algorithm.

We model the bisection algorithm by help of symbols to represent all entities required
by the algorithm: The symbols a and b represent the values of a and b, f represents
the function f , the symbol 0 represents the real number 0, the symbol mean represents
a function to compute arithmetic mean, and the symbol eqsign represents a predicate
checking whether two real numbers have the same leading signs. We furthermore need
a symbol stop to represent the termination condition and a symbol result to represent
the algorithm’s result.

This yields the signature Σ = (f, a, b, 0, result, true, mean, eqsign, stop) with arities
(1, 0, 0, 0, 0, 0, 2, 2, 2), respectively. The initial state is a Σ-structure S with

– fS any continuous function over R,

– aS , bS any real number such that fS(aS) and fS(bS) are not 0 and have different
leading signs,

– 0S the real number 0,

– meanS a function to compute the arithmetic mean of two real numbers,

– trueS the truth value true,

– eqsignS a binary function on real numbers such that eqsignS(x, y) = trueS iff x
and y have the same leading sign,
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– stopS a binary function on real numbers such that stopS(x, y) = trueS iff
|x− y| ≤ ε for a fixed positive real number ε.

Later we will show how the bisection algorithm can be formalized by a sequential
ASM. The decisive aspect of the ASM approach is already visible: An ASM may do
with any functions and objects, whereas conventional programs are based on a bit level
representation of data structures.

2.3 States consist of stores

Throughout this paper it turns out useful not to consider a state as a monolithic entity
but rather as a collection of stores. A store has a location (“Where can something be
stored?”) and a value (“What is stored?”).

A signature Σ and a set U together identify a set of locations. Each location is formed

l = (f, u)

with f ∈ Σ and u ∈ Un, where n is the arity of f . In case f is a 0-ary function symbol,
the location of f is written (f, ), with denoting the empty tuple in U0.

Each Σ-structure S with a universe U then defines a set S̃ of stores. Each store s of
S̃ is shaped

s = (f, u, u0) (2)

consisting of the location (f, u) and the value u0 = fS(u).
Hence, to each location l, the set S̃ contains exactly one store, shaped (l, u). This

way, S̃ identifies S: To each function fS and each argument u of fS there exists a unique
store (f, u, u0), with u0 = fS(u).

As an obvious yet important property of states we get from the above construction
together with (1):

States with equal universes have equal locations. (3)

Under the name of updates, Gurevich has identified stores in [6] already. He used them
to describe the change of states as caused by steps. We extend their use to describe entire
states.

2.4 Steps consist of “sufficiently similar” states

As usual for conventional models of computation, in the ASM model, too, a step is a
pair (S, S′) of states. Consequently, a (sequential) run S0S1S2 . . . is a (possibly infinite)
sequence of steps (Si−1, Si) (i = 1, 2, . . . ).

The two states of a step (S, S′) are usually not entirely different. S evolves to S′ by
a finite amount of update 1. This requires means to describe what remains equal and
what is updated. To this end, the states S and S′ must be “sufficiently similar”. In

1Large-step versions of ASMs allow infinite amount of update, too. But we stick to the elementary
version of small-step ASMs here.
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particular, S and S′ must be structures of the same signature (later on we will see that
all states of an ASM program are structures of the same signature). Furthermore, S
and S′ are assumed to have the same universe. Hence, by (3), they even have the same
locations. Consequently, the step from S to S′ can be characterized by a set ∆old ⊆ S̃
and a set ∆new of stores where the locations of ∆old and ∆new coincide , such that

S̃′ = (S̃ \∆old) ∪∆new. (4)

As an example, a step of the bisection algorithm mentioned above updates the stores
with the locations (a, ) , (b, ) and (result, ), and retains all other stores.

3 Assignment statements and ASM programs

According to (4), the problem of defining a step reduces to the problem of characterizing
a set of stores. In this section we will show how such sets can be described by the help
of ASM programs.

3.1 Assignment statements define steps with one update

As usual, a signature yields terms: each 0-ary symbol is a term, and for an n-ary symbol
f and given terms t1, . . . , tn, the symbol sequence

f(t1, . . . , tn)

is a term, too. Such terms are interpreted by a Σ-structure S in the usual way: For each
0-ary symbol x, the element xS ∈ U(S) denotes the interpretation of x in S. For n ≥ 1,
the interpretation of a term f(t1, . . . , tn) in S is inductively defined as

f(t1, . . . , tn)S =def fS(t1S , . . . , tnS).

Terms are used to form assignment statements. A most simple example is the assign-
ment statement

α : x := f(x), (5)

where x and f are 0-ary and unary symbols in Σ, respectively. Applied to a state S, (5)
updates the store

αold
S =def (x, , xS)

by the store
αnew

S =def (x, , f(x)S).

Formulated more conventionally, the application of (5) yields a state S′ with

xS′ = f(x)S .

A slightly more involved example is the statement

α : f(x) := g(y) (6)
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where x, y are 0-ary, and f, g are unary symbols. Applied to a state S, (6) updates the
store

αold
S =def (f, xS , f(x)S)

by the store
αnew

S =def (f, xS , g(y)S).

Formulated more conventionally, this update yields a state S′ with

fS′(xS) = g(y)S . 2

The general form of an assignment statement α is

α : t := t′ (7)

with terms t, t′ over Σ. The term t specifies the location to update, and t′ specifies the
new value of this location in the next state. Formally, for t = f(t1, . . . , tn) and a state
S,

locS(t) =def (f, (t1S , . . . , tnS)) (8)

denotes the location of t in S. Applied to state S, (7) then updates the store

αold
S =def (f, locS(t), tS) (9)

by the store
αnew

S =def (f, locS(t), t′S). (10)

Formulated more conventionally, this update yields a state S′ with

fS′(t1S , . . . , tnS) = t′S .

αold
S and αnew

S then define a step (S, S′), where

S̃′ =def (S̃ \ {αold
S }) ∪ {αnew

S }. (11)

3.2 Conditional assignment statements define steps conditionally

A conditional assignment statement extends an assignment statement such as (7) by a
condition described as a boolean expression. A boolean expression is built from terms:
For any two terms t1 and t2, t1 = t2 is a boolean expression. Such an expression is
fulfilled in a state S iff t1S = t2S , i.e. if t1 and t2 are interpreted equally in S. Boolean
expressions can be combined to new expressions by using the usual boolean operations,
such as ∧ and ¬ : For any given boolean expressions β1 and β2, β1 ∧ β2 and ¬β1 are
boolean expressions, too. As usual, ¬β1 is fulfilled in a state S iff β is not fulfilled in
S and β1 ∧ β2 is fulfilled in S iff β1 and β2 are fulfilled in S. S |= β is used as an
abbreviation for “β is fulfilled in state S”.

2Notice this equation does not read fS′(xS′) = . . .
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A conditional assignment statement γ is shaped

γ : if β then α, (12)

where β is a boolean expression and α is an assignment statement. β is called the guard
or the condition of γ. Applied to a state S where β is not fulfilled, (12) yields no update
at all and S is a final state, i.e. there is no step (S, S’). We differ from the classical
semantics of sequential ASMs at this point: [6] generates the step (S, S) in this case.
We will justify our proposal when it comes to distributed ASMs.

Otherwise, if β is fulfilled in S, (12) updates the store αold
S by the store αnew

S , in
accordance with (9), (10) and (11). Hence, for γ as in (12),

γold
S =def αold

S , (13)
γnew

S =def αnew
S , (14)

S̃′ =def (S̃ \ {γold
S }) ∪ {γnew

S } (15)

in case β is fulfilled in S.
For convenience, an assignment statement t := t′ can be considered as a conditional

statement whose guard is fulfilled at every state.

3.3 ASMs define steps with many updates

An ASM program Γ is a nonempty, finite set of conditional assignment statements.
Executing Γ in a state S means to execute all statements in Γ at once. So, we generalize
the notions of (13) and (14) to sets of statements: For a state S, let

Γold
S =def { αold

S | (if β then α) ∈ Γ and S |= β }, (16)
Γnew

S =def { αnew
S | (if β then α) ∈ Γ and S |= β }. (17)

Γnew
S may be inconsistent, i.e. may include two stores with equal locations but different

values. For example, Γ may include the assignment statements

f(x) := u and f(y) := v

with xS = yS and uS 6= vS . An inconsistent set of stores cannot update S, thus for S
there is no step (S, S′) and S is a final state.

In case the conditions of all statements in Γ fail in S, we take S as a final state. This
decision deviates again from [6], where stuttering steps (S, S) are suggested in this case.

In all other cases, i.e. if Γnew
S is consistent and at least one condition in Γ is fulfilled,

Γ defines S′ by:
S̃′ =def (S̃ \ Γold

S ) ∪ Γnew
S . (18)

Then (S, S′) is a step of Γ.
The set of all steps of an ASM program Γ then constitutes a sequential ASM. The term

“sequential” comes as a surprise, as the statements of Γ are executed in parallel. The
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reason for this is merely traditional, and contrasts with parallel ASMs not considered
here, as well as with distributed ASMs, to be considered in Sec. 4.

To make life easier, we introduce the following syntactic simplification: For assignment
statements α1, . . . , αn,

if β then {α1, . . . , αn} (19)

stands for {if β then α1, . . . , if β then αn}.

3.4 ASMs represent algorithms

We are now ready to formulate the bisection algorithm introduced in Sec. 2.2. Let

Γ := { if stop(a,b)=true then result:=a,

if ¬(stop(a,b)=true) ∧ f(mean(a,b))=0 then

result:=mean(a,b),

if ¬(stop(a,b)=true) ∧ ¬(f(mean(a,b))=0)
∧ eqsign(f(a),f(mean(a,b)))=true then a:=mean(a,b),

if ¬(stop(a,b)=true) ∧ ¬(f(mean(a,b))=0)
∧ eqsign(f(b),f(mean(a,b)))=true then b:=mean(a,b) }.

(20)

Notice that the algorithm Γ cannot be conceived as a conventional program: No program
would process any real numbers and any continuous function. Each computation of Γ in
fact approximates a zero of a continuous function f in the interval (a, b). (20) is indeed
a formalization of the informal description of the bisection algorithm in Sec. 2.2.

As a further example consider a system composed of four components:

prod: a producer to produce items,
send: a sender to send produced items to a buffer,
rec : a receiver to take items from the buffer,
cons: a consumer to consume items provided by the receiver.

We base the model of this system onto a signature including the 0-ary symbols x, y
and buffer. Their value may represent items to be processed by the system. Further-
more, the value of x and of y may be undefined (represented by x undef and y undef,
respectively), and the buffer may be empty (represented by b empty).

The components interact as follows: In case the value of x is undefined, the value of
item is assigned to x (by prod), then forwarded to the empty buffer (by send), removed
from the buffer and assigned to y (by rec), and finally consumed (by cons).

Applied to an initial state S0 with xS0 = x undefS0 , yS0
= y undefS0

and bufferS0 =
b emptyS0

, the following components define a sequential ASM program with the de-
scribed behaviour:

prod =def { if x=x undef then x := item },

send =def if ¬(x=x undef) ∧ buffer=b empty then
{ buffer := x, x := x undef },
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rec =def if ¬(buffer=b empty) ∧ y=y undef then
{ y := buffer, buffer := b empty },

cons =def { if ¬(y=y undef) then y := y undef }.

Then
Γ = prod ∪ send ∪ rec ∪ cons (21)

is the required sequential ASM. Its behaviour is:

S0
prod−−−→ S1

send−−−→ S2
prod−−−→
rec

S3
send−−−→
cons

S4
prod−−−→
rec

S5 . . . (22)

where each step is inscribed by the components with true guards. For reasons that will
become clear later on, we emphasize the order of occurrences of the components, thus
writing (22) as

prod send
rec cons

prod send prod

rec
... (23)

4 Distributed ASMs

In this section we will introduce distributed ASMs as sets of ASM programs. The
semantics of a distributed ASM will be defined by help of actions, which are then used
to construct distributed runs.

4.1 A distributed ASM is a set of ASM programs

Two ASM programs Γ1 and Γ2 may involve disjoint stores in a state S. Then nothing
prevents Γ1 and Γ2 to be concurrently executed.

This gives rise to the idea of a distributed version of ASMs: A distributed ASM is just
a nonempty, finite set of ASM programs, all over the same signature, Σ. These programs
are then called components of the distributed ASM, and every Σ-structure forms a state
of the distributed ASM. The components may be executed concurrently in case they
involve stores with separate locations.

As an example, consider the producer/consumer system of Sec. 3.4:

D = {prod, send, rec, cons} (24)

is a distributed ASM. Notice that D differs decisively from the sequential ASM in (21): A
sequential ASM is a single set of conditional assignment statements, while a distributed
ASM is a family of sets of conditional assignment statements.

This implies the notion of distributed run, to be considered in the sequel: A distributed
run of a distributed ASM is a partially ordered set of occurrences of the component
programs. Unordered occurrences represent concurrent execution of the corresponding
component programs.
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4.2 ASM programs describe actions

To formalize the above idea, we have to specify the stores involved when an ASM program
Γ is applied to a state S, i.e. when Γnew

S is computed. The stores Γold
S as discussed in (16)

and (17) are certainly involved. Furthermore, all terms and subterms occuring in the
assignment statements and conditions of Γ are involved. So, for a term t = f(t1, . . . , tn)
over Σ and a Σ-structure S, we define the set of involved stores invS(t), inductively by

invS(t) =def invS(t1) ∪ · · · ∪ invS(tn) ∪ {(locS(t), tS)}. (25)

For a boolean expression β, let T β denote the set of terms occuring in β. Then the
involved stores of β are the involved stores of all terms in T β:

invS(β) =def

⋃
t ∈ T β

invS(t). (26)

For an assignment statement

α : t := t′

and a state S we define

invS(α) =def invS(t) ∪ invS(t′). (27)

For a conditional assignment statement

γ : if β then α

and a state S we define

invS(γ) =def invS(β) ∪ invS(α). (28)

In case β is fulfilled in S, apparently holds

γold
S ∈ invS(γ). (29)

invS(γ) covers all ressources needed to execute γ, i.e. to compute the truth value of the
guard β and to compute γnew

S in case β is fulfilled. More precisely, if β is fulfilled,

inv′S(γ) =def (invS(γ) \ {γold
S }) ∪ {γnew

S } (30)

includes all involved stores after the execution of γ.
For an ASM program Γ we generalize the above notions by

invS(Γ) =def

⋃
γ∈Γ

invS(γ). (31)

According to (16) and (29), apparently holds

Γold
S ⊆ invS(Γ). (32)
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Hence, it makes sense to define

inv′S(Γ) =def (invS(Γ) \ Γold
S ) ∪ Γnew

S . (33)

Summing up, invS(Γ) contains all involved stores before the execution of Γ, and inv′S(Γ)
contains all involved stores after the execution of Γ. The locations of the stores in
invS(Γ) coincide with the locations of the stores in inv′S(Γ).

invS(Γ) is in fact all one needs to compute inv′S(Γ), as the following lemma shows:

Lemma 1. Let Γ be a ASM program and let S, R be states of Γ such that invS(Γ) =
invR(Γ). Then inv′S(Γ) = inv′R(Γ).

The proof of this lemma is postponed to Sec. 6.
We are now ready to define the fundamental notion of an action: Intuitively, an

action is an ASM program Γ together with a set of resources needed to execute Γ, and
the result of executing Γ. Technically, let S be a state such that at least one condition
of a statement in Γ is fulfilled and inv′S(Γ) is consistent. Then the action of Γ in state
S is:

ΓS =def (Γ, invS(Γ), inv′S(Γ)). (34)

Thus an ASM program performs an action in a state S, if at least one of its assignments
is executed and the assignments yield a consistent set of stores. We denote the set of all
actions of Γ by act(Γ). Notice that this definition fits well to the definition of steps of
an ASM program Γ in Sec. 3.3: Γ can perform an action ΓS in a state S if and only if
there is a step (S, S′) of Γ.

Steps and actions of an ASM program Γ are connected even more tightly: The steps
of Γ can be completely described by the actions of Γ, as the following lemma states:

Lemma 2. Let Γ be an ASM program and S, S′ be states of Γ. Then (S, S′) is a step of
Γ iff there is an action (Γ, A, B) ∈ act(Γ) with A ⊆ S̃ and

S̃′ = (S̃ \A) ∪B.

The proof of this lemma is postponed to Sec. 6.
The set of actions of a distributed ASM D = {Γ1, . . . ,Γn} is then defined by

act(D) =def act(Γ1) ∪ · · · ∪ act(Γn), (35)

i.e. the actions of a distributed ASM are constituted simply by the actions of its com-
ponents.

4.3 Actions have nice properties

Though almost trivial, it is worth noting that for an action (Γ, A, B), the sets A and B
are finite and the locations of the stores in A coincide with the locations of the stores in
B.

Of course, different states S1, S2 yield in general different sets invS1(Γ) and invS2(Γ) of
involved stores. Even more, the locations of both sets of stores may differ. For example,
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if x is a constant symbol with xS1 = 1 and xS2 = 2, the set invS1(f(x)) includes the
store (f, 1, f(x)S1), hence the location (f, 1), whereas invS2(f(x)) includes the store
(f, 2, f(x)S2), hence the location (f, 2).

Though the locations of invS1(Γ) and invS2(Γ) are in general different, they are never
disjoint: For a statement γ in Γ, γ includes at least one constant symbol x. As the
involved stores of γ are contained in both invS1(Γ) and invS2(Γ), this means that both
invS1(Γ) and invS2(Γ) contain a store with the location (x, ).

4.4 Distributed runs

As a technical framework for distributed runs we adopt some notions from the formalism
of Petri nets [9]: Each occurrence of an action is represented by an action atom, which
is an inscribed Petri net holding just one transition. Action atoms are then used to
construct distributed runs.

A Petri net is a tuple
N = (P, T, l)

where P and T are sets and l is a relation l ⊆ (P × T ) ∪ (T × P ). P is the set of
places of N , T is the set of transitions of N , and l is the flow relation of N . •t (and
t•) denotes the set of all p ∈ P with p l t (t l p, respectively).

We will only deal with a very special class of Petri nets, and slightly deviate from the
conventional graphical representation.

A distributed run of a distributed ASM D constitutes a partial order of action oc-
currences. Each action occurrence is represented by an action atom: For an action
a = (Γ, A, B) of D, an action atom of a is a simple Petri net inscribed by Γ, A, and B.
To be more precise, let (P, {t}, l) be a Petri net and let λ be an inscription of t and of
all p ∈ P such that

– •t and t• are disjoint,

– λ(t) = Γ,

– λ inscribes •t bijectively by the stores in A,

– λ inscribes t• bijectively by the stores in B.

Then Na = (P, {t}, l, λ) is an action atom of a. Since a is an action of the distributed
ASM D, Na is also called an action atom of D.

Reflecting the conventional graphical representation of Petri nets, an action atom of
the action (Γ, A, B) with A = {a1, . . . , an} and B = {b1, . . . , bn} is outlined as

Γ

a1

n b

1

n

...
...

a

b

.
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As a concrete example, consider the following action of the prod-component in (24):

(prod,{(item, ,�), (x undef, , ?), (x, , ?)},
{(item, ,�), (x undef, , ?), (x, ,�)}).

(36)

This action replaces the undefined value in x (represented by ?) by the item value
(represented by �). An action atom of this action is then outlined as

prod

item,

x,x,?

item,

x_undef,? x_undef,?

.

As a convention, for 0-ary symbols f we write “f, a” for the store (f, , a).
A distributed run R of a distributed ASM D is an inscribed Petri net, composed of

action atoms of D. An action of D may occur more than once in R. In this case, the
action is represented by different action atoms with equal inscriptions.

Technically, R is an inscribed occurrence net: An occurrence net is a Petri net N =
(P, T, l) where

– the transitive closure of l, denoted by <, is a strict partial order on P ∪ T ,

– for each p ∈ P , there exists at most one t ∈ T with t l p, and at most one t ∈ T
with p l t,

– for each x ∈ P ∪ T , { y | y < x } is finite.

For an occurrence net N , ◦N denotes the set of all p ∈ P with no predecessor t l p.
A distributed run of D is an inscribed occurrence net: Let (P, T, l) be an occurrence

net and let λ be an inscription of all p ∈ P and all t ∈ T where

– for each t ∈ T , the restriction of R to t, defined as

R|t =def (•t ∪ t•, {t}, l|{t}∪•t∪t• , λ|{t}∪•t∪t•),

is a action atom of D,

– there exists a state S0 of D, called the initial state of R, such that λ
inscribes ◦N bijectively by the stores in S̃0.

(37)

Then R = (P, T, l, λ) is is a distributed run of D.
Figure 2 outlines a finite distributed run of the producer/consumer system (24). First,

an action of the prod-component occurs, which assigns an item to x. Next, an action
of send occurs and moves the item from location x to location buffer. Subsequently,
an action of prod and an action of rec occur concurrently, as both actions involve
stores with separate locations: The prod-action puts an item to x again, while the rec-
action moves the item from buffer to y. For every transition t, observe that the subnet
constituted by t, •t and t• is indeed an action atom of (24).

In a distributed run R = (P, T, l, λ), global states are identified by the notion of cut.
A cut is a maximal set of unordered places with only finitely many preceding transitions.
More precisely, a cut of R is a set C ⊆ P such that
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buffer, buffer,

prod

send

prod

rec

x,x,? x,?

y,?

item, item,

x,

buffer,

y,

item,

x_undef,?

b_empty,

y_undef,?

x_undef,? x_undef,?

b_empty,

x_undef,?

b_empty,

y_undef,?

Figure 2: A distributed run of the distributed producer/consumer ASM.

– the places in C are pairwise unordered,

– C is maximal, i.e. there is no p ∈ P \C such that the places in C∪{p} are pairwise
unordered,

– the set T<C =def { t ∈ T | ∃p ∈ C : t < p } is finite.

According to this definition, ◦R is a cut of R, called the initial cut of R. As T<C is
required to be finite, every cut of R can be reached from the initial cut of R by finitely
many action occurrences. In Fig. 3, the dotted lines represent three different cuts of the
distributed run of the producer/consumer ASM.

buffer,

prod

send

prod

rec

x,x,? x,?

y,?

item, item,

x,

item,

y,

buffer,

x_undef,?

buffer,

b_empty,

y_undef,?

x_undef,? x_undef,?

b_empty,

x_undef,?

b_empty,

y_undef,?

Figure 3: Three cuts in a distributed run.

The following important property holds for every cut of a distributed run:

Lemma 3. Let D be a distributed ASM, let R be a distributed run of D, and let C be a
cut of R. Then there is a state S of D, such that the places in C are inscribed bijectively
by the stores in S̃.

Hence, every cut of a distributed run of D represents a state of D. Notice that the
inscriptions of each cut in Fig. 3 indeed constitute a state of the producer/consumer
system. The proof of this Lemma is postponed to Sec. 6.
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In Sec. 4.2 we have prevented actions (and steps in Sec. 3.3, respectively) of an ASM
program Γ to occur in a state S if

1. they yield an inconsistent set of stores, or

2. no condition of the statements in Γ is fulfilled in S.

Here we justify this proposal. If we admit actions to occur in such states, the resulting
actions would not change the state at all. Nevertheless, such actions would involve
stores and therefore could prevent the execution of other components. For example, the
component prod in (24) is guarded by the condition x = x undef. In a state S where
xS 6= x undefS , i.e. where an item is stored in x, this condition is not fulfilled. Executing
prod in such a state would create the action

(prod,{(x undef, , ?), (x, ,�)},
{(x undef, , ?), (x, ,�)}).

(38)

prod could execute this action infinitely often, without changing the state at all. This
would prevent execution of the component send, thus violating intuition.

For a distributed ASM {Γ} consisting of a single ASM program Γ, the notions of
distributed and sequential run coincide: According to Sec. 4.3, the stores of all actions
of Γ share at least one location. As a consequence of Lemma 3, places inscribed by stores
with equal locations are always ordered. Then, according to the definition of occurrence
nets, the action occurrences of a distributed run of {Γ} are totally ordered.

It is illuminating to compare the partial order of the component occurrences, as out-
lined in Fig. 4, with the partial order of (23): In fact, the latter is unnecessarily strict.
This is due to the lockstep semantics of a sequential ASM: A run is a sequence of steps,
and its action occurrences are unordered if they belong to the same step. This yields
partial orders with a transitive non-order relation, such as (23). Figure 4 shows that, for
a distributed run of a distributed ASM, non-order of action occurrences is not necessar-
ily transitive: The second production occurs unordered with first consumption, which in
turn occurs unordered to second send. But the second production is causally before the
second send. This example shows that distributed ASMs in fact provide a substantial
generalization of sequential ASMs.

send

prod

rec

cons

send

prod

rec

prod
...

...

Figure 4: The partial order of component occurrences of a distributed run of the pro-
ducer/consumer ASM.

The above semantics induces an inconvenient consequence, easily highlighted by an
example. Let

D = {Γ1,Γ2}

15



be a distributed ASM, with

Γ1 = {x := 1}
Γ2 = {y := 1}.

Intuitively, both components should be executed concurrently. But our semantics ex-
cludes concurrent access to the constant symbol 1.

As another example, let
D′ = {Γ′

1,Γ
′
2}

with

Γ′
1 = {x := f(a)}

Γ′
2 = {y := f(b)}.

In a state S where aS = bS , Γ′
1 and Γ′

2 are competing for the access to the location
(f, aS) and cannot be executed concurrently. In every other state, Γ′

1 and Γ′
2 can be

executed concurrently.
To overcome this problem, one may distinguish a subset Φ ⊆ Σ of the symbols in

the underlying signature Σ, assuming different instances fΓ of each f ∈ Φ for each
component Γ of a distributed ASM D. Φ would usually cover all symbols with a standard
interpretation, including e.g. symbols for the integers, the booleans and operations over
integers and booleans.

This is not too artificial: Assuming the components of a distributed ASM be imple-
mented on a computing network, each machine in fact has its own internal representation
of the values and functions of those symbols.

5 A characterization of distributed ASMs

Gurevich [7] characterizes the expressive power of sequential ASMs by help of sequential
algorithms. He formulates five necessary requirements for an algorithm to be reasonably
called “sequential”. 1st: A sequential algorithm A has a fixed signature Σ such that each
state of A is a Σ-structure. 2nd: The states S and S′ of a step (S, S′) have the same
universe. 3rd: The set of states (and, separately, the set of initial states) is closed under
isomorphism. 4th: The steps of A preserve isomorphism. The decisive 5th property of
a sequential algorithm is bounded exploration: Intuitively formulated, finite exploration
requires a finite set of Σ-terms be sufficient to characterize all steps. Gurevich then
proves that to each algorithm fulfilling those requirements there exists a sequential ASM
with the same set of sequential runs.

In analogy to sequential algorithms, in the following subsections we define the notion
of distributed algorithm by five axiomatic requirements. We then prove that to each
distributed algorithm there exists a distributed ASM with the same set of distributed
runs.
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5.1 A distributed algorithm consists of actions

In [7] Gurevich introduced a sequential algorithm A to consist of a set S of Σ-algebras,
the states of A, and of a set of steps (S, S′) with S, S′ ∈ S, encoded as a function
τA : S → S.

Global steps shaped (S, S′) cannot be used to describe distributed behavior. Steps
in a distributed algorithm occur locally and occasionally pairwise concurrent. Thus, we
define the notion of action over Σ to describe a local step: An action a over a signature
Σ is a pair

a = (A,B), (39)

where A and B are sets of stores of Σ such that A as well as B is consistent, and the
locations of the stores in A and in B coincide. In particular, if Γ is a sequential ASM
over a signature Σ and (Γ, A, B) is an action of Γ, then (A,B) is an action over Σ. To
refer to the components of an action a, let aold =def A denote the set of pre-stores of a,
and let anew =def B denote the set of post-stores of a.

A sequential algorithm consists of a set of steps. Correspondingly, we require a dis-
tributed algorithm to consist of a set of actions. Furthermore, steps of a sequential
algorithm contain only Σ-structures over a fixed signature Σ. We likewise require the
actions of a distributed algorithm all to be built over the same signature. Thus, we can
formulate the first requirement:

A distributed algorithm A consists of a set act(A) of actions over a fixed
signature Σ(A).

(R1)

The steps of a sequential algorithm generate sequential runs. Consequently, the actions
of a distributed algorithm generate distributed runs. These runs are defined similarly to
the runs of distributed ASMs as introduced in Sec. 4.4. Nevertheless, there is a small
deviation: In contrast to distributed ASMs, an action of a distributed algorithm does
not indicate an ASM program performing the action. Consequently, distributed runs of
distributed algorithms do not inscribe transitions by ASM programs.

So, given an action a over a signature Σ, an action atom of a is an inscribed Petri net
Na = (P, {t}, l, λ) where λ is an inscription of all p ∈ P and

– •t and t• are disjoint,

– λ inscribes •t bijectively by the stores in aold,

– λ inscribes t• bijectively by the stores in anew.

For an action a of a distributed algorithm A, Na is called an action atom of A.
A distributed run of a distributed algorithm A is defined as an inscribed occurrence

net R = (P, T, l, λ) where λ is an inscription of all p ∈ P and

– for each t ∈ T , the restriction of R to t, defined as

R|t =def (•t ∪ t•, {t}, l|{t}∪•t∪t• , λ|•t∪t•),

is a action atom of A,
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– there exists a Σ(A)-structure S0, called the initial state of R, such that λ inscribes
◦N bijectively by the stores in S̃0.

5.2 Actions of a distributed algorithm preserve elements

In [7] sequential algorithms are required to preserve the universe of states, i.e. if (S, S′)
is a step of a sequential algorithm, then S and S′ have the same universe. Hence, a step
of a sequential algorithm does not introduce new elements into the universe.

We require a corresponding property for the actions of a distributed algorithm: For
an action a, the stores of anew contain only elements that are contained in the stores
of aold already. To formalize this requirement, we define the elements of a store s =
(f, (u1, ..., un), u0) as

E(s) =def {u0, . . . , un}.

The elements of a set A of stores are then defined as

E(A) =def

⋃
s∈A

E(s).

Informally, E(A) contains all elements mentioned in A. We formulate the second re-
quirement:

For each action a of a distributed algorithm A, E(anew) ⊆ E(aold). (R2)

Thus, an action a of a distributed algorithm may use only elements already contained
in the stores of aold to perform the step. There is no way for an action to “magically”
create a new semantical element and to insert it to anew.

Due to (R2), for every distributed run R of a distributed algorithm holds: Every place
inscription of R contains only elements from the universe of the initial state of R.

5.3 A distributed algorithm respects isomorphism

In [7], sequential algorithms are required to respect isomorphism between states. An
isomorphism between two Σ-structures S1, S2 is a bijective function Φ : U(S1) → U(S2)
(Φ : S1 → S2 for short), such that

Φ(fS1(u1, . . . , un)) = fS2(Φ(u1), . . . ,Φ(un)) (40)

for all n-ary function symbols f in Σ and u1, . . . , un ∈ U(S1).
More precisely, the isomorphism requirement in [7] requires for two steps (S, S′), (R,R′)

and an isomorphism Φ : S → R, that Φ is an isomorphism from S′ to R′, too. Thus,
if S0 and S′

0 are isomorphic states of a sequential algorithm A with an isomorphism Φ,
and

S0 → S1 → S2 → S3 . . .

is a sequential run of A, then

S′
0 = Φ(S0) → Φ(S1) → Φ(S2) → Φ(S3) . . .
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is a sequential run of A, too. Intuitively, a sequential algorithm generates isomorphic
sequential runs for isomorphic initial states. This we require in the distributed case, too:
A distributed algorithm generates isomorphic distributed runs for isomorphic initial
states.

To formalize this requirement, we extend any isomorphism Φ : S1 → S2 to act on
stores s = (f, (u1, . . . , un), u0) ∈ S̃1 by

Φ(s) =def (f, (Φ(u1), . . . ,Φ(un)),Φ(u0)). (41)

This extension is straightforward: replace every element in s by the isomorphic element
according to Φ. Based on this definition, we can now formulate the third requirement:

Let R = (P, T, l, λ) be a distributed run of a distributed algorithm A and
let S0 be the initial state of R. Let S′

0 be a Σ(A)-structure isomorphic to
S0 and let Φ : S0 → S′

0 be an isomorphism. Then R′ = (P, T, l,Φ ◦ λ) is
a distributed run of A, too.

(R3)

Informally, (R3) states that a distributed algorithm creates isomorphic behaviours for
isomorphic initial states. The run R′ is well-defined: (R2) implies that every place
inscription of R contains only elements from the universe of S0. Therefore, Φ can be
applied to any place inscription of R.

5.4 Actions of a distributed algorithm act on autonomous sets of stores

In this section, we will present a requirement for distributed algorithms, for which [7]
has no counterpart. In contrast to sequential algorithms, the concept of distributed
algorithms is sensitive against resources and their locations: Each action a of a dis-
tributed algorithm specifies the locations of all semantical elements involved. More
precisely, aold must contain a store (l, u) for each u ∈ E(aold). To give an example, the
set {(x, , 1), (f, 1, 2)} meets this property, whereas {(f, 1, 2)} does not. We call the set
{(x, , 1), (f, 1, 2)} autonomous.

Definitely, an algorithm may only access locations comprising of semantical elements
available so far. The set of stores {(f, 1, 2), (f, 2, 1)} violates this requirement: 1 needs
to be available before the store (f, 1, 2) can be accessed, and, conversely, 2 needs to be
available before the store (f, 2, 1) can be accessed. That is, none of both stores could
have been accessed first. Consequently, we call {(f, 1, 2), (f, 2, 1)} not autonomous.

The following inductive definition of autonomous sets of stores ensures that only lo-
cations comprising of available elements are accessed:

– ∅ is an autonomous set of stores.

– If A is an autonomous set of stores and s = (f, (u1, . . . , un), u0) is a store
with u1, . . . , un ∈ E(A), then A ∪ {s} is an autonomous set of stores.

(42)

We can now formulate the fourth requirement:

For each action a of a distributed algorithm A, aold is autonomous. (R4)
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Notice that anew is not autonomous in general. To give an example, the ASM program
Γ = {x := f(x)} applied to a state S with xS = 1 and fS(1) = 2 yields the action

ΓS = (Γ, {(x, , 1), (f, 1, 2)},
{(x, , 2), (f, 1, 2)} ).

Obviously {(x, , 1), (f, 1, 2)} is autonomous, whereas {(x, , 2), (f, 1, 2)} is not.

5.5 Actions of a distributed algorithm are bounded

In [7] for every sequential algorithm A a finite set T of terms suffices to describe the
updates of all states, i.e. to compute the next state of any given state. Thus, a sequential
algorithm uses only a bounded set of resources of a state to compute the next state.

In the distributed case, all involved resources of an action a are fully contained in
aold, as aold is required to be autonomous. It remains to require the number of involved
resources to be bounded:

For a distributed algorithm A, there exists a constant c ∈ N such that for
each action a of A holds |aold| ≤ c. (R5)

Thus, for every distributed algorithm A, the number of stores involved in an action
is bounded. This requirement is rather natural, as in distributed systems an action is
usually considered to be atomic. Actions that grow beyond any bound would contradict
the intuition of atomicity.

5.6 A distributed ASM-Theorem

The sequential ASM-Theorem in [7] states that every sequential algorithm can be sim-
ulated by a sequential ASM. We formulate a similar theorem for distributed algorithms
we defined above: Every distributed algorithm can be simulated by a distributed ASM.
More precisely, for every distributed algorithm A, there exists a distributed ASM D such
that the actions of A and D coincide.

Technically, the actions of A and D differ: An action of D specifies the ASM program
executing the action, whereas an action of A does not. We call the actions of the dis-
tributed ASM D named and call the actions of the distributed algorithm A anonymous.
To integrate actions of A and D, we anonymize named actions by

anon((Γ, A, B)) =def (A,B).

The function anon extends canonically to sets of named actions: Let ACT be a set of
named actions, then

anon(ACT) =def { anon(a) | a ∈ ACT }.

The distributed ASM-Theorem then reads:
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Theorem 4. Let A be a distributed algorithm according to (R1), . . . , (R5). Then there
exists a distributed ASM D such that

act(A) = anon(act(D)).

Thus, the actions of every distributed algorithm can be fully specified by a distributed
ASM. On the other hand, it is easy to prove that every distributed ASM constitutes a
distributed algorithm by verifying (R1), . . . , (R5). As the actions of A and D coincide,
it follows immediately that A and D generate the same set of distributed runs, up to
transition inscriptions by ASM programs.

6 Proofs

This section presents the proof of Theorem 4. In the first two subsections we study
equivalences between states and prove some related properties. Next, we show how an
ASM program Γ can be constructed for a given action a such that a is an action of
Γ. Based on this construction, Theorem 4 is proven. Finally, the last three subsections
present the proofs of Lemma 1, 2 and 3.

6.1 ASM programs and their actions

As defined in (34), an ASM program Γ generates for each state S an action ΓS . In
this section we show how equivalences between states carry over to equivalences of the
generated actions.

The first equivalence is induced by isomorphism between states. To this end, we
extend isomorphisms to store sets and actions: Let S, R be isomorphic Σ-structures
with an isomorphism Φ : U(S) → U(R), and let A be a set of stores over Σ with
E(A) ⊆ U(S). Then

Φ(A) =def { Φ(s) | s ∈ A }

is a set of stores with E(Φ(A)) ⊆ U(R). For each named action (Γ, A, B) and each
anonymous action (A,B), we define

Φ((Γ, A, B)) =def (Γ,Φ(A),Φ(B)),
Φ((A,B)) =def (Φ(A),Φ(B)).

(43)

Hence, all elements occurring in the actions are replaced according to the isomorphism.
An ASM program yields isomorphic actions to isomorphic states, as the following

lemma shows:

Lemma 5. Let Σ be a signature, let Γ be an ASM program and let S, R be isomorphic
Σ-structures with an isomorphism Φ : S → R. Then ΓR = Φ(ΓS).

Proof. As Φ is an isomorphism from S to R, tR = Φ(tS) for all Σ-terms t. Applying
these equations to the definition of ΓR yields ΓR = Φ(ΓS).
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The second equivalence is equality of term interpretations. Assume two states coincide
on the interpretation of every term and every subterm occurring in an ASM program
Γ. Then Γ yields the same actions in both states. Formally, we define the subterm
closure �T of a set T of terms to be the least set such that T ⊆ �T and such that
f(t1, . . . , tn) ∈ �T implies t1, . . . , tn ∈ �T . The corresponding lemma then reads:

Lemma 6. Let Σ be a signature, let Γ be an ASM program over Σ, and let T be the set
of all terms occurring in Γ. Let S, R be Σ-structures such that tS = tR for all t ∈ �T .
Then ΓS = ΓR.

Proof. Applying the equations tS = tR for all t ∈ �T to the definition of ΓS yields
ΓS = ΓR.

6.2 T-equivalence

In addition to the equivalences of the preceding section, we introduce T -equivalence in
this section, where T is a set of Σ-terms. Two Σ-structures R and S are T -equivalent if
both R and S concordantly identify the terms in T by their interpretations:

Definition 1 (T -equivalence). Let Σ be a signature, and let T be a set of Σ-terms. Let
S, R be Σ-structures such that tS = t′S iff tR = t′R for all t, t′ ∈ T . Then S and R are
T -equivalent.

The following lemma characterizes T -equivalence in terms of isomorphism and equal-
ity:

Lemma 7. Let Σ be a signature, and let T be a set of Σ-terms. Two Σ-structures S and
R are T -equivalent iff there exists a Σ-structure Q such that S and Q are isomorphic
and tQ = tR for all t ∈ T .

Proof. (⇒) Generate Q from S by replacing for all t ∈ T the element tS by tR and by
replacing every other element from U(S) by a new element not contained in U(S). As S
and R are T -equivalent, this construction is well-defined. By construction of Q, S and
Q are isomorphic, and tQ = tR for all t ∈ T .

(⇐) For all t, t′ ∈ T holds

tS = t′S ⇔ tQ = t′Q (as S and Q are isomorphic)

⇔ tR = t′R (as tQ = tR for all t ∈ T ).

Hence, S and R are T -equivalent.

6.3 Deriving ASM programs from actions

We prove Theorem 4 in a constructive manner, i.e. for a given distributed algorithm,
we construct a distributed ASM. The foundations of this construction are laid in this
section: For an action a of a distributed algorithm, an ASM programm Γ is constructed
such that a is an action of Γ.
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First of all, we introduce a simplifying notation: For a set A of stores over Σ, let

L(A) =def { l | (l, u0) ∈ A } (44)

denote the set of locations of A. The following lemma and its proof then provide the
first step of the construction of the ASM programm Γ: From aold a set T of terms is
derived such that invS(T ) = aold for some state S, with

invS(T ) =def

⋃
t∈T

invS(t). (45)

Later, Γ will be constructed from the terms in T .

Lemma 8. Let Σ be a signature and let A be an consistent and autonomous set of stores
over Σ. Let S be a Σ-structure such that A ⊆ S̃. Then there exists a finite set T of
Σ-terms such that

– T is closed under subterms,

– invS(T ) = A,

– for every u ∈ E(A) there is a term tu ∈ T with tuS = u,

– for every l ∈ L(A) there is a term tl ∈ T with locS(tl) = l.

Proof. We prove this by induction over A:
Base: Let A = ∅. Then T = ∅ satisfies the requirements.
Step: Let A 6= ∅. As A is autonomous, according to (42) there is an autonomous subset
A′ ⊂ A such that A = A′ ∪ {(f, (u1, . . . , un), u0)} with u1, . . . , un ∈ E(A′). Let Lemma
8 hold for A′. That is, there is a set T ′ of Σ-terms such that

– T ′ is closed under subterms, (46)

– invS(T ′) = A′, (47)

– for every u ∈ E(A′) there is a term tu ∈ T ′ with valS(tu) = u. (48)

– for every l ∈ L(A′) there is a term tl ∈ T ′ with locS(tl) = l. (49)

As u1, . . . , un ∈ E(A′), and by the use of (48), set

t =def f(tu1 , . . . , tun),
T =def T ′ ∪ {t}.

As A ⊆ S̃, (f, (u1, . . . , un), u0) ∈ S̃. Therefore,

tS = fS(tu1
S , . . . , tun

S )
= fS(u1, . . . , un) (by (48))

= u0 (as (f, (u1, . . . , un), u0) ∈ S̃). (50)
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Furthermore,

locS(t) = (f, (tu1
S , . . . , tun

S ))
= (f, (u1, . . . , un)) (by (48)). (51)

By construction of t and by (46), T is closed under subterms. We show invS(T ) = A:

invS(T ) =invS(T ′) ∪ invS(t)
(as T = T ′ ∪ {t} and by (45))

=invS(T ′) ∪ invS(tu1) ∪ · · · ∪ invS(tun) ∪ {(locS(t), tS)}
(by (25))

=invS(T ′) ∪ {(locS(t), tS)}
(as tu1 , . . . tun ∈ T ′ and by (45))

=invS(T ′) ∪ {(f, (u1, . . . , un), u0)}
(by (50) and (51))

=A′ ∪ {(f, (u1, . . . , un), u0)}
(by (47))

=A.

Now we prove that, for every u ∈ E(A), there is a term tu ∈ T with tuS = u: In case
u ∈ E(A′), this is true according to (48). In case u 6∈ E(A′), u = u0. With tu =def t and
by (50) holds

tuS = tS = u0 = u.

Finally, for l ∈ L(A), we show that there is a tl ∈ T with locS(tl) = l: In case
l ∈ L(A′), this is true according to (49). In case l 6∈ E(A′), l = (f, (u1, . . . , un)). With
tl =def t and by (51) holds

locS(tl) = locS(t) = (f, (u1, . . . , un)) = l.

The following lemma states that the involved stores of an ASM program Γ are com-
pletely determined by the terms occurring in Γ.

Lemma 9. Let Σ be a signature, let Γ be an ASM program and let T be the set of all
terms occurring in Γ. let S be a Σ-structure such that the guard of at least one statement
in Γ is fulfilled. Then invR(Γ) = invR(T ).

Proof. For every boolean expression β over Σ, let T β denote the set of all terms occurring
in β. By (26), invS(β) = invS(T β). For every assignment statement α: t := t0, let
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Tα = {t, t0}. By (27), invS(α) = invS(Tα). Then holds:

invS(Γ) =
⋃

(if β then α)∈Γ

invS(if β then α)

=
⋃

(if β then α)∈Γ

invS(β) ∪ invS(α) (by (31))

=
⋃

(if β then α)∈Γ

invS(T β) ∪ invS(Tα)

= invS(
⋃

(if β then α)∈Γ

T β ∪ Tα)

= invS(T ).

In analogy to isomorphisms between structures, we introduce action isomorphisms
between actions: Two actions are isomorphic if they can be derived from each other
by bijectively replacing their elements. The set of elements of an action a is simply
defined by E(a) =def E(aold)∪E(anew). Formally, action isomorphisms are then defined
as follows:

Definition 2 (action isomorphism). Let Σ be a signature and let a, b be actions over
Σ. Further let φ : E(a) → E(b) be a bijection such that φ(a) = b, with φ(a) defined as
in (43). Then φ is an action isomorphism between a and b, and a and b are isomorphic,
written a ∼= b. The isomorphism class of a is

[a] =def { b | b ∼= a }.

As announced at the beginning of this section, the following lemma and the corre-
sponding proof present, for a given action a of a distributed algorithm, the construction
of an ASM program Γ such that a is an action of Γ. Furthermore, this construction
ensures every other action of Γ to be isomorphic to a:

Lemma 10. Let Σ be a signature and let a be an action over Σ such that aold is
autonomous and E(anew) ⊆ E(aold). Then there is an ASM program Γ such that
anon(act(Γ)) = [a].

Proof. We start with the construction of Γ and prove anon(act(Γ)) = [a] afterwards. Let
S be a Σ-structure with aold ⊆ S̃. By Lemma 8, there is a finite set T of Σ-terms such
that

– T is closed under subterms,

– invS(T ) = aold, (52)

– for every u ∈ E(aold) there is a term tu ∈ T with tuS = u. (53)
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– for every l ∈ L(aold) there is a term tl ∈ T with locS(tl) = l. (54)

As T is finite, we can construct the following boolean expression:

β =
∧

t,t′∈T

{
(t = t′) , if tS = t′S
¬(t = t′) , otherwise

For each store (l, u0) ∈ anew holds: As L(aold) = L(anew), l ∈ L(aold). As E(anew) ⊆
E(aold), u0 ∈ E(aold). Therefore, by the use of (53) and (54), set

Γ =def { if β then tl := tu0 | (l, u0) ∈ anew }.

This construction implies the following properties:

1. anon(ΓS) = a, (55)

2. [a] ⊆ anon(act(Γ)),

3. anon(act(Γ)) ⊆ [a].

In the following we prove each of the these properties separately.

Proof of 1. By construction of β, S satisfies β. First, we show Γnew
S = anew:

Γnew
S = { (tl := tu0)new

S | (l, u0) ∈ anew } (by (17))

= { (locS(tl), tu0
S ) | (l, u0) ∈ anew } (by (10))

= { (l, u0) | (l, u0) ∈ anew } (by (53) and (54))
= anew.

Next, we show Γold
S = aold:

Γold
S = { (l, u0) ∈ S̃ | l ∈ L(Γold

S ) } (as Γold
S ⊆ S̃ and as S̃ is consistent)

= { (l, u0) ∈ S̃ | l ∈ L(Γnew
S ) } (as L(Γold

S ) = L(Γnew
S ))

= { (l, u0) ∈ S̃ | l ∈ L(anew) } (as Γnew
S = anew)

= { (l, u0) ∈ S̃ | l ∈ L(aold) } (as L(aold) = L(anew))

= aold (as aold ⊆ S̃ and as S̃ is consistent).

Finally, we show invS(Γ) = aold:

invS(Γ) = invS(T ) (by Lemma 9)

= aold (by (52)).

Summing up, Γnew
S = anew, Γold

S = aold, and invS(Γ) = aold. Therefore, we conclude

inv′S(Γ) = (invS(Γ) \ Γold
S ) ∪ Γnew

S = (aold \ aold) ∪ anew = anew. (56)
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(52) and (56) together yield

anon(ΓS) = (invS(Γ), inv′S(Γ)) = (aold, anew) = a.

Proof of 2. Let b ∈ [a], i.e. b ∼= a. Let φ be an action isomorphism from a to
b. Construct from S a Σ-structure R by replacing every element u ∈ E(a) by φ(u)
and every other element from U(S) by a new one not contained in U(S). Then R is
isomorphic to S with an isomorphism Φ such that φ = Φ|E(a). Then

anon(ΓR) = anon(Φ(ΓS)) (by Lemma 5)
= Φ(anon(ΓS))
= Φ(a) (by (55))
= φ(a) (as φ = Φ|E(a))

= b (by Def. 2)

Hence, b ∈ anon(act(Γ)).

Proof of 3. Let b ∈ anon(act(Γ)). Then there is a Σ-structure R such that R |= β and
b = anon(ΓR). As β is satisfied by R and S, for all t, t′ ∈ T holds

tR = t′R ⇔ tS = t′S .

Hence, R and S are T -equivalent. According to Lemma 7, there is a Σ-structure Q such
that S and Q are isomorphic and tQ = tR for all t ∈ T . Let Φ be an isomorphism from
S to Q. By construction of Γ, T is the set of all terms occurring in Γ. Furthermore, as
T is closed under subterms, T = �T . Then

Φ(a) = Φ(anon(ΓS)) (by (55))
= anon(Φ(ΓS))
= anon(ΓQ) (by Lemma 5)
= anon(ΓR) (as tQ = tR for all t ∈ �T and by Lemma 6)
= b.

Therefore, Φ|E(a) is an action isomorphism from a to b, i.e. b ∈ [a].

6.4 Main proof

In this section we present two important lemmata, and finally prove Theorem 4. The
first lemma states that, for a distributed algorithm A and for an action a of A, each
action b ∼= a is an action of A, too. Hence, act(A) is closed under action isomorphism.

Lemma 11. Let A be a distributed algorithm and let a ∈ act(A). Then [a] ⊆ act(A).

Proof. Let b ∈ [a] and let φ be an action isomorphism between a and b. Let S be a state
such that aold ⊆ S̃. Let R = (P, T, l, l) be a distributed run of A with initial state S
and one occurrence of action a, i.e. T = {t} and R|t is an action atom of a.
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Construct a Σ-state S′ from S by replacing every u ∈ E(a) by φ(u) and every other
element from U(S) by a new one not contained in U(S). By construction, S is isomorphic
to S′ with an isomorphism Φ such that φ = Φ|E(a).

According to (R3), R′ = (P, T, l,Φ ◦ l) is a distributed run of A. As R|t is an action
atom of a, R′

|t is an action atom of Φ(a). Hence, as Φ(a) = φ(a) = b, R′
|t is an action

atom of b. Therefore, b is an action of A, otherwise R′ would not be a run of A.

According to (R5), actions of a distributed algorithm are bound in size. Therefore,
the following lemma holds:

Lemma 12. Let A be a distributed algorithm. Then act(A) decomposes into finitely
many equivalence classes wrt ∼=.

Proof. According to (R5), the size of steps in act(A) is bounded by a constant c. There-
fore, there is an upper bound m ∈ N such that |E(a)| ≤ m for all actions a ∈ act A.

Let M be a set consisting of m elements. Then for every action a of A, construct
an action aM by replacing each element in E(a) by an unique element from M . By
construction, E(aM ) ⊆ M and a ∼= aM .

Let actM denote the set of all actions b over Σ with E(b) ⊆ M . As M is finite, actM

is finite, too. But since every action a ∈ act(A) is isomorphic to aM ∈ actM , act(A)
decomposes into finitely many isomorphism classes.

Finally, we prove Theorem 4:

Proof of Theorem 4. According to Lemma 12, the equivalence ∼= decomposes act(A) into
finitely many equivalence classes C1, . . . , Cn.

For i = 1, . . . , n, choose an action ai ∈ Ci. According to Lemma 10, for every i =
1, . . . , n there is an ASM program Γi such that

anon(act(Γi)) = [ai]. (57)

According to Lemma 11, for every equivalence class Ci, i = 1, . . . , n, holds [ai] ⊆ Ci.
As all actions in Ci are pairwise isomorphic,

Ci = [ai]. (58)

(57) and (58) yield:
Ci = anon(act(Γi)). (59)

Thus, every equivalence class Ci is generated by an ASM program Γi.
For the distributed ASM D = {Γ1, . . . ,Γn} then holds:

act(A) = C1 ∪ · · · ∪ Cn

= anon(act(Γ1)) ∪ · · · ∪ anon(act(Γn)) (by (59))
= anon(act(Γ1) ∪ · · · ∪ act(Γn))
= anon(act(D)). (by (35))
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6.5 Proof of Lemma 1

Lemma 1 states that for an ASM program Γ and for a state S of Γ, invS(Γ) comprises
all stores needed to compute inv′S(Γ). More precisely, in case invS(Γ) = invR(Γ) for two
states S, R of Γ, inv′S(Γ) = inv′R(Γ).

Before proving Lemma 1, we present three preparing lemmata. Intuitively, the first
lemma states that the evaluation of a term is fully determined by its set of involved
stores.

Lemma 13. Let Σ be a signature, let T be a set of Σ-terms closed under subterms, and
let S, R be Σ-structures such that invR(T ) ⊆ S̃. Then tS = tR for all t ∈ T .

Proof. Let t ∈ T . The proof is given by induction over the subterms in t.
Base: Let t be a 0-ary function symbol. By (25) holds (t, , tR) ∈ invR(t). As

invR(t) ⊆ invR(T ) ⊆ S̃, (t, , tR) ∈ S̃. By (2), (t, , tS) ∈ S̃. As S̃ is consistent, tS = tR.
Step: Let t = f(t1, . . . , tn) and let tiR = tiS for all i = 1, . . . , n. By (25) holds

(f, (t1R, . . . , tnR), tR) ∈ invR(t). As invR(t) ⊆ invR(T ) ⊆ S̃, (f, (t1R, . . . , tnR), tR) ∈ S̃.
As tiR = tiS for all i = 1, . . . , n, (f, (t1S , . . . , tnS), tR) ∈ S̃. By (2), (f, (t1S , . . . , tnS), tS) ∈
S̃. As S̃ is consistent, tS = tR.

The next lemma states that the evaluation of involved stores is invariant under subterm
closure:

Lemma 14. Let Σ be a signature, and let T be a finite set of Σ-terms. Then for every
Σ-structure S holds invS(T ) = invS(�T ).

Proof. Obviously, the lemma holds in case T = �T . Therefore, let T ⊂ �T . Let t =
f(t1, . . . , tn) ∈ T such that tk 6∈ T for some k ∈ {1, . . . , n}. By (25), invS(tk) ⊆ invS(t).
As t ∈ T , invS(t) ⊆ invS(T ). Hence, invS(tk) ⊆ invS(T ).

invS(T ) = invS(T ) ∪ invS(tk) (as invS(tk) ⊆ invS(T ))
= invS(T ∪ {tk}). (by (45))

Thus, the set of involved stores does not change if the subterm tk is added to T .
Repeating this step iteratively, we gain a sequence of subterms v1, . . . , vm such that
�T = T ∪ {v1, . . . , vm}, and

invS(T ) = invS(T ∪ {v1, . . . , vm})
= invS(�T ).

The next lemma states that the action of an ASM program is fully determined by the
set of involved stores.

Lemma 15. Let Σ be a signature, let Γ be an ASM program, and let S, R be Σ-structures
such that invR(Γ) ⊆ S̃. Then ΓS = ΓR.
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Proof. Let T be the set of all terms occurring in Γ. Then

invR(�T ) = invR(T ) (by Lemma 14)
= invR(Γ) (by Lemma 9)

⊆ S̃. (by preconditions)

Then, according to Lemma 13, tR = tS for all t ∈ �T . Lemma 6 then implies ΓR =
ΓS .

The following proof shows that Lemma 1 is a corollary of Lemma 15:

Proof of Lemma 1. As invS(Γ) ⊆ S̃ and as invS(Γ) = invR(Γ), invR(Γ) ⊆ S̃. According
to Lemma 15, ΓR = ΓS . By (34), inv′R(Γ) = inv′S(Γ).

6.6 Proof of Lemma 2

Lemma 2 states that the actions of an ASM program Γ fully characterize the steps of Γ.
More precisely, (S, S′) is a step of Γ iff there is an action (Γ, A, B) of Γ with A ⊆ S̃ and
S̃′ = (S̃ \A) ∪B.

Proof of Lemma 2. In (18), a step of Γ is defined by Γold
S and Γnew

S . First we show that
a step of Γ can also be described by means of invS(Γ) and inv′S(Γ): According to (18),
(S, S′) is a step of Γ iff S̃′ = (S̃ \ Γold

S ) ∪ Γnew
S . We derive

S̃′ = (S̃ \ Γold
S ) ∪ Γnew

S

= (((S̃ \ invS(Γ)) ∪ invS(Γ)) \ Γold
S ) ∪ Γnew

S (as invS(Γ) ⊆ S̃)

= ((S̃ \ invS(Γ)) \ Γold
S ) ∪ (invS(Γ) \ Γold

S ) ∪ Γnew
S (distributivity of ∪ and \)

= (S̃ \ invS(Γ)) ∪ (invS(Γ) \ Γold
S ) ∪ Γnew

S (by (32))

= (S̃ \ invS(Γ)) ∪ inv′S(Γ) (by (33)).

Hence, (S, S′) is a step of Γ iff

S̃′ = (S̃ \ invS(Γ)) ∪ inv′S(Γ). (60)

We will prove both directions of the lemma separately.
(⇒) Let (S, S′) be a step of Γ. By (34), (Γ, A, B) with A = invS(Γ) and B = inv′S(Γ)

is an action of Γ. According to (60), it follows S̃′ = (S̃ \ invS(Γ))∪ inv′S(Γ) = (S̃ \A)∪B.
(⇐) Let (Γ, A, B) be an action of Γ with A ⊆ S̃. Then there is a state R such that

A = invR(Γ), and B = inv′R(Γ).
As invR(Γ) = A and A ⊆ S̃, invR(Γ) ⊆ S̃. According to Lemma 15, ΓR = ΓS . By

(34), A = invR(Γ) = invS(Γ) and B = inv′R(Γ) = inv′S(Γ). According to (60), (S, S′)
with

S̃′ = (S̃ \ invS(Γ)) ∪ inv′S(Γ)

= (S̃ \A) ∪B

is a step of Γ.
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6.7 Proof of Lemma 3

Lemma 3 states that every cut of a distributed run R = (P, T, l, λ) of a distributed
ASM D is inscribed bijectively by the stores of a state S of D. Though Lemma 3 is
intuitively correct, the proof is rather technical. We will only present the main steps of
the proof, and leave technical details to the reader.

Proof of Lemma 3. Let C be a fixed cut of R. According to the definition of cut,
T<C =def { t ∈ T | ∃p ∈ C : t < p } is finite. Let t1, . . . , tn be an ordering of the
transitions in T<C such that ti < tj for all 0 ≤ i < j ≤ n (i.e. t1, . . . , tn is a total
ordering of the partially ordered set T<C). Then there is a unique sequence of cuts
C0, C1, . . . , Cn such that C0 = ◦R, Cn = C, •ti ⊆ Ci−1 and Ci = Ci−1 \ •ti ∪ ti

• for
i = 1, . . . , n.

We prove by induction that, for i = 0, . . . , n, λ inscribes the places in Ci bijectively
by the stores of a Σ-structure Si:

Base: Let S0 be the initial state of R. Then, by the definition of distributed run, C0

is inscribed bijectively by the stores of S0.
Step: Let λ inscribe Ci−1 bijectively by the stores of a Σ-structure Si−1. Then

λ(Ci) = λ(Ci−1 \ •ti ∪ ti
•)

= λ(Ci−1 \ •ti) ∪ λ(ti•)
= λ(Ci−1) \ λ(•ti) ∪ λ(ti•)

The last step holds, as •ti ⊆ Ci−1 and as λ is injective on Ci−1. Therefore, since λ(•ti)
as well as λ(ti•) is consistent, and since the locations of λ(•ti) and λ(ti•) coincide, λ(Ci)
is consistent, and the locations of λ(Ci−1) and λ(Ci) coincide. Hence, the stores in λ(Ci)
constitute a Σ-structure Si.

Finally, we have to show that λ is injective on Ci. Assume that λ is not injective
on Ci. Then there are two places p, q ∈ Ci such that p 6= q and λ(p) = λ(q). As
Ci = Ci−1 \ •ti ∪ ti

•, {p, q} ⊆ Ci−1 \ •ti ∪ ti
•. As λ is injective on Ci−1 \ •ti and ti

•,
respectively, neither {p, q} ⊆ Ci−1 nor {p, q} ⊆ ti

•. Therefore, WLOG let p ∈ Ci−1 \ •ti
and let q ∈ ti

•. As the locations of λ(•ti) and λ(ti•) coincide, there is a place r ∈ •ti
such that the locations of λ(r) and λ(q) are same. As λ(q) = λ(p), the locations of λ(r)
and λ(p) are same. Therefore, as r, p ∈ Ci and r 6= p, either λ(Ci) is inconsistent, or λ
is not injective on Ci. This contradicts the induction assumption.

7 Conclusion

Sequential small-step ASMs and distributed ASMs are important classes of ASMs in
the systematic framework of ASMs, as presented e.g. in [6] and in [4]. In this work
we introduced a basic version of distributed small-step ASMs and studied its expressive
power in the style of [7].

To this end, we identified actions to be the fundamental building blocks of the seman-
tics of distributed small-step ASMs. In contrast to the steps of sequential ASMs, which
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describe global state changes, actions describe local state changes. Therefore, in case
two actions act on disjoint locations, they may occur concurrently. Consistent with the
definitions in [6], a distributed run then represents a partial order of action occurrences.

In analogy to the sequential small-step algorithms in [7], we characterized the expres-
sive power of distributed ASMs by the class of distributed algorithm. This class is defined
by five axiomatic requirements, some of which are very similar to the requirements in [7].
The proof of the characterization employs some of the arguments given in [7]. Neverthe-
less, since distributed ASMs introduce concurrency not considered in [7], some further
arguments and more technical effort is required.

Our future research concentrates on more expressive semantics of distributed ASMs
than the occurrence net semantics presented in this work. In [6] Gurevich introduced
a version of distributed ASMs offering advanced features like concurrent access to loca-
tions, adding and removing agents, and references to agents. Our aim is to find further
variants of distributed ASMs, maybe less expressive than the version in [6], and to ex-
amine their expressive power. Furthermore, we intend to study the suitability of these
variants for the specification and analysis of distributed algorithms.
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