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a b s t r a c t

Histone variant H3.3 is associated with transcriptionally active chromatin and accumulates at loci under-
going preparation for V(D)J recombination, a DNA rearrangement required for the assembly of antigen
receptors and development of B and T lymphocytes. Here we demonstrate that the RAG1 V(D)J recom-
binase protein promotes ubiquitylation of H3.3 that has been heavily acetylated and phosphorylated on
serine 31 (acetyl-H3.3 S31p). A fragment of RAG1 promoted formation of a mono-ubiquitylated H3 prod-
uct that was identified using mass spectrometry as ubiquitylated acetyl-H3.3 S31p. H3 was ubiquitylated
at multiple lysine residues, and correspondingly, di-, tri- and higher-order ubiquitylated products were
detected at low levels. Ubiquitylation was dependent on an intact RAG1 RING finger/ubiquitin ligase
domain and required additional regions of the RAG1 amino terminus that are likely to interact with H3.
Acetylated residues within the H3 amino terminal tail were also required. Purified, recombinant H3.1
and H3.3 were not good substrates, suggesting that post-translational modifications enhance recogni-
tion by RAG1. A complex including damage-DNA binding protein has also been shown to ubiquitylate H3
in response to UV treatment, suggesting the H3 ubiquitylation may be a common step in multiple DNA
repair pathways.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

V(D)J recombination—the assembly of variable, diversity and
joining gene segments into mature antigen receptor coding
genes—is a requisite step in the development of B and T cells in
humans and all other jawed vertebrates [1–3]. The RAG1 and RAG2
proteins comprise a recombinase that introduces double-stranded
DNA breaks at recombination signal sequences (RSS) adjacent to the
V, D, and J segments [1,2]. The broken DNA ends are repaired by the
general non-homologous end joining (NHEJ) DNA repair machinery
[4], with gene coding segments being joined to form coding joints
and RSS containing DNA ends joined to form signal joints. In addi-
tion to exhibiting DNA cleavage activity, the RAG1 protein includes
a RING finger domain that can act as a ubiquitin ligase (E3) [5,6],
working in collaboration with ubiquitin conjugating (E2) enzymes
to add ubiquityl moieties to several target proteins. RAG1 pro-
motes its own ubiquitylation and targets both karyopherin alpha
1 (KPNA1) and histone 3 (H3) [5,7,8], although in the case of H3

∗ Corresponding author at: The Department of Biochemistry, Molecular and Cel-
lular Biology, Georgetown University, 3900 Reservoir Rd, NW, Basic Science Building
Room 329, Washington, DC 20057, USA. Tel.: +1 202 687 2624; fax: +1 202 687 7186.

E-mail address: jonesj5@georgetown.edu (J.M. Jones).

reactions were carried out in crude extracts and appeared to be
partially independent of RAG1’s RING finger domain [7].

Just as they do with transcription, epigenetic signals exert spa-
tiotemporal regulation over V(D)J recombination. There is a large
catalog of data regarding chromatin modifications associated with
recombination loci, including enrichment in the H3 variant H3.3
[9]. H3.3 is highly conserved in all eukaryotes and is associated
with actively transcribed chromatin [10–12]. Nucleosomes includ-
ing H3.3 bind less tightly to DNA [13], thus its presence in chromatin
may facilitate a wide variety of protein–DNA transactions. Many of
the H3 modifications associated with active chromatin may in fact
reside primarily on H3.3 [14,15], as it is the predominant H3 vari-
ant present at active loci. Likewise, removal of markers of inactive
chromatin such as lysine methylation occurs through H3.1 replace-
ment by H3.3 [11]. During mitosis H3.3 undergoes phosphorylation
on S31 (H3.3 S31p) [16], a modification that cannot occur in either
H3.1 or H3.2, which both encode an alanine at this position. The
role of this modification on H3.3 is unclear.

The different steps in V(D)J recombination—DNA cleavage and
joining—require separate, sequentially occurring chromatin mod-
ifications. For example, recombination loci are characterized by
markers for active chromatin prior to DNA cleavage [9,17,18], but
phosphorylation of histone 2A variant H2AX occurs only after DNA
cleavage and is required for the joining phase of the reaction [19].

0165-2478/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
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H2AX phosphorylation is a common step in all DNA double-strand
break repair pathways, but it is not the only histone modification
associated with DNA repair. The ubiquitylation of H3 by a complex
including damage DNA binding protein (DDB) after UV irradia-
tion suggests that it may also be a common step in repair of DNA
damage [20], perhaps acting to weaken nucleosome–DNA interac-
tion and/or recruiting additional repair factors. Here we show that
H3.3—the variant known to be present at recombining loci—is a
substrate for RAG1-dependent E3 activity and that RAG1 appears
to specifically target heavily acetylated H3.3 S31p. While H3.3 S31p
has previously been found in specific regions of chromatin only
in mitotic cells [16], we show that it occurs in cultured lympho-
cytes undergoing recombination. This observation may indicate a
unique function for H3.3 S31p that is required both in recombining
lymphocytes and mitosis.

2. Materials and methods

2.1. Proteins and antibodies

RAG1[1–389], RAG1[1–389] P326G, and RAG1[218–389] were
expressed as Xpress epitope-, histidine-tagged fusion proteins in
Escherichia coli and purified as previously described [21]. Pro-
tein kinase tagged ubiquitin (PK-ubi) was expressed in E. coli
and purified as previously described [5]. UbcH2 and E1 enzymes
were purchased from Boston Biochem (Cambridge, MA, USA). Anti-
H3 (ab1791-100) and anti-H3.3 s31p (ab9628) were purchased
from Abcam (Cambridge, MA, USA). A panel of antibodies against
acetylated histone H3 (#9921) was purchased from Cell Signaling
Technology (Boston, MA, USA). Monoclonal antibody specific for
the amino terminus of H3 (#39763) was purchased from Active
Motif (Carlsbad, CA, USA). Anti-ubiquitin–protein conjugate was
purchased from Biomol International (Plymouth Meeting, PA, USA).
Bacterially expressed, purified histone H3.1 (M503S) and H3.3
(M507S) were purchased from New England Biolabs (Ipswich, MA,
USA).

Mixed histones were purified from RAG1-negative pro-B cells
(4 × 108) by acid extraction. Briefly, cells were washed twice in
ice cold phosphate buffered saline, followed by incubation in 4 ml
hypotonic buffer (10 mM Tris pH 8.0, 1 mM KCl, 1.5 mM MgCl2,
1 mM dithiothreitol) for 2 h, 4 ◦C, with gentle rotation. Nuclei were
collected by centrifugation (10,000 × g, 10 min, 4 ◦C), resuspended
in 0.4 ml of 0.4 N H2SO4, and incubated for 1 h, 4 ◦C, with gentle
rotation. Debris was pelleted by centrifugation (16,000 × g, 10 min,
4 ◦C). Histones were precipitated from the supernatant by drop-
wise addition of trichloroacetic acid (132 �l) and incubation on
ice (30 min), and collected by centrifugation (16,000 × g, 10 min,
4 ◦C). The histone pellet was washed with ice cold acetone and
resuspended in sterile water (100 �l). For hydrolysis of the amino
terminal tail, histone solution was incubated over night at 37 ◦C
in reaction buffer (50 mM Tris pH 7.4, 2 mM ATP and 50 mM
NaCl).

2.2. Ubiquitylation reaction

RAG1 (22 nM), UbcH2 (0.3 �M), E1 (45 nM) and PK-ubi (500 �M)
were combined with mixed histones (0.2 �l), H3.1 or H3.3 (0.5 �g)
in 10 �l reaction buffer (50 mM Tris pH 7.4, 2 mM ATP and
50 mM NaCl) for 4–5 h, 37 ◦C. The low concentration of RAG1 was
due to poor solubility of the 1–389 fragment. Reaction products
were separated on a 4–12% bis–Tris gel (Invitrogen, Carlsbad, CA,
USA), blotted and probed with anti-H3 (1:5000), anti-H3.3 S31p
(1:2000), or anti-ubiquitin–protein conjugate (1:2000), followed
by secondary-HRP conjugate as appropriate (1:5000) and Super-
Signal West Femto detection reagent (Rockford, IL, Pierce, USA).

ECL was detected and quantified with a Kodak ImageStation 3000
(Kodak, Cambridge, MA, USA).

2.3. H3.3 S31p detection in cultured lymphocytes

Abelson murine leukemia virus transformed 103/Bcl-2/4 Pre-B
cells (gift of Dr. Garnett Kelsoe, Duke University Medical Cen-
ter, Durham, NC) carry a temperature-sensitive variant of the
abl protein [22]. These cells were maintained at the permissive
temperature of 34 ◦C in RPMI-1640 supplemented with 10% FBS
(Invitrogen, Carslbad, CA, USA), penicillin/streptomycin (Mediat-
ech, Manassas, VA, USA), l-glutamine (Mediatech, Manassas, VA,
USA) and �-mercapto-ethanol. Signal joint and coding joint for-
mation was induced and detected by PCR as previously described
[24].

Cells were arrested by treatment with nocodazole (100 ng/ml,
24 h). To release arrest, cells were washed with phosphate buffered
saline then resuspended in complete media. Samples taken at vari-
ous time points and temperatures were collected by centrifugation,
resuspended in buffer containing 6 M urea and sheared extensively.
H3.3 S31p was detected by Western blot as described in Section 2.2.

2.4. Mass spectrometry analysis

Ubiquitylated histone samples were lyophilized, re-suspended
in LDS sample buffer, loaded on an Invitrogen 4–12% pre-casted
bis–Tris NuPage gel with MOPS running buffer. The protein com-
ponents separated by SDS-PAGE were stained with SimpleBlue®

(Invitrogen, Carlsbad, CA, USA). Bands corresponding in size to
mono-ubiquitylated H3 were excised from the gel. In-gel tryptic
digestion was performed to extract the peptides from these gel
bands [23]. Each peptide sample was desalted by C18 ZipTip (Milli-
pore, Bedford, MA, USA), then, lyophilized and resuspended in 16 �l
of 0.1% TFA for LC–MS analysis.

Each sample (6 �l) was loaded on an Agilent 1100 nano-capillary
HPLC system (Agilent Technologies, Palo Alto, CA) with a 10 cm
integrated �RPLC-electrospray ionization (ESI) emitter column
(made in house), coupled online with a linear ion-trap (IT) mass
spectrometer (LTQ XP, ThermoElectron, San Jose, CA) for mRPLC-
MS/MS analysis. The integrated �RPLC-ESI emitter columns were
made of 75 �m i.d. fused-silica capillaries (Polymicro Technologies,
Phoenix, AZ), which were slurry packed with 5 �m, 300 Å pore
size C-18 silica-bonded stationary RP particles (Jupiter, Torrance,
CA, USA) using a slurry packing pump (Model 1666, Alltech Asso-
ciates, Deerfield, IL, USA). After sample injection, a 20 min wash
with 98% of mobile phase A (0.1% formic acid) was applied and
peptides were eluted using a linear gradient of 2% mobile phase B
(acetonitrile with 0.1% formic acid) to 42% mobile phase B within
40 min at a constant flow rate of 200 ml/min. The seven most
intense molecular ions in the MS scan were sequentially selected
for subsequent collision-induced dissociation (CID) using a normal-
ized collision energy of 35%. The mass spectra were acquired at
the mass range of m/z 350–1800. The ion source capillary voltage
and temperature were set at 1.5 kV and 200 ◦C, respectively. The
MS/MS data were searched against a database with only RAG1 and
ubiquitin protein sequences using BioWorks interfaced SEQUEST
(ThermoElectron) operating on a 10 node Beowulf parallel virtual
machine computer cluster (Dell, Inc., Round Rock, TX). Ubiquity-
lation, acetylation, methylation, phosphorylation and methionine
oxidation were searched as differential modifications. Only tryptic
peptides with up to two missed cleavage sites meeting a specific
SEQUEST scoring criteria (delta correlation (�Cn) ≥ 0.10 and charge
state dependent cross correlation (Xcorr) ≥ 2.0 for [M+H]1+, ≥2.5 for
[M+2H]2+ and ≥3.0 for [M+3H]3+) were considered as legitimate
identifications.
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Fig. 1. Ubiquitylation of H3 promoted by RAG1. Mixed histones were subjected to
ubiquitylation as described in Section 2.2, using various concentrations of UbcH2 and
RAG1[1–389] as indicated. Products were separated on denaturing polyacrylamide
gels, blotted and probed with polyclonal anti-H3 antibody or anti-ubiquitin–protein
conjugate (ubi-c) antibody. The positions of unmodified H3 and ubiquitylated H3
species (H3-ubi) are indicated.

2.5. FACS analysis

103/Bcl2/4 cells were sampled at various time points after
release from nocodazole arrest. Cells were collected by centrifu-
gation, resuspended in cold PBS and fixed with 75% ethanol prior
to propidium iodide staining. Stained samples were counted on an
Becton Dickinson FACSort and analyzed using FCS Express Version
3.0 and ModFit LT.

3. Results

3.1. RAG1 promotes ubiquitylation of H3

A fragment of RAG1 (amino acids 1–389) including the RAG1
RING finger E3 domain was combined in various amounts with
the E2 enzyme UbcH2, E1 enzyme and PK-ubi, along with mixed
histones purified from cultured RAG1-negative pro-B lympho-
cytes (Fig. 1). The mixed histones were expected to include all
histone variants and post-translational modifications present in
cycling lymphocytes. Products were separated on a denaturing
gel, blotted and probed with a polyclonal anti-H3 antibody that
recognizes all H3 variants (Fig. 1, lanes 1–5) and with anti-
ubiquitin–protein conjugate antibody (Fig. 1, lanes 6–9). In the
complete reaction, a product of the molecular weight consistent
with mono-ubiquitylated H3 was detected. Additional products
consistent with di-, tri- and higher order ubiquitylation were also
seen as the concentration of RAG1 was increased. When the prod-
ucts of these reaction were probed with anti-ubiquitin conjugate
antibody, the putative H3 ubiquitylated species were detected
(note that the intensity of the bands detected with anti-ubiquitin
increases with the number of ubiquityl moieties). This reaction was
dependent on the presence of UbcH2. Neither CDC34, which pro-
motes auto-ubiquitylation of RAG1, nor ubcH5b, which has been
implicated in RAG1-dependent H3 ubiquitylation previously, were
able to support ubiquitylation of H3 in this system (data not shown).

Ubiquitylation of H3 was dependent on an intact RAG1 RING
finger ubiquitin ligase domain. We previously demonstrated that
the RAG1 P326G substitution eliminates RAG1 E3 functional inter-
action with E2 enzymes but does not disrupt the folded structure
of this domain [21]. RAG1[1–389] P326G did not support ubiq-
uitylation of H3 beyond background (Fig. 2A). Regions upstream

Fig. 2. Ubiquitylation of H3 by RAG1[1–389] P326G and RAG1[218–389]. Ubiquity-
lation reactions were performed as described in Section 2.2, using (A) RAG1[1–389]
(W.T.) or RAG1[1–389] P326G or (B) RAG1[1–389] or RAG1[218–389]. Results are
the average of three independent trials; standard deviation is indicated by error
bars.

of the RING domain were also required for interaction with H3.
RAG1[218–389] is competent in auto-ubiquitylation and ubiquity-
lation of KPNA1 [5,8], but the protein did not support ubiquitylation
of H3 (Fig. 2B). This result indicates that the binding site for H3 must
reside within the first 217 residues of RAG1.

3.2. RAG1 interacts with the modified amino-terminal H3 tail

Regions within the H3 amino-terminal tail were required for its
RAG1-dependent ubiquitylation. Full length H3 underwent hydrol-
ysis to a stable ∼13 kDa species after overnight incubation at 37 ◦C.
A panel of antibodies against epitopes in the amino terminus was
used to discern the approximate breakpoint (Fig. 3A). Polyclonal
antisera raised against intact H3 recognized both the full-length
and truncated (H3�) species, while a monoclonal raised against
a peptide at the extreme amino terminus of H3 recognized only
the intact protein (Fig. 3A, cf, panels 1 and 2), indicating that the
truncated species resulted from loss of the amino terminal tail.
Polyclonal antibodies against H3 acetylated on lysines 9, 18 or 23
(H3K9a, 18a, or 23a, respectively), all recognized both full length
and H3� (Fig. 3A, panels 3–5), and an antibody against H3.3 phos-
phorylated on serine 31 (H3.3S31p) recognized primarily the lower
band (Fig. 3A, panel 6). Along with the size difference between the
two species, these data suggest that the break point is somewhere
between lysine 23 and serine 31 (or A31 on H3.1).
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Fig. 3. N-terminal truncation of H3. (A) H3 was allowed to undergo spontaneous
hydrolysis as described in Section 2.1. Aliquots from this reaction were separated by
gel electrophoresis and subjected to Western blot. Individual lanes were probed with
various antibodies as indicated. The positions of intact H3 and amino-terminally
truncated H3 (H3�) are indicated. (B) A mixed pool on intact H3 and H3� was
subjected to ubiquitylation as described in Section 2.2. Positions of substrates and
products are indicated.

The ubiquitylation reaction was repeated with a mixed pop-
ulation of full length and truncated H3 (Fig. 3B). Under these
conditions, a RAG1-independent mono-ubiquitylated species was
observed that migrated at a slightly lower apparent molecular
weight than the RAG1-dependent product (Fig. 3B, lane 2), cor-
responding in molecular weight to ubiquitylation of truncated H3
(H3�-Ubi). The addition of RAG1 had no effect on this product,
but strongly stimulated generation of the full length ubiquity-
lated species (Fig. 3B, lane 3). Thus RAG1 specifically promoted
ubiquitylation of full length H3 but not H3�, suggesting that it
requires elements within the H3 amino terminal tail. Furthermore,
truncated H3 could undergo promiscuous, RAG1-independent
ubiquitylation.

Mono-ubiquitylated H3 generated in the presence of RAG1 was
excised from the gel and subjected to mass spectrometry (MS)
to identify (1) which lysine residues had been modified, (2) what
other modifications were present on the ubiquitylated H3 species,
and (3) whether H3 variants were present. These data are sum-
marized in Table 1. Five different H3 lysine residues were found
to undergo mono-ubiquitylation under these conditions. These
included lysines in the amino terminal histone tail, the region most

Table 1
Mass spectrometric analysis of H3 modifications.

Fragment Position

With RAG1
R.KSAPSpTGGVK.K (H3.3) S31-phos

R.K#STGGK@APR.K K9-Ubi
R.K#QLATK@AAR.K K18-Ubi
R.K@QLATK#AAR.K K23-Ubi
R.EIAQDFK#TDLR.F K79-Ubi
K.RVTIMPK#DIQLAR.R K122-Ubi

#: ubiquityl; @: acetyl; p: phosphoryl. Trypsin cleavage sites are indicated with a
period (.).

commonly post-translationally modified, and those in the histone
core. This suggests that the higher molecular weight ubiquitylated
species observed were the result of multiple mono-ubiquitylation
steps. When the RAG1-independent product was analyzed, three
positions of ubiquitylation within the histone core were detected
(K36, K79, and K122). It should be noted that RAG1-independent
H3 ubiquitylation may occur even in the presence of RAG1, and that
this MS technique is not quantitative. Thus it is not possible to tell
from these data whether RAG1 targets one particular lysine residue
for modification.

The RAG1-dependent H3-ubi product was found to contain
phosphorylated H3.3 (H3.3 S31p), while no phosphorylated species
were detected in the RAG1-independent product (Table 1). The MS
results also demonstrated that the RAG1-dependent ubiquitylated
H3 product had undergone extensive acetylation (Table 1 and data
not shown). In fact we detected individual fragments that were
both ubiquitylated and acetylated. It is not possible to tell with this
technique whether the acetylated products are also H3.3 S31p, as
the residues that distinguish H3.1 from H3.3 are not present in the
acetylated fragments. However, acetylation and other H3 modifi-
cations associated with active chromatin are hypothesized to occur
primarily on H3.3 [14,15].

Several lines of evidence indicated that modification (acety-
lation and/or phosphorylation) of H3 was required for RAG1-
dependent ubiquitylation. Bacterially expressed H3.1 and H3.3
were poor substrates for RAG1-dependent ubiquitylation (Fig. 4,
lanes 3 and 6), while both underwent RAG1-independent ubiq-
uitylation (Fig. 4, lanes 2 and 5). We used a panel of antibodies
against H3 modifications identified in our MS analysis to deter-
mine if any were required for ubiquitylation. Since the pool of
histones used as substrates in this reaction was purified from
actively dividing lymphocytes, it should contain histones modi-
fied in a wide variety of ways as well as unmodified. An antibody

Fig. 4. Ubiquitylation of recombinant H3 variants. Recombinant H3.1 or H3.3 were
subjected to ubiquitylation by RAG1[1–389] as described in Section 2.2, and products
were detected with anti-H3 antibody. The positions of unmodified H3 and mono-
ubiquitylated H3 (H3-ubi) are indicated.



160 J.M. Jones et al. / Immunology Letters 136 (2011) 156–162

Fig. 5. Inhibition of H3 ubiquitylation by antibodies against specific H3 modifica-
tions. Mixed histones were subjected to ubiquitylation by RAG1[1–389] as described
in Section 2.2, with the addition of increasing amounts (0.5, 1 or 2 �l) of various poly-
clonal antibodies as indicated. (A) Reactions included anti-H3 or anti-H3 acetylated
on lysine 23 (H3K23a). (B) Reactions included anti-H3 acetylated on lysine 9 or 18
(H3K9a or H3K18a) or anti-H3.3 phosphorylated on serine 31 (H3.3S31p). Lanes
between 3 and 4 have been excised for clarity. The position of mono-ubiquitylated
H3 is indicated.

specific for a certain H3 modification should only inhibit the reac-
tion if RAG1 must also recognize that modification, otherwise
RAG1 could easily use other, differently modified H3 molecules
as substrates. Therefore, if RAG1 has no preference for a specific
modification, no individual antibody should inhibit the reaction.
We found that the reaction was strongly inhibited by antibody
specific for H3 acetylated on lysine 23 (�H3K23a) and H3.3 phos-
phorylated on serine 31 (�H3.3S31p) (Fig. 5A, lanes 7–9, and B,
lanes 10–12), and to a lesser extent by antibodies against H3 acety-
lated on lysine 9 or 18 (Fig. 5B, lanes 4–9). The reaction was only
mildly inhibited by polyclonal anti-H3 (Fig. 5A, lanes 3–5), which
has epitopes throughout the protein. Taken together these results
suggests that certain post-translational modifications, specifically
acetylation and phosphorylation, activate H3 as a substrate for
RAG1-dependent ubiquitylation.

3.3. H3.3 S31p is up-regulated during V(D)J recombination

H3.3 S31p has been associated with mitosis [16], and is not
expected to be present during G1 when V(D)J recombination takes
place [24]. A V(D)J recombination-inducible cell line was used to
determine whether H3.3 S31p is present during recombination.
103/Bcl2/4 is a virally transformed pre-B cell line expressing a
temperature sensitive v-abl protein [22]. At permissive tempera-
ture (34 ◦C), these cells cycle normally and V(D)J recombination is
repressed. At non-permissive temperature (39.6 ◦C), cells arrest in
G1 and undergo coding joint formation on the kappa and lambda
loci [22,24]. Signal joint formation occurs after cells are shifted
back to permissive temperature and re-enter the cell cycle [24].
103Bcl2/4 cells were synchronized and H3.3 S31p levels were ana-
lyzed at various phases with a specific antibody (see Fig. 6A for
experimental scheme). Initially, cells were arrested in M phase by

nocodazole treatment. Under these conditions, a large accumula-
tion of H3.3 S31p was detected by Western blot (Fig. 6B, lane 1),
consistent with previously published data [16]. There was a dra-
matic drop in H3.3 S31p levels after release into G1, and levels
remained low after 12 h of incubation at non-permissive temper-
ature (Fig. 6B and C), during which time very little completed
recombination could be detected (Fig. 6E). H3.3 S31p levels rose by a
small but significant amount 24 h after induction of V(D)J recombi-
nation by transfer to non-permissive temperature (Fig. 6C), despite
the fact that these cells are arrested in G1 phase (Fig. 6D). This cor-
responds to the period of time during which NHEJ DNA repair to
produce coding joints occurs (Fig. 6E, left panel). There was a further
dramatic increase in H3.3 S31p levels 24 h after shift back to per-
missive temperature, at which point NHEJ DNA repair to produce SJ
occurs (Fig. 6E, right panel). FACS analysis indicated that these cells
did not show an increase in G2 and were still in S phase (Fig. 6D),
indicating that the spike in H3.3 S31p is not the one normally asso-
ciated with mitosis. Thus the increase in H3.3 S31p levels correlated
temporally with the DNA repair phase of V(D)J recombination.

4. Discussion

While great strides have been made in understanding the
mechanism of DNA cleavage by RAG1 and RAG2, the role of the
amino-terminal, so-called “non-core” region, of RAG1 has remained
a mystery. The discovery of E3 activity in this region suggests many
intriguing possibilities [5,6], and several potential substrates have
been identified [7,8]. Recently it was demonstrated that RAG1 could
promote ubiquitylation of H3 (variant unspecified). However, the
resistance of this reaction to mutations that inactivate the RING
finger domain—the catalytic core of RAG1 E3 activity—left open
the possibility that the lysate used in the reaction was contami-
nated by another E3 protein possibly co-purifying with RAG2 [7].
RAG2 is known to interact with the Skp2-SCF E3 protein complex
[25]. Nevertheless, these data suggested a functional interaction
between RAG1 and H3. Our evidence suggests that RAG1 targets
H3.3, the H3 variant known to be associated with recombining loci
[9], and thus most likely to be encountered by RAG1 during V(D)J
recombination. This reaction is absolutely dependent on an intact
RAG1 RING domain, and requires regions of the far N-terminus of
RAG1 where the H3.3 binding sight is likely to reside and regions
within the H3 amino-terminal tail. We demonstrate using MS that
several H3.3 lysines are subject to ubiquitylation, the first time the
positions of H3 ubiquitylation have been identified. Furthermore,
post-translational modification by acetylation and phosphoryla-
tion appears to activate H3.3 as a substrate, potentially allowing for
more precise regulation of ubiquitylation. H3 acetylation is known
to be vital for active V(D)J recombination [17]. Thus such speci-
ficity would theoretically prevent RAG1 from targeting the general
pool of H3 and limit it’s E3 activity to modified H3.3 present at the
recombination loci proximal to where RAG1 is bound.

We can only speculate as to the potential role phosphorylation
of H3.3 S31 plays in V(D)J recombination, as very little is currently
known about its role in mitosis. H3.3 S31p occurs in very specific
regions of the chromosome adjacent to the centromeres during late
pro-metaphase and metaphase [16]. Unlike H3 S10p and S28p, it
is not likely to be required for initiation of chromatin condensa-
tion, which has already occurred by that time. Instead, it has been
suggested that H3.3 S31p in mitosis could prevent spreading of
heterochromatin, presumably in conjunction with some transact-
ing factor, helping to maintain the active status of certain genes. By
analogy, phosphorylation of H3.3 could help prevent its replace-
ment by H3.1 after the DNA repair phase of V(D)J recombination.
Thus it would ensure maintenance of the active transcriptional sta-
tus of the recombined locus.
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Fig. 6. H3.3 S31p accumulation in recombining cells. (A) Cells were arrested by 24 h treatment with nocodazole (Noco; 100 ng/ml), then released and incubated for an
additional 12 h at permissive temperature, sampled, and then shifted to non-permissive temperature. Additional samples were taken 12 and 24 h after shift to non-permissive
temperature, and 24 h after return to permissive temperature. Cell cycle phase and recombination status at the immunoglobulin kappa locus [24] are indicated. (B) H3.3
S31p detection by Western blot. Total H3 is shown in the bottom panel. (C) Average and standard deviation of three independent trials to detect H3.3 S31p. Levels have
been corrected against � actin (not shown). Student’s t-test was used to analyze differences; *p < 0.05; **p < 0.001. (D) Cells were sampled as described in (A), stained for
DNA content, and counted as described in Section 2.5. Percentage of cells in G2 phase is indicated for each sample. (E) Coding joint and signal joint formation at various time
points was determined as described in Section 2.3.
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Histone ubiquitylation is one of the least well understood
aspects of the histone code. H3 is a target for mono-ubiquitylation
by the DDB complex, and this modification occurs after UV irradia-
tion [20], suggesting that it is part of the DNA damage detection
and repair pathway. The RAG1/2 recombinase is essentially a
programmed DNA damage complex, introducing double stranded
breaks in the DNA at defined locations. The response to these
breaks shares components with the general NHEJ double strand
break repair pathway [4]. For example, H2AX is phosphorylated at
RAG1/2 induced breaks just as it is after ionizing radiation [19].
However, there are several aspects of RAG1/2 induced breaks that
make them unique: (1) breakage occurs at pairs of sights simul-
taneously [26], (2) RAG1/2 remains tightly bound to the RSS ends
following breakage [27,28], and (3) rejoining must occur between
DNA ends that were originally distal from one another for recom-
bination to occur successfully. These factors may influence how
the damage DNA response is activated and how the NHEJ system
is optimally deployed. In particular, the presence of the recombi-
nase sequesters the cleaved RSS ends, and prevents access by the
NHEJ repair proteins [28]. Likewise, the presence of the recom-
binase may prevent the ubiquitylation of H3 that would occur in
response to other sources of DNA damage. Instead we propose
ubiquitylation of H3.3 is promoted by RAG1, leading to recruit-
ment of the repair complex and increasing accessibility of the
ends. This model may represent a V(D)J specific mechanism for
ubiquitylation of H3.3 associated with recombination loci that
mirrors the general mechanism that occurs during the damage
response elsewhere in the genome. This novel model for disassem-
bly of the recombinase post-cleavage complex and transition to
DNA repair, and more broadly for how histone ubiquitylation may
potentiate DNA damage response, will be an active area of future
inquiry.

5. Conclusions

RAG1 promotes ubiquitylation of histone 3 variant H3.3 that has
been heavily acetylated and phosphorylated on serine 31 (acetyl-
H3.3 S31p). H3.3 S31p, most commonly associated with mitotic
chromosomes, is also up-regulated during V(D)J recombination. H3
is known to undergo ubiquitylation after UV irradiation, possibly as
a mechanism for recruiting repair enzymes. RAG1-dependent ubiq-
uitylation of H3.3 may be a V(D)J recombination-specific adaptation
of this general DNA damage response.
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