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The use of urine proteomic and metabonomic
patterns for the diagnosis of interstitial cystitis
and bacterial cystitis

Que N. Vana, John R. Klosea, David A. Lucasa, DaRue A. Prietoa, Brian Lukeb, Jack Collinsb,
Stanley K. Burtb, Gwendolyn N. Chmurnya, Haleem J. Issaqa, Thomas P. Conradsa,
Timothy D. Veenstraa and Susan K. Keayc,d,∗
aLaboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., NCI Frederick, Frederick, MD, USA
bAdvanced Biomedical Computer Center, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
cDivision of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore,
MD 21201, USA
dResearch Service, VA Maryland Health Care System, Baltimore, MD 21201, USA

Abstract. The advent of systems biology approaches that have stemmed from the sequencing of the human genome has led to
the search for new methods to diagnose diseases. While much effort has been focused on the identification of disease-specific
biomarkers, recent efforts are underway toward the use of proteomic and metabonomic patterns to indicate disease. We have
developed and contrasted the use of both proteomic and metabonomic patterns in urine for the detection of interstitial cystitis
(IC). The methodology relies on advanced bioinformatics to scrutinize information contained within mass spectrometry (MS)
and high-resolution proton nuclear magnetic resonance (1H-NMR) spectral patterns to distinguish IC-affected from non-affected
individuals as well as those suffering from bacterial cystitis (BC). We have applied a novel pattern recognition tool that employs an
unsupervised system (self-organizing-type cluster mapping) as a fitness test for a supervised system (a genetic algorithm). With
this approach, a training set comprised of mass spectra and1H-NMR spectra from urine derived from either unaffected individuals
or patients with IC is employed so that the most fit combination of relative, normalized intensity features defined at precisem/z or
chemical shift values plotted inn-space can reliably distinguish the cohorts used in training. Using this bioinformatic approach,
we were able to discriminate spectral patterns associated with IC-affected, BC-affected, and unaffected patients with a success
rate of approximately 84%.

1. Introduction

With the rapid development of methods in the fields
of genomics (DNA), transcriptomics (mRNA), pro-
teomics (proteins), and metabonomics (low molecu-
lar weight metabolites) there is general enthusiasm to-
wards revolutions in systems biology that will lead to
more advanced approaches to diagnostics and thera-

∗Corresponding authot: Dr. Susan Keay, VA Medical Center,
Room 3B-184, 10 N. Greene Street, Baltimore, MD 21201, USA.
TeL.: +1 410 605 7000 ext. 6450; Fax: +1 410 605 7837; E-mail:
skeay@umaryland.edu.

peutics. Much of the effort in these areas focuses on
comparing thousands of species between unaffected
and diseased individuals with the hope that one, or a
few, key differences in the two states may be identified.
While ideally these differences would be recognized
in readily obtainable biofluids such as urine, plasma,
or serum, the inter-person variability of these samples
makes the identification of unique, disease-reflective
differences quite challenging. While unique biomark-
ers, such as HCG for pregnancy, are extremely effec-
tive, others such as Cancer Antigen 125 and prostate
specific antigen possess poor positive-predictive value
– particularly for early disease stage diagnosis.
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Petricoin et al. have recently demonstrated that
low molecular weight serum proteomic patterns from
surface-enhanced laser desorption ionization time-of-
flight mass spectral (SELDI TOF-MS) data can dis-
tinguish neoplastic from non-neoplastic disease within
the ovary [16]. A key aspect to their study was the
application of a high-order self-organizingcluster anal-
ysis approach based on a genetic algorithm that was
“trained” on SELDI-TOF MS spectra from serum de-
rived from either healthy women or women with ovar-
ian cancer. The “trained” algorithm was applied to a
masked set of samples and resulted in a sensitivity of
100%, a specificity of 95% and a positive-predictive
value of ovarian cancer of 94% [16]. The success of
the use of proteomic patterns for the diagnosis of stage
I ovarian cancer suggests that patterns generated from
other biomolecules within biofluids may also provide a
useful indicator of the early onset of a particular disease
state.

Since proteomic patterns of serum acquired using
SELDI TOF-MS can be diagnostic of a particular dis-
ease state, it follows that spectral patterns of biofluids
acquired using other types of analytical techniques may
also be useful diagnostic tools. Nuclear magnetic reso-
nance (NMR) spectroscopic analysis of bulk biofluids
such as urine or plasma (e.g. metabonomics) has been
utilized as a means to measure time-related biochemical
responses resulting from physiological, pathological,
or interventional genetic events [12–14]. High-field
proton (1H) NMR spectra of biofluids typically con-
tain several hundred resolvable lines, potentially pro-
viding structural and quantitative information on hun-
dreds of compounds in a single, nondestructive analy-
sis that takes only a few minutes. The resulting spec-
trum provides a profile of the metabolic status of the
organism. Recently, Brindle et al. showed the capa-
bility of discriminating serum samples acquired from
patients with coronary heart disase from those with an-
giographically normal coronary arteries by analyzing
the1H-NMR spectra of each sample using a supervised
partial least squares discriminant algorithm [1]. This
non-invasive method was shown to have a specificity
of >90%.

We studied the effectiveness of analyzing MS and
1H-NMR data using a genetic algorithm combinedwith
a self-organizing cluster analysis to correctly discrim-
inate urine samples from individuals suffering from
interstitial cystitis (IC) from those of healthy individ-
uals. IC is a debilitating chronic bladder disease of
unknown etiology that affects an estimated 750,000
women in the United States, with one-tenth as many

men also diagnosed with this disease [2,15,17,18]. IC
is currently diagnosed only by symptomatic criteria
(urinary frequency plus pain and/or urgency) in the ab-
sence of specific identifiable causes, combined with
cystoscopic findings (including petechial hemorrhages
called “glomerulations” in approximately 90% of pa-
tients, or ulcers that extend into the lamina propria in
approximately 10%) [3,6,20]. None of these symp-
toms, however, are specific for IC, and the specificity
of glomerulations for this disorder has also been called
into question [21], making it currently difficult to es-
tablish the diagnosis of IC in a particular patient. Sev-
eral urine biomarkers have been associated with IC that
ultimately may prove to be useful for the noninvasive
diagnosis of this disorder, including an antiproliferative
factor (APF) that inhibits the proliferation of normal
primary human bladder epithelial cellsin vitro [4,7,9],
heparin-binding epidermal growth factor-like growth
factor, and epidermal growth factor [4,8,10]. Addi-
tional noninvasive diagnostic criteria based on urine or
serum markers would be useful for establishing the di-
agnosis of IC as well as for understanding the patho-
genesis of this disorder. In addition, to determine the
specificity of findings related to IC specimens, we gen-
erated proteomic and NMR spectral patterns of urine
samples from people suffering from acute bacterial cys-
titis (BC). In the following we describe the use of MS
and1H NMR spectra of urine obtained from patients
with IC, patients with BC, and unaffected controls to
identify those patients with interstitial cystitis.

2. Materials and methods

2.1. Patients

All 40 female and 10 male IC patients had previ-
ously undergone cystoscopy and fulfilled the NIDDK
diagnostic criteria for IC [3]. In addition, 30 females
were identified as having acute bacterial cystitis (diag-
nosed by the presence of bacteriuria with>103 of a sin-
gle type of bacteria per milliliter of urine, plus pyuria,
in combination with appropriate symptoms). Asymp-
tomatic controls included individuals that were age-
(± 5 years), race- and sex-matched to the IC patients
(i.e. 40 females and 10 males). All participants were
at least 18 years old and were enrolled in accordance
with guidelines of the Institutional Review Board of the
University of Maryland School of Medicine.
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2.2. Urine specimens

Urine was collected by the clean catch method in
which each IC patient, bacterial cystitis patient, or con-
trol wiped the labial area with 10% povidone iodine
solution and then collected midstream urine into a ster-
ile container. Specimens were initially kept at 4◦C,
then transported to the laboratory where cellular de-
bris was removed by low speed centrifugation at 4◦C.
Urine samples were adjusted to pH 7.2 (using 10 N
HCl or 10 N NaOH) and 300 mOsm (using 1 M NaCl
or ddH2O), and filtered through a 0.2µm pore size
filter (Gelman Sciences, Ann Arbor, MI). Each speci-
men was aliquoted under sterile conditions and stored
at –80◦C.

2.3. ProteinChip array sample preparation

WCX2 ProteinChip arrays were loaded into a 96-
well bioprocessor (Ciphergen Biosystems Inc., Palo
Alto, CA) and activated with 10 mM HCL. Arrays were
washed with HPLC-grade water and pre-equilibrated
with binding buffer (50mM sodium acetate, pH 4.5).
One hundredµL of urine (diluted 1:1 in binding buffer)
was added in duplicate to the WCX-2 ProteinChip ar-
ray surface and incubated for 3 hours at ambient tem-
perature with gentle agitation. The ProteinChip ar-
rays were washed three times with 100µL of bind-
ing buffer, followed by a final wash with 100µL of
HPLC-grade water. ProteinChip arrays were removed
from the bioprocessor and air-dried. OneµL of 20%
α-cyano-4-hydroxycinnamic acid solution in 50% ace-
tonitrile, 0.5% trifluroacetic acid was added to each
WCX-2 ProteinChip array bait surface.

2.4. PBS-II TOF MS analysis

ProteinChipTM arrays were analyzed by a Protein
Biological System II time-of-flight mass spectrometer
(PBS-II, Ciphergen Biosystems Inc.) and mass spectra
were recorded using the following settings: laser in-
tensity 185, detector sensitivity 8,m/z range 0–20,000,
130 shots per sample. Data were collected using the
Ciphergen ProteinChip software version 3.0. The PBS-
II TOF MS was externally calibrated using the “All-In-
One” peptide mass standard (Ciphergen Biosystems,
Inc.).

2.5. Proteomic pattern analysis

Proteomic pattern analysis was performedby export-
ing the raw data files generated from the PBS-II into tab-
delimited files possessing approximately 15,000 data
points. The mass spectra were randomly segregated
into equal groups for training, and blind testing. The
models were built on the training set using Proteome-
QuestTM (Correlogic Systems Inc., Bethesda, MD)
and tested using blinded sample sets. The Proteome
QuestTM software itself implements a pattern discov-
ery algorithm combining elements from genetic algo-
rithms [5] and self-organizing adaptive pattern recog-
nition systems [11]. Genetic algorithms organize and
analyze complex data sets as if they were information
comprised of individual elements that can be manip-
ulated through a computer-driven analog of a natural
selection process. Self-organizing systems cluster data
patterns into similar groups. Adaptive systems recog-
nize novel events and track rare instances. The genetic
algorithm component of analysis begins with the ran-
dom generation of a population of 1500 subsets of com-
binations of features in the urine mass spectra. This
number was chosen based on adequate coverage of the
data, with a heuristic that no value can be duplicated
within each of the 1500 feature subsets. Each feature
subset in the population specifies the identities of the
exactm/z values in each urine mass spectrum but not
their relative amplitude. The number of features in the
subset ranges from 5 to 20. For this study, MS data
was normalized by linearly scaling eachm/z value, V,
within any randomly generated pattern subset between
the largest and the smallest values within that subset
so that 0� NV � 1. In this way, differences in spec-
tral quality that may emanate from biases such as in
ProteinChip variance and not from the inherent dis-
ease process itself can be minimized. The spectra are
normalized according to the following formula:

NV = (V − Min)/(Max − Min)

Where NV is the normalizedm/z value, V is the
intensity value for the specific randomly chosenm/z
bin, Min is the intensity of the smallest intensity value
of any of them/z bins within the randomly selected
feature set and Max is the maximum intensity of the
m/z bin within the randomly selected feature set. This
equation linearly normalizes the peak intensities in the
feature set so as to fall within the range of 0 to 1. Prior
to analysis, the data is randomly divided into training
and testing data sets. The training data set is further
divided into and labeled as diseased or unaffected based
upon known clinical diagnosis.
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2.6. NMR data acquisition

Before1H-NMR data acquisition, each urine sample
was equilibrated to ambient temperature. A D2O stock
solution containing 0.21% (w/v) sodium 4,4-dimethyl-
4-silapentanoate- 2,2,3,3-d4 (TSP) was prepared by dis-
solving 10.5 mg of TSP in 5 mL of D2O. Thirty-three
µL of this solution was added to each 325µL urine
sample, which was then vortexed and transferred to a
5 mm Shigemi NMR tube with 15 mm susceptibility
matched plungers.1H-NMR spectra were acquired of
urine samples obtained from 47 control, 50 IC-affected,
and 30 BC-affected individuals.

NMR spectra were acquired on a 500 MHz Varian
INOVA Spectrometer equipped with a Nalorac indi-
rect gradient HCNP probe and using the B1-insensitive
WET water suppression pulse sequence as described
by Smallcombe et al. [19]. The WET selective pulses
were a 6 ms Gaussian at 8.1 dB. The gradients were
2 ms in length with levels of 24000, 12000, 6000, and
3000, respectively, each followed by a 2 ms delay. The
spectra were collected at 27◦C with a spectral width
of 6500 Hz, 5 s acquisition, 5 s equilibrium delay, 32
transients preceded by 1 steady state transients, and a
45◦ acquisition pulse (4.5µs at 56 dB). The transmitter
was set on the water resonance at –175.5 Hz and was
not changed from one sample to the next. The probe
was retuned for each sample.

2.7. Metabonomic pattern analysis

The 32499complex points from each1H-NMR spec-
trum was zero-filled to the next power of two, 32768
complex points, and transformed with 0.5 Hz expo-
nential line broadening. Each spectrum was phased,
referenced to TSP and drift corrected. The Varian’s
binning package, provided by Dr. Bruce Adams, was
used to convert each spectrum into 531 bins starting
from 0.16 ppm to 10.80 ppm with widths of 0.02 ppm.
The integration value for bins in the regions between
4.60–4.88 ppm and 5.52–6.04 ppm were set to zero to
remove contributions from the residual water and urea
peak respectively. The data was normalized by scaling
the sum of the 531 bins for each spectrum to a value of
50,000.

2.7.1. Identification of spectral outliers
The 127 binned NMR spectra were normalized so

that each has a binned intensity that sums to 50,000.
Prior to classification, the data were analyzed for the
presence of any strikingly different spectra (i.e. an “out-

lier”) from all others within the cohort of 127 spectra.
Outliers were identified using either principal compo-
nent analysis (PCA) or a Sammon Map [1]. A Sam-
mon Map is a projection of a high-dimensional set of
data onto a lower-dimensional space such that the dis-
tance between all pairs of data points is preserved to
the greatest extent. IfDi,j is the calculated distance
between a pair of cohorts anddi,j is the distance in the
lower-dimensional space, the Sammon mapping tries
to minimize the following metric.

∑

i=2,N

∑

j<i

{(Di,j − di,j)2/Di,j}/
∑

i=2,N

∑

j<i

Di,j

In this study, each of the 127 NMR spectra was pro-
jected onto a 2-dimensional plot by randomly placing
each cohort in a plane and then performing 400 Newton-
Raphson optimizations of each coordinate to minimize
the above expression. This procedure is repeated 400
times, and the 2-dimensional mapping that yields the
lowest metric is used.

Instead of using the difference-squared as a measure
of the disagreement between two cohorts in a given
bin, the agreement between their overall profiles can be
used as a measure of their similarity. By comparing the
intensities in each bin for two cohorts, the sum of the
minimum intensities represents the overlap in their pro-
files. This overlap is equivalent to the summed inten-
sity (50,000) minus one-half of the Manhattan distance
between them. The Manhattan distance (L1-norm) is
simply the sum of the absolute difference in intensities.
The percent similarity is then 100.0 times the overlap
divided by 50,000. The similarity matrix is then used
in a corresponding K-Most Similar Neighbor analysis
using the same predictive procedure as above.

These procedures that use the overall NMR profiles
are unbiased, but may be strongly affected by dietary
or other random factors. In addition, though they use
the magnitude of the differences in the profiles, they
do not determine where the profiles are significantly
correlated to the Class of the cohort and therefore yield
no information about a possible metabolite that may
be useful in the classification. In an attempt to find
significant bins, a feature selection method is used to
select a small number of bins and only the intensities in
these bins are used to construct a distance matrix. This
matrix is then used in a K-Nearest Neighbor algorithm
that is slightly different from that described above.

2.7.2. Distance-dependent K-nearest neighbors
analysis

A modified evolution programming (EP) method was
used to identify features that can classify the NMR
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spectra as being obtained from urine acquired from
IC-affected, BC-affected, or healthy patients. An EP
was selected because it allows the parent population to
maintain diverse solutions from one generation to the
next, thereby allowing the final population from this
method to be used as a good starting population for a
new search if new samples are added to the analysis.
With the other three methods, this new search would
have to start from scratch since the population is homo-
geneous. The same argument applies if, upon analysis
of the features selected, it is found that one or more of
the features have no biological basis. This feature can
be randomly changed to another feature in any mem-
bers of the final EP population that contain it and the
search can continue, while the other methods would
again have to start from scratch since the new search
would be limited to a one-dimensional search of the
replaced feature.

In the EP feature selection method used here, a popu-
lation of N genetic vectors of length L (L = 4 or 8 here)
was randomly generated. Each set of L features was
then used in the modified KNN procedure described
below to generate a cost function that measures the de-
gree to which the cohorts are incorrectly classified. In
each generation, each parent generates a new genetic
vector by randomly replacing one or two of the features
in the parent’s genetic vector with new features. One of
the features is required to be replaced while the second
is probabilistically replaced. In the results presented
here, the probability of a second replacement is 50%
in the first generation and linearly decreases to 1% in
the last generation. Before the cost of this offspring
is determined, its genetic vector is compared with all
genetic vectors in the parent population and all vectors
of offspring that it has produced so far. If it is found
to be the same as any existing solution, this offspring
is destroyed and the same parent is used to generate
a new offspring. Thisuniqueness operator represents
one of many possiblematuration operators that can be
used with the EP method and guarantees that the parent
population will be diverse from generation to genera-
tion. A generation is complete once each parent has
generated a unique offspring and the offspring’s cost
has been determined. At the end of each generation
a (µ + λ) deterministic selection procedure is used to
select the parents for the next generation. This process
means that the parent and offspring populations are
combined to form a population with2 × N solutions,
and the N solutions with the lowest cost become par-
ents in the next generation. This process is continued
for M generations, at which time the search stops and
the 50 feature sets with the lowest cost are reported.

When each set of L features is examined, the inten-
sities in these bins maps each spectrum onto a point
in L-dimensional space. A Manhattan and Euclidean
distance metric was used to determine the distance be-
tween each cohort-pair and construct a distance matrix.
In the KNN procedure outlined above, the K nearest
samples to a given sample are used to predict its class
(i.e. IC, BC, or healthy). In the case of 4-nearest neigh-
bors, the probability that this cohort belongs to a certain
class can be 0, 25, 50, 75, or 100%, depending upon the
classification of the four closest samples, and indepen-
dent of the distance they are from the given cohort. In
this analysis, the distances to the four closest neighbors
affect the prediction.

The classification method used in this analysis is ac-
tually a Distance-Dependent KNN. In a DD-KNN clas-
sification if one of the four neighbors is significantly
closer to the given sample than the rest, its classifi-
cation influences the prediction more than the others.
Similarly, if the given sample is far away from any of
its neighbors, its classification is less certain. If one of
the nearest neighbors is Cohort-i with a classification of
Cl(i), the unnormalized probability that this cohort be-
longs to this Class, p[Cl(i)], is a determined by a mono-
tonically decreasing function of the distance between
the given cohort and Cohort-i. If d(i) is the distance
from a given sample to Neighbor-i, the unnormalized
probability of being in the same class is

p[Cl(i)] = a/d(i)

This unnormalized probability is truncated at a large
value if d(i) is sufficiently small. This function in-
creases the probability that the cohort has the same
class as a neighbor if the neighbor is close, but does
not take care of the case where the cohort is far away
from all neighbors. To handle this case, a fourth classi-
fication calledUnknown is added and the unnormalized
probability that the cohort belongs to this class relative
to each neighbor is given by the expressions

= Pu if p[Cl(i)] � (1 − 2Pu)

p[Unknown] = (1 − p[Cl(i)])/2 if (1 − 2Pu)

< p[Cl(i)] � 1.0

= 0 if p[Cl(i)] > 1

In the results presented here, Pu is set to 0.1, meaning
that the unnormalized probability of the cohort belong-
ing to the Unknown-Class for a given neighbor is 0.1
if the probability that it is the same class as this neigh-
bor is 0.8 or less; it decreases from 0.1 to 0.0 as the
probability of being in the same class as the neighbor
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Fig. 1. Comparison of SELDI-TOF MS profiles of urine samples obtained from (A) normal controls and (B) interstitial cystitis patients.

increases to 1.0; and is 0.0 if the unnormalized prob-
ability of belonging to the neighbor’s Class is greater
than 1.0.

After adding the contributions to the unnormalized
probabilities of the three p[Cl(i)]’s and p[Unknown]
from each of the four nearest neighbors, they can be
normalized by division by their sum. If the given co-
hort belongs to Class-I, the error in the characteriza-
tion of this cohort is simply (1-P(I)), where P(I) is the
predicted, normalized probability that it is in this Class
based upon its four neighbors. By summing this er-
ror for all cohorts, the Cost of this set of features is
obtained.

The last requirement is to set a value forα in the ex-
pression for p[Cl(i)] above. This constant is determined
by the user-supplied value of HALF which controls the
value ofdh(i) such that

p[Cl(i)] = 1/2 when d(i) = dh(i)

Since the magnitudes of the intensities changes for
different bins,dh(i) is set to HALF times the theoret-
ical maximum distance (TMD) between cohorts for a
given set of bins (features). TMD is determined by
using the difference between the maximum and mini-
mum intensities in each of the selected bins.α is then
determined from the expression

a = 1/2× HALF × TMD

In the results presented here, both scaled and un-
scaled differences in intensities are used to calculate

either the Manhattan or Euclidean distance between
two samples (and the TMD). The scaled difference is
the absolute difference divided by the average of the
intensities and this option produces a relative change
instead of an absolute change. In addition, HALF is set
to 0.1, 0.15 and 0.2 in different runs to study the effect
of increasingα.

The next section therefore presents the results of 24
different classification runs. The EP method searches
for the optimum set of either four or eight features
and the Cost of each set is determined from one of 12
Distance-Dependent KNN examinations (two possible
differences, two distance metrics, and three values of
α).

3. Results

Urine samples were collected from both healthy in-
dividuals as well as those had previously undergone
cystoscopy and fulfilled the National Institute Diabetes
and Digestive and Kidney Diseases (NIDDK) diagnos-
tic criteria for IC [3]. Prior to1H-NMR analysis the
samples were adjusted to pH 7.2 and 300 mOsm and
filtered through a 0.2µm pore filter. The MS and
1H-NMR spectra of a selection of urine samples from
both healthy and IC-affected individuals are shown in
Figs 1 and 2, respectively. A comparison of the spectra
showed that while there is variability between those ac-
quired from the two sample sets, there also exists vari-
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Fig. 2. Comparison of1H-NMR spectra of urine samples obtained
from (A) normal controls, (B) interstitial cystitis patients, and (C)
bacterial cystitis patients.

ability within a single sample set. This inherent vari-
ability makes it difficult to visually identify signals that
are consistently unique to either the control or disease
samples, requiring the application of analytical meth-
ods that utilize bioinformatic algorithms to distinguish
patterns between these three groups.

3.1. Diagnosis of urine samples by proteomic pattern
analysis

Proteomic pattern analysis was performed by export-
ing the raw data file generated from the PBS-II TOF-

MS. The training set consisted of MS spectral data accu-
mulated from urine samples obtained from 14 asymp-
tomatic controls and 29 patients with IC. The models
were built on the training set using ProteomeQuestTM
and blind testing was performed with 16 control and 21
IC urine samples. Them/z (their intensities) that were
found to be classifiers used to distinguish urine from a
patient with IC from that of an unaffected individual are
based on actual values from the raw MS spectra. A total
of eight differentm/z classifiers (m/z 2980.07, 3939.11,
4003.20, 4391.23, 5386.83, 9769.87, 10090.55, and
18893.23) were required to correctly segregate the urine
samples obtained from healthy vs. IC-affected individ-
uals. Blinded testing of this model generated from the
training set resulted in 100% sensitivity and specificity
for the diagnosis of the spectra obtained of the urine
samples from the 16 control and 21 IC-affected indi-
viduals. Obviously this level of sensitivity and speci-
ficity only applies to this limited sample set; whether
this diagnostic accuracy can be achieved over a larger
cohort would need to be determined by conducting a
larger trial.

3.2. Classification of source of urine samples by
metabonomics pattern analysis

The encouraging results obtained in the proteomic
profiling of urine samples from healthy and IC-affected
individuals prompted us to investigate whether simi-
lar diagnostic capabilities could be obtained using1H-
NMR. In addition, we sought to investigate whether
the1H-NMR spectra acquired from urine samples ob-
tained from more than two groups of patients with spe-
cific disorders could be segregated. For this investi-
gation, we tested alternative bioinformatic algorithms
with the goal of distinguishing IC patients not only
from healthy controls, but also from patients with bac-
terial cystitis (BC). While there are much more cost
effective methods to diagnose BC rather than the use
of NMR, nonetheless it would be crucial to develop
methods that could effectively diagnose IC with a high
positive predictive value. Therefore, it was important
to determine if NMR could be used to segregate urine
samples obtained from three distinct conditions with a
low rate of false positive identiification.

3.2.1. Search for outlying spectra
A plot of the first versus the second Principal Com-

ponent (PC) of all of the1H-NMR spectra acquired was
constructed in order to identify outlier spectra that may
arise from either errors in sample collection, process-
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ing, or data acquisition, as shown in Fig. 3. A plot of
the first few PCs is not guaranteed to reveal outliers,
but is sufficient for this dataset because the first PC ac-
counts for approximately 50.3% of the total variation
in the data within this particular spectrum and an anal-
ysis of this component shows that the coefficient for
bin/feature 332 is−0.9936. Since this component is
virtually composed of a single feature, its coefficient is
negative, and one sample spectrum has a large negative
value relative to the rest, this cohort has an intensity that
is many times larger than for any other cohort. Because
the difference is concentrated in a single feature, this
feature will have a large variance and it will be one of
the first few PCs. If, on the other hand, the difference
between this cohort and the rest was spread out across
all of the features, it may not appear as an outlier in this
type of plot.

To confirm the presence of the outlier spectrum de-
termined by PCA, a two-dimensional Sammon Map of
the set of 127 samples was generated (data not shown).
This map attempts to conserve the inter-cohort dis-
tances to the largest possible extent, and it also con-
firms the presence of a single outlier recognized by
PCA. This outlier would appear if the differences be-
tween it and the other cohorts are uniformly distributed
across all features or, as in this case, it is concentrated
in a single feature. Since this outlier can adversely
affect subsequent classification studies it is removed
from consideration. The outlier identified by the Sam-
mon Map corresponds to the exact outlier identified by
PC analysis (described above). Therefore, the classifi-
cation is only performed on the remaining 126 spectra
(46 controls, 50 IC patients, and 30 BC patients).

3.2.2. Classification by distance-dependent K nearest
neighbors

The Euclidean distance matrix used to construct the
Sammon Map was also used in a standard KNN study,
as shown in Table 1(A). This table shows that if only
the nearest neighbor is used to predict the classification
of each cohort (K = 1), the set of 126 cohorts are cor-
rectly classified 76.19% of the time. Because 1-Nearest
Neighbor is deterministic instead of probabilistic, this
number shows that 96 cohorts are correctly classified
and 30 are not. The 46 control cohorts are correctly
classified in 34 cases and misclassified in 12; 43 of the
50 IC patients are correctly classified and seven are not;
and 19 of the BC patients are correctly classified while
11 are not. This breakdown is not possible when the
number of neighbors exceeds one since for 2-Nearest
Neighbors a given cohort can be 100% correctly classi-

Table 1
Probabilities of correct classification for the 126 cohorts when the
(A) Euclidean distance and (B) Similarity (Manhattan distance) be-
tween their overall1H-NMR profiles is used in a K-Nearest Neigh-
bor study

A.
K = 1 K = 2 K = 3 K = 4

Overall 76.19% 72.62% 67.20% 63.49%
Normal controls 73.91% 71.74% 64.49% 61.96%
IC patients 86.00% 79.00% 78.00% 75.00%
BC patients 63.33% 63.33% 53.33% 46.67%

B.
K = 1 K = 2 K = 3 K = 4

Overall 86.51% 81.35% 77.78% 71.63%
Normal controls 82.61% 78.26% 77.54% 73.37%
IC patients 94.00% 89.00% 87.33% 79.50%
BC patients 80.00% 73.33% 62.22% 55.83%

fied, 50% correctly classified, or completely misclassi-
fied. Table 1 shows that the quality of the classification
decreases as the number of neighbors increase.

When the Manhattan distance matrix is constructed
to determine the similarity between the NMR profiles
and is then used in a KNN (or K-MostSimilar Neigh-
bors) classification study, the results in Table 1 (B) are
obtained. A comparison with Table 1(A) shows that
this distance metric yields consistently better results.
For 1-MostSimilar Neighbor, 109 of the 126 cohorts
are correctly classified (38 of the 46 controls, 47 of the
50 IC patients, and 24 of the 30 BC patients). Again,
the quality of this procedure decreases as the number
of neighbors increases.

These simple examinations show that there are fea-
tures in these spectra that separate these cohorts to some
degree since the results for four neighbors still yield
classifications that are significantly above those ex-
pected from random chance (36.51, 39.68, and 23.81%
for control, IC patients, and BC patients, respectively).
By using a Feature Selection method to search for the
optimum set of J features, a model using four nearest
neighbors should yield results that are superior to the
4-Neighbor results listed in Tables 1(A) and (B). In-
cluding the distance dependence will cause the classifi-
cation of a point to reflect the local environment in this
J-dimensional space (i.e. proximity of neighbors and
their classifications), and may increase or decrease the
accuracy of the classifier.

The first set of classification results uses four features
and a Euclidean distance. In all runs, the EP Feature
Selection method has a population size of 2000 (sets
of four features) and the search runs for 400 genera-
tions. The intensity change between two cohorts in a
given bin can be either a relative difference (i.e., the
absolute difference divided by their average distance)
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Fig. 3. Principle Component analysis of the 1271H-NMR spectra obtained of normal controls, IC patients and BC patients showing the presence
of an outlier. This outlier was also confirmed using a two-dimensional Sammon Map (data not shown).

or an absolute difference. An inverse probability func-
tion is used throughout and the probability of being in
the Unknown-Class has a maximum value of 0.1 for all
neighbors. The value of HALF can be 0.1, 0.15, and
0.2, representing increasing widths in the probability
function. The results for the six runs are shown in Ta-
ble 2. Included in this table are the results for the best
set of features and for the 50th best set. In addition, the
features used in each of the best 50 sets are examined,
and if a feature is used in five or more sets it is listed
along with the number of times it appears in these sets.

These results show that selecting an optimal set of
four features produces better classification models than
the one using the overall NMR profile (K = 4 result in
Table 1(A)). It is interesting to note that greater accu-
racy is obtained when the absolute difference between
intensities is used and that this accuracy is less affected
by changing the value of HALF (α). Conversely, there
is a larger drop in the overall accuracy when the 50th
best feature set is compared to the best,but this decrease
is less than 4%. The features present in the top 50
sets do not significantly change when HALF changes,
but become very different when the intensity change is
either a relative or absolute difference.

Very similar results are obtained when a Manhattan
distance is used instead of a Euclidean distance (Ta-
ble 3), though the overall accuracy of the best feature set
increases∼1% when the relative difference is used and
>1% when the absolute difference is used. The most
heavily used features in the top 50 sets in Table 2 are
still the most heavily used when a Manhattan distance
is applied (Table 3), though there are some changes in
the less-used features.

The predicted classifications for the 126 cohorts us-
ing the best feature set from run KNN(4b5) are shown
in Table 4. The source (i.e. Class) of the urine sample
(i.e. normal, IC patient, or BC patient) is also shown.
These results show that in the great majority of cases
the classification is correct and definitive, or there is an
obvious question about the classification. For exam-
ple, the first two cohorts are almost evenly assigned to
normal healthy and IC patient, so their classification is
undeterminable between these two classes. The next
two cohorts have a high probability of being from an
IC patient, but have a 14.4 and 27.9% chance of being
unknown. This result means that they are quite far from
two or more of their four neighbors and the confidence
in the classification is reduced. In only a few cases



178 Q.N. Van et al. / The use of urine proteomic and metabonomic patterns for the diagnosis of interstitial cystitis

Table 2
Probability of correct classification when four features within the1H-NMR spectra are
used with a Euclidean distance in a Distance-Dependent Four-Nearest Neighbor study

Parameter knn4a1 knn4a2 knn4a3 knn4a4 knn4a5 knn4a6

Intensity change Diff/Avg Diff/Avg Diff/Avg Diff Diff Diff
HALF 0.1 0.15 0.2 0.1 0.15 0.2

Best accuracy 78.35% 80.35% 81.21% 83.03% 83.29% 83.46%
Normal controls 80.48% 83.43% 82.36% 87.91% 88.44% 88.79%
IC patients 86.34% 87.29% 88.51% 87.00% 87.00% 87.00%
BC patients 61.77% 64.06% 67.29% 68.91% 69.22% 69.39%

50th accuracy 76.86% 79.26% 79.95% 79.48% 79.84% 79.99%
Normal controls 76.28% 79.02% 79.98% 84.56% 84.98% 82.26%
IC patients 86.18% 74.92% 85.29% 84.04% 83.55% 88.06%
BC patients 62.24% 70.21% 71.00% 64.09% 65.77% 63.05%

Feature 189 42 40 40 6 5 5
Feature 332 0 0 0 14 14 13
Feature 352 1 1 1 8 8 8
Feature 377 43 41 43 0 0 0
Feature 383 7 10 8 36 35 34
Feature 384 0 0 0 4 6 6
Feature 437 5 4 4 39 39 40
Feature 470 43 40 41 0 0 0
Feature 483 5 3 3 46 44 45

Table 3
Probability of correct classification when four features within the1H-NMR spectra are
used with a Manhattan distance in a Distance-Dependent Four-Nearest Neighbor study

Parameter knn4b1 knn4b2 knn4b3 knn4b4 knn4b5 knn4b6

Intensity change Diff/Avg Diff/Avg Diff/Avg Diff Diff Diff
HALF 0.1 0.15 0.2 0.1 0.15 0.2

Best accuracy 79.58% 81.44% 82.31% 83.73% 83.96% 84.10%
Normal controls 81.54% 84.43% 85.83% 89.07% 89.57% 89.86%
IC patients 87.66% 88.52% 89.00% 88.52% 88.52% 88.52%
BC patients 63.14% 65.06% 65.78% 67.57% 67.76% 67.90%

50th accuracy 78.22% 79.67% 80.22% 79.79% 80.03% 80.14%
Normal controls 77.34% 79.37% 79.46% 82.47% 78.38% 84.02%
IC patients 85.83% 86.64% 87.12% 89.92% 89.19% 86.05%
BC patients 66.89% 68.52% 69.87% 58.81% 67.28% 64.34%

Feature 189 45 39 39 2 2 2
Feature 356 1 5 4 1 1 1
Feature 377 41 41 42 1 1 1
Feature 383 5 9 7 44 44 46
Feature 437 5 7 7 47 46 47
Feature 470 45 40 39 0 0 0
Feature 483 3 3 3 49 48 49

(Cohorts 101 and 122, for example) does this model
give a definitively wrong classification. Considering
0.500 as a threshold for the correct classification of any
particular sample, the results show that 93.5% (43 our
of 46) of the normal controls are correctly classified,
while 92% (46 out of 50) and 73.3% (22 out of 30) of
the IC and BC patient samples are correctly classified.
Twenty percent (6 out of 30) of the BC samples were
misclassified as IC samples, while only 6.7% were mis-
classified as normal controls (2 out of 30). For the mis-
classified IC samples, there was little difference in their

rate of misclassification as either normal controls (4%),
BC patients (2%), or indeterminable (2%). Again, if
0.500 is considered as a threshold for a correct classifi-
cation, the sensitivity and specificity for the diagnosis
of the IC patients is 92% (46 out of 50 correctly classi-
fied as IC) and 89.5% (8 out of 76 misclassified as IC).
The sensitivity and specificity for the diagnosis of BC
is 73.3% (22 out of 30 correctly classified as IC) and
99.0% (1 out of 96 misclassified as IC) and for normal
controls the sensitivity and specificity is 93.5% (43 out
of 46 correctly classified as a normal control) and 95%
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Table 4
Experimental and probabilistic classification of the 126 cohorts
produced by the best set of four features from run KNN(4b5) shown
in Table 3 (i.e. 370, 383, 437, and 483)

Sample Class Probabilistic classification
number Normal IC BC Unknown

1 Normal 0.551 0.442 0.000 0.007
2 Normal 0.435 0.550 0.000 0.015
3 Normal 0.856 0.000 0.000 0.144
4 Normal 0.721 0.000 0.000 0.279
5 Normal 1.000 0.000 0.000 0.000
6 Normal 1.000 0.000 0.000 0.000
7 Normal 1.000 0.000 0.000 0.000
8 Normal 1.000 0.000 0.000 0.000
9 Normal 1.000 0.000 0.000 0.000
10 Normal 1.000 0.000 0.000 0.000
11 Normal 1.000 0.000 0.000 0.000
12 Normal 1.000 0.000 0.000 0.000
13 Normal 1.000 0.000 0.000 0.000
14 Normal 0.557 0.158 0.286 0.000
15 Normal 0.685 0.164 0.151 0.000
16 Normal 1.000 0.000 0.000 0.000
17 Normal 1.000 0.000 0.000 0.000
18 Normal 1.000 0.000 0.000 0.000
19 Normal 1.000 0.000 0.000 0.000
20 Normal 1.000 0.000 0.000 0.000
21 Normal 1.000 0.000 0.000 0.000
22 Normal 0.545 0.189 0.000 0.266
23 Normal 1.000 0.000 0.000 0.000
24 Normal 1.000 0.000 0.000 0.000
25 Normal 1.000 0.000 0.000 0.000
26 Normal 1.000 0.000 0.000 0.000
27 Normal 1.000 0.000 0.000 0.000
28 Normal 1.000 0.000 0.000 0.000
29 Normal 1.000 0.000 0.000 0.000
30 Normal 0.445 0.332 0.224 0.000
31 Normal 1.000 0.000 0.000 0.000
32 Normal 0.777 0.000 0.223 0.000
33 Normal 1.000 0.000 0.000 0.000
34 Normal 1.000 0.000 0.000 0.000
35 Normal 1.000 0.000 0.000 0.000
36 Normal 1.000 0.000 0.000 0.000
37 Normal 1.000 0.000 0.000 0.000
38 Normal 1.000 0.000 0.000 0.000
39 Normal 1.000 0.000 0.000 0.000
40 Normal 1.000 0.000 0.000 0.000
41 Normal 1.000 0.000 0.000 0.000
42 Normal 0.823 0.177 0.000 0.000
43 Normal 1.000 0.000 0.000 0.000
44 Normal 0.000 1.000 0.000 0.000
45 Normal 1.000 0.000 0.000 0.000
46 Normal 0.807 0.193 0.000 0.000
47 IC 0.000 1.000 0.000 0.000
48 IC 0.000 1.000 0.000 0.000
49 IC 0.000 1.000 0.000 0.000
50 IC 0.000 1.000 0.000 0.000
51 IC 0.000 1.000 0.000 0.000
52 IC 0.000 1.000 0.000 0.000
53 IC 0.000 0.685 0.315 0.000
54 IC 0.000 1.000 0.000 0.000
55 IC 0.000 1.000 0.000 0.000

Table 4, continued

Sample Class Probabilistic classification
number Normal IC BC Unknown

56 IC 0.000 1.000 0.000 0.000
57 IC 0.000 1.000 0.000 0.000
58 IC 0.000 1.000 0.000 0.000
59 IC 0.000 1.000 0.000 0.000
60 IC 0.000 1.000 0.000 0.000
61 IC 0.000 1.000 0.000 0.000
62 IC 0.000 1.000 0.000 0.000
63 IC 0.093 0.907 0.000 0.000
64 IC 0.995 0.000 0.000 0.005
65 IC 0.000 0.915 0.085 0.000
66 IC 0.000 1.000 0.000 0.000
67 IC 0.000 1.000 0.000 0.000
68 IC 0.000 1.000 0.000 0.000
69 IC 0.000 1.000 0.000 0.000
70 IC 0.000 0.914 0.086 0.000
71 IC 0.000 1.000 0.000 0.000
72 IC 0.000 0.213 0.787 0.000
73 IC 0.000 1.000 0.000 0.000
74 IC 0.000 1.000 0.000 0.000
75 IC 0.000 0.700 0.300 0.000
76 IC 0.000 1.000 0.000 0.000
77 IC 0.057 0.943 0.000 0.000
78 IC 0.052 0.948 0.000 0.000
79 IC 0.056 0.944 0.000 0.000
80 IC 0.000 1.000 0.000 0.000
81 IC 0.000 1.000 0.000 0.000
82 IC 0.094 0.811 0.095 0.000
83 IC 0.000 1.000 0.000 0.000
84 IC 0.516 0.247 0.237 0.000
85 IC 0.000 1.000 0.000 0.000
86 IC 0.324 0.448 0.228 0.000
87 IC 0.000 1.000 0.000 0.000
88 IC 0.000 1.000 0.000 0.000
89 IC 0.000 0.842 0.158 0.000
90 IC 0.206 0.558 0.236 0.000
91 IC 0.000 0.846 0.154 0.000
92 IC 0.237 0.763 0.000 0.000
93 IC 0.000 1.000 0.000 0.000
94 IC 0.000 1.000 0.000 0.000
95 IC 0.000 0.788 0.212 0.000
96 IC 0.214 0.786 0.000 0.000
97 BC 0.000 0.000 1.000 0.000
98 BC 0.330 0.000 0.670 0.000
99 BC 0.000 0.164 0.836 0.000
100 BC 0.500 0.224 0.276 0.000
101 BC 0.000 1.000 0.000 0.000
102 BC 0.000 0.151 0.849 0.000
103 BC 0.000 0.162 0.838 0.000
104 BC 0.000 0.080 0.845 0.074
105 BC 0.000 0.085 0.844 0.071
106 BC 0.000 0.882 0.000 0.118
107 BC 0.000 0.000 1.000 0.000
108 BC 0.000 0.000 1.000 0.000
109 BC 0.000 0.000 1.000 0.000
110 BC 0.719 0.000 0.281 0.000
111 BC 02.32 0.786 0.000 0.000
112 BC 0.000 0.000 1.000 0.000
113 BC 0.000 0.000 1.000 0.000
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Table 4, continued

Sample Class Probabilistic classification
number Normal IC BC Unknown

114 BC 0.000 0.000 1.000 0.000
115 BC 0.000 0.000 1.000 0.000
116 BC 0.000 0.214 0.786 0.000
117 BC 0.000 0.000 1.000 0.000
118 BC 0.000 0.000 1.000 0.000
119 BC 0.000 0.000 1.000 0.000
120 BC 0.000 0.430 0.570 0.000
121 BC 0.000 0.495 0.505 0.000
122 BC 0.000 1.000 0.000 0.000
123 BC 0.218 0.000 0.782 0.000
124 BC 0.000 0.000 1.000 0.000
125 BC 0.000 0.754 0.246 0.000
126 BC 0.231 0.769 0.000 0.000

(4 out of 80 misclassified as a normal control).
A graphical analysis of the features presented in Ta-

bles 2 and 3 producea few interesting results. A display
of the intensity of feature 377, which is used promi-
nently in the top feature sets when a relative difference
in intensities is used, is shown in Fig. 4(A). In this plot,
the 46 normal control individuals are shown in the first
set of green data points, the 50 IC patients are the red
points, and the 30 BC patients are the blue. The dotted
lines represent the average intensities for each of the
three Classes. Though the average is exaggerated by
two high intensity values, the average intensity of this
feature is greater in normal control individuals than in
either the IC or BC patients.

Similar plots are shown for Features 356, 384, and
437 in Figs 4(B–D), respectively. They also show a
reasonable separation between the normal control in-
dividuals and the IC- or BC-affected patients, and it is
interesting to note that Feature 437 is present in five
or more of the best sets for at least one run using ei-
ther intensity change measure or either distance metric.
Though feature 356 is only present five times in one of
the 12 runs listed in Tables 2 and 3, it is the only feature
of those listed that shows a reasonable separation in the
averages of all three cohorts.

When eight features are used instead of four, the re-
sults obtained using Euclidean and Manhattan distances
are shown in Tables 5 and 6, respectively. Because the
search space of eight unique feature sets is many orders
of magnitude larger than for four feature sets, the EP
method uses a population size of 4000 and runs for 800
generations.

These results again show that an absolute differ-
ence in intensities produces better classifiers than rela-
tive differences and that the former is less sensitive to
changes in HALF. What these results also show is that
as the number of features increases from four to eight

the overall quality if the classifier is virtually indepen-
dent upon whether Euclidean or Manhattan distances
are used. Euclidean distances generally improve the
classification of BC-affected patients, while the Man-
hattan distance classifiers generally improve the clas-
sification of control individuals and IC-affected patient
cohorts. The use of more features should continue to
improve the accuracy of the classification model up to a
certain point. A 100% correct classification would not
be expected in a four-neighbor model for all cohorts,
and increasing the accuracy more would require polling
less than four neighbors.

4. Discussion

The development of technologies that provide a
global view of the cell at the genomic, transcriptomic,
proteomic, and metabonomic level is and will continue
to be a major trend in biological science for the fore-
seeable future. While there are many different types
of information that can be gleaned using these global
approaches, one of the major initiatives is to use these
technologies to more effectively diagnose diseases and
develop better therapies. A vast majority of these ini-
tiatives use these technologies to rapidly screen thou-
sands of species within complex mixtures in search of
a biomarker that is unique to either the healthy or dis-
eased state. The present approach, however, does not
rely on a single unique species, but rather it takes into
account the abundances of several key features within
each spectrum to select the diagnosis.

An effective diagnostic tool should be,amongst other
things, non-invasive, technically simple, and require
a minimal amount of sample. While such tools cur-
rently exist to screen urine samples for evidence of
acute BC (including urine dipstick and microscopy)
the current “diagnosis” of IC often involves cystoscopy
with hydrodistensionperformedunder general anesthe-
sia. Unfortunately, findings of glomerulations or Hun-
ner’s ulcers at cystoscopy with hydrodistension does
not even provide a definitive diagnosis of IC, however,
it is recommended for fulfilling NIDDK diagnostic cri-
teria for IC. Although other diagnostic parameters (in-
cluding the measurement of urine APF activity or HB-
EGF/EGF levels) have been described for IC, a key ad-
vantage of using NMR-based technology is that many
of the resonances observed in a typical spectrum of any
human biofluid may be readily assignable to a known
compound based solely on the resonance frequency val-
ues, thereby potentially providing additional informa-
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Fig. 4. A display of the intensity of features (A) 377, (B) 356, (C) 384, and (D) 437 which are used prominently in the top feature sets used in
the diagnosis of the various conditions (i.e. normal controls vs. IC vs. BC).

tion about the disease process itself. In addition, for
those signals that cannot be readily assigned, experi-
ments such as total correlated spectroscopy (TOCSY),
correlated spectroscopy (COSY), nuclear Overhauser
spectroscopy (NOESY), etc. can be used in an attempt
to identify their compounds of origin. Clearly, the rel-
ative sensitivity, specificity, positive predictive value,
negative predictive value, and cost for each type of
analysis will need to be considered for determining the
optimal diagnostic test for IC.

An obvious concern in using pattern matching of
spectra generated from biofluids for disease diagnos-
tics is the variability of the samples from the human
subjects. Unlike experimental animals, such as mice,
humans cannot be kept under strictly controlled condi-
tions of diet, rest, physical activity, or drug intake (es-
pecially for over the counter medications). While there
is no universally accepted treatment for IC, many of the
individuals affected by IC in this study were using a
variety of different medications with the goal of allevi-
ating their symptoms. While some patients were on no
medications, most were on various medications includ-

ing pentosan polysulfate (Elmiron), dimethyl sulfox-
ide (DMSO), aloe vera, nonsteroidal anti-inflammatory
medications, and antihistamines. To show that the
1H-NMR-based diagnostic was not simply classifying
spectra based on the medications each individual was
taking, patients that formed each node in the diagnostic
pattern were analyzed based on their medication intake.
It was found that the cluster the individuals fell into
was independent of their drug intake. For example, IC-
affected individuals taking no medication were spread
out amongst the various clusters that were diagnostic
of IC and individuals taking medications were also dis-
tributed within the various IC-clusters as well. In ad-
dition, none of the frequency values so far identified
as being key to generating the diagnostic patterns were
directly related to the medication being taken by the
individual or any of their known metabolites.

The MS-based analysis was able to correctly clas-
sify the urine samples as being obtained from either
normal or IC-affected individuals with an accuracy of
100%. However, the bioinformatic tool used to seg-
regate the spectra is unable to perform a three-tiered
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Table 5
Probability of correct classification when eight features within the1H-NMR spectra are
used with a Euclidean distance in a Distance-Dependent Four-Nearest Neighbor study

Parameter knn8a1 knn8a2 knn8a3 knn8a4 knn8a5 knn8a6

Metric Diff/Avg Diff/Avg Diff/Avg Diff Diff Diff
HALF 0.1 0.15 0.2 0.1 0.15 0.2

Best accuracy 80.24% 84.97% 87.28% 87.64% 88.02% 88.23%
Normal controls 75.18% 83.46% 87.58% 92.73% 93.27% 92.70%
IC patients 89.06% 88.59% 89.33% 88.88% 89.10% 90.45%
BC patients 73.29% 81.26% 83.41% 77.77% 78.15% 77.54%

50th accuracy 79.93% 84.40% 86.53% 87.16% 87.53% 87.75%
Normal controls 78.44% 82.81% 86.09% 92.81% 92.97% 92.37%
IC patients 87.49% 87.54% 88.63% 90.28% 89.05% 90.85%
BC patients 69.61% 81.59% 83.70% 73.28% 76.63% 75.50%

Table 6
Probability of correct classification when eight features within the1H-NMR spectra are
used with a Manhattan distance in a Distance-Dependent Four-Nearest Neighbor study

Parameter knn8b1 knn8b2 knn8b3 knn8b4 knn8b5 knn8b6
Metric Diff/Avg Diff/Avg Diff/Avg Diff Diff Diff

HALF 0.1 0.15 0.2 0.1 0.15 0.2

Best accuracy 82.56% 85.36% 86.59% 87.78% 88.10% 88.25%
Normal controls 85.23% 88.33% 88.48% 91.58% 92.02% 92.17%
IC patients 87.38% 89.54% 90.67% 92.18% 92.35% 92.52%
BC patients 70.45% 73.84% 76.90% 74.61% 74.99% 75.12%

50th accuracy 82.17% 84.87% 86.04% 87.00% 87.36% 87.53%
Normal controls 84.77% 87.61% 89.54% 90.53% 90.83% 92.62%
IC patients 88.00% 90.28% 90.52% 90.49% 92.52% 90.39%
BC patients 68.45% 71.65% 73.19% 75.78% 73.42% 74.96%

classification. Therefore, an alternative bioinformatic
analysis was used to determine if urine samples from
three different conditions could be correctly diagnosed.
An analysis of the 531-binned NMR spectra of 126
cohorts produced a single model that is able to cor-
rectly classify the cohorts to approximately 84% level.
It uses a Distance-Dependent Four-Nearest Neighbor
procedure to predict the Class of each cohort, and the
resulting distribution of Class probabilities can suggest
to the researcher that the classification of a particular
cohort is suspect. The classification of the control and
IC patient cohorts is more accurate than the BC patient
cohorts, and this may be caused by either the smaller
size of the BC patients training set and/or the lack of a
strong biomarker specific to the diagnosis of BC. How-
ever, NMR would never be cost-effective enough for
the diagnosis of BC as there are fairly cheap, sensitive
and specific ways to diagnose BC now that NMR could
never compete with.
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