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Microfilariae of Brugia malayi Inhibit the mTOR Pathway and Induce
Autophagy in Human Dendritic Cells

Prakash Babu Narasimhan,a Sasisekhar Bennuru,a Zhaojing Meng,b Rachel N. Cotton,a* Kathleen R. Elliott,a Sundar Ganesan,c

Renee McDonald-Fleming,a* Timothy D. Veenstra,b* Thomas B. Nutman,a Roshanak Tolouei Semnania

Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USAa; Cancer Research Technology
Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USAb; Biological
Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USAc

Immune modulation is a hallmark of patent filarial infection, including suppression of antigen-presenting cell function and
downmodulation of filarial antigen-specific T cell responses. The mammalian target of rapamycin (mTOR) signaling pathway
has been implicated in immune regulation, not only by suppressing T cell responses but also by regulating autophagy (through
mTOR sensing amino acid availability). Global proteomic analysis (liquid chromatography-tandem mass spectrometry) of mi-
crofilaria (mf)-exposed monocyte-derived dendritic cells (DC) indicated that multiple components of the mTOR signaling path-
way, including mTOR, eIF4A, and eIF4E, are downregulated by mf, suggesting that mf target this pathway for immune modula-
tion in DC. Utilizing Western blot analysis, we demonstrate that similar to rapamycin (a known mTOR inhibitor), mf
downregulate the phosphorylation of mTOR and its regulatory proteins, p70S6K1 and 4E-BP1, a process essential for DC pro-
tein synthesis. As active mTOR signaling regulates autophagy, we examined whether mf exposure alters autophagy-associated
processes. mf-induced autophagy was reflected in marked upregulation of phosphorylated Beclin 1, known to play an important
role in both autophagosome formation and autolysosome fusion, in induction of LC3II, a marker of autophagosome formation,
and in induced degradation of p62, a ubiquitin-binding protein that aggregates protein in autophagosomes and is degraded
upon autophagy that was reduced significantly by mf exposure and by rapamycin. Together, these results suggest that Brugia
malayi mf employ mechanisms of metabolic modulation in DC to influence the regulation of the host immune response by
downregulating mTOR signaling, resulting in increased autophagy. Whether this is a result of the parasite-secreted rapamycin
homolog is currently under study.

Filarial infection in humans is initiated by a mosquito-derived
third-stage larva deposited in the skin, which enters the body,

molts to the fourth larval stage, and matures into lymphatic tissue-
dwelling adult male and female worms, a process that takes about
3 to 12 months. Adult females, after copulation, release progeny
microfilariae (mf), a stage believed to be associated with many of
the systemic immunologic defects seen with chronic lymphatic
filarial infection. Microfilariae released in the lymphatics can
travel through circulation and encounter a variety of antigen-pre-
senting cells (APC), including monocytes and dendritic cells
(DC). APC dysfunction has been postulated to be one of the
causes of impaired antigen-specific T cell activation commonly
seen among patients chronically infected with this parasite (1), a
dysfunction that is manifested through a secreted soluble anti-
gen(s) that alters Toll-like receptor (TLR) signaling, induces
apoptotic cell death (2, 3), and affects chemokine-mediated traf-
ficking (4). Although these studies highlight some of the impor-
tant proteins and processes affected, we still do not have a com-
prehensive understanding of the signaling pathways that are
modulated in APCs by these parasites. In this study, using a global
shotgun proteomic analysis of human DCs exposed to the mf stage
of the filarial parasite Brugia malayi (one of the causative agents of
lymphatic filariasis), we have demonstrated that these parasites
downregulate some of the important metabolic pathways, includ-
ing the mammalian target of rapamycin (mTOR).

mTOR, a serine/threonine kinase, is composed of two distinct
multiprotein complexes: mTOR complex 1 (mTORC1) and
mTORC2 (reviewed in reference 5). The activity of mTORC1 is
regulated by intracellular signals as well as signals from the envi-

ronment, including growth factors and nutrients (6, 7). Moreover,
mTOR regulates protein synthesis through the phosphorylation
and activation of the ribosomal S6 kinase (p70S6K1) and phos-
phorylation and inactivation of the repressor of translation, eu-
karyotic initiation factor 4E-binding protein (4E-BP1; reviewed in
reference 8). Phosphorylation of both of these proteins can be
blocked by rapamycin, resulting in inhibition of protein transla-
tion (9, 10).

Intracellular parasites as well as viruses have developed strate-
gies to manipulate the host translation machinery to benefit their
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own replication through regulation of mTOR. There is evidence
for both the stimulation and inhibition of mTOR depending on
the infection. While Toxoplasma gondii maintains mTOR-depen-
dent cellular growth of infected cells (11), Leishmania protease
inhibits mTOR in macrophages, leading to enhanced parasite rep-
lication (12).

mTOR also plays a key role in regulating the balance between
cell growth and autophagy, the major cellular digestion process
that removes organelles and other macromolecules. In fact, acti-
vation of mTORC1 by nutrients and growth factors leads to inhi-
bition of autophagy through the phosphorylation of several au-
tophagy-related proteins (reviewed in references 13 and 14),
including Beclin 1, LC3II, and p62.

In the present study, we show that mf from the extracellular
parasite B. malayi inhibit the mTOR pathway in human DC by
downregulating the phosphorylation of mTOR itself and also by
inhibiting the basal and activation-induced phosphorylation of
p70S6K and 4EBP1. In addition, mf induce autophagy in human
DC by upregulating the phosphorylation of Beclin 1 (a central
regulator of autophagy), by inducing LC3II (an autophagic vacu-
ole-associated protein [15]), and by inducing the degradation of
p62, a ubiquitin-binding receptor and marker of conventional
autophagy. Together, our data suggest that extracellular helminth
parasites employ (presumably through the production of soluble
factors) mechanisms of metabolic modulation in DC to influence
the regulation of the host immune response by downregulating
mTOR signaling, resulting in autophagy.

MATERIALS AND METHODS
Ethics statement. Human monocytes were isolated from leucopacks from
healthy donors by counterflow centrifugal elutriation under Institutional
Review Board (IRB)-approved protocols from the Department of Trans-
fusion Medicine (Clinical Center, National Institutes of Health [NIH],
Bethesda, MD). All donors provided informed written consent.

mf preparations. Live B. malayi mf (provided under contract with the
University of Georgia, Athens, GA) were collected by peritoneal lavage of
infected jirds and separated from peritoneal cells by Ficoll diatrizoate
density centrifugation. The mf were then washed repeatedly in RPMI
medium with antibiotics and cultured overnight at 37°C in 5% CO2.

In vitro generation of DC. Human monocytes were cultured at 50 �
106 per 6-well plate in serum-free medium for 2 h, after which the medium
was removed and complete medium (RPMI 1640 medium [Lonza, Allen-
dale, NJ] supplemented with 20 mM glutamine [Lonza], 2% heat-inacti-
vated human AB serum [Gemini Bioproducts, Sacramento, CA], 100
IU/ml penicillin, and 100 g/ml streptomycin [Biofluids, Inc., Rockville,
MD]) added. Recombinant human interleukin-4 (IL-4) and recombinant
human granulocyte-macrophage colony-stimulating factor (GM-CSF;
Peprotech, Rocky Hill, NJ) were added to the culture at 50 ng/ml on days
1, 4, and 6 of culture.

Stimulation of DC for mass spectrometry. Live mf were added on day
6 at final concentrations of 50,000 per well (per 1 � 106 to 2 � 106 DCs).
This number of mf was chosen to reflect in vivo numbers of mf in indi-
viduals with approximately 1,000 mf per ml of blood (containing 0.02 to
0.04 DCs). DCs were exposed to live mf for 48 h and then harvested using
Versene-EDTA (Biofluids Inc.). The cells were washed twice with phos-
phate-buffered saline (PBS) (without Ca2�/Mg2�), counted by trypan
blue exclusion, and used for functional studies. DCs harvested at day 8
were repeatedly shown to be 98% pure by flow cytometry (FACSCalibur;
Becton Dickinson, Sunnyvale, CA). Cells were harvested, lysed, and pre-
pared for label-free mass spectrometry.

Protein isolation and sample preparation. mf-exposed and unex-
posed DC from four donors were lysed, and protein concentrations were
quantified by bicinchoninic acid (BCA) assay. Equivalent amounts of pro-

teins from mf-exposed and unexposed DC of each donor were resolved on
the same NuPAGE 4 to 12% Bis-Tris precast gel. The set of lanes on the
same gel were cut into the same number of gel slices. Gel slices were
then destained, digested overnight with trypsin at 37°C, and extracted
to be analyzed by liquid chromatography-tandem mass spectrometry
(LC-MS/MS).

NanoRPLC-MS/MS. Each set of peptides extracted from mf-exposed
and -unexposed DC gel slices was analyzed using Nanobore reverse-phase
liquid chromatography-tandem MS (nanoRPLC-MS/MS) with blanks
between each run. NanoRPLC was performed using an Agilent 1100
Nanoflow LC system (Agilent Technologies, Palo Alto, CA) coupled on-
line with a linear ion trap (LIT) MS (LTQ; ThermoElectron, San Jose,
CA). NanoRPLC columns were slurry packed in-house with 3-�m, 300-
Å-pore-size, C18 phase (VYDAC, Hesperia, CA) filters in a 75-�m-inner-
diameter, 10-cm fused silica capillary (Polymicro Technologies, Phoenix,
AZ) with a flame-pulled tip. After sample injection, the column was
washed for 30 min with 98% mobile phase A (0.1% formic acid in water)
at 0.5 �l/min, and peptides were eluted using a linear gradient of 2%
mobile phase B (0.1% formic acid in acetonitrile) to 42% mobile phase B
in 40 min at 0.25 �l/min and then to 98% mobile phase B for an additional
30 min. The LIT-MS was operated in a data-dependent mode in which
each full MS scan was followed by five tandem MS scans where the five
most abundant molecular ions were dynamically selected for collision-
induced dissociation (CID) using a normalized collision energy of 35%.

Protein identification and quantification. Proteins were identified
by searching the nanoRPLC-MS/MS data using SEQUEST against a
UNIPROT-derived human proteome database downloaded from the Eu-
ropean Bioinformatics Institue (EBI) and B. malayi RefSeq proteome
database (NCBI). Methionine oxidation was included as a dynamic
modification in the database search. Only fully tryptic peptides with up
to two miscleavages that met certain criteria (delta correlation [�Cn]
of �0.1 and charge state-dependent cross correlation [Xcorr] of �1.9 for
[M � H]1�, �2.2 for [M � 2H]2�, and �3.5 for [M � 3H]3�) were
considered legitimately identified. Protein identifications were accepted if
they contained at least 2 identified peptides. The relative abundance of the
proteins (number of unique peptides) was normalized by normalized
spectral abundance factor (NSAF), where NSAF is represented as

NSAF �

�Spectra

Length �p

�
p � 1

n �Spectra

Length �p

Stimulation of DC for immunoblotting and autophagy. DC were
harvested at day 6 with Versene-EDTA (Biofluids Inc.), washed twice with
PBS (without Ca2�/Mg2�), counted by trypan blue exclusion, and cul-
tured at 1 � 106 per ml in serum-free media (RPMI 1640 medium) in
15-ml conical tubes. Cells were either left unexposed or were exposed to
50,000 live mf per tube or to rapamycin (100 ng/ml) (Sigma-Aldrich Co,
St. Louis, MO) for 5 to 60 min. For basal expression of pmTOR, pp70S6K,
and p4EBP1, cells were processed immediately for immunoblotting. For
expression of these proteins following activation, cells were activated with
lipopolysaccharide (LPS; 1 �g/ml; Invivogen, San Diego, CA) for an ad-
ditional 30 min and then processed for immunoblotting.

To measure autophagy, 1 � 106 DC were left unexposed or were ex-
posed to live mf at concentrations of 5,000 (lo), 25,000 (med), or 50,000
(hi) or to rapamycin (100 ng/ml) in 2% heat-inactivated human AB se-
rum (Gemini Bioproducts) supplemented with 100 IU/ml penicillin and
100 g/ml streptomycin (Biofluids, Inc.) overnight.

Immunoblot analysis. Cell lysates were prepared and boiled for 5 min
in Laemmli sample buffer (Bio-Rad Laboratories, Inc., Hercules, CA); 20
�l of protein was then loaded into a 1.5-mm 4 to 20% Tris gel and trans-
ferred onto polyvinylidene difluoride (PVDF) membranes (Bio-Rad). Af-
ter blocking using 5% nonfat milk for 1 h, the membranes were incubated
overnight at 4°C with rabbit anti-pmTOR, rabbit anti-p70S6K, rabbit
anti-p4EBP1, rabbit anti-pBeclin 1, or rabbit anti-LC3A/B (all antibodies
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were from Cell Signaling Technology, Inc., Beverly, MA). After washing,
the membranes were incubated with horseradish peroxidase (HRP)-con-
jugated anti-rabbit IgG (Cell Signaling Technology) at 1:2,000 at room
temperature for 2 h. For the �-actin control, membranes were stripped in
stripping buffer (Thermo Scientific, Grand Island, NJ) for 10 min and
reprobed with anti-�-actin (Cell Signaling Technology) antibody. Pro-
teins were detected by a chemiluminescence detection system (Cell Sig-
naling Technology). �-Actin was used as an internal control because of
low background detection and a molecular weight distinct from those of
the proteins of interest. LC3II/actin ratios were calculated by quantifica-
tion of intensity of LC3II and actin bands and graphed. ImageJ (http://rsb
.info.nih.gov/ij/) was used to quantify the intensity of bands in the immu-
noblots. P values were calculated based on protein expression in exposed
DC compared to unexposed DC.

Confocal microscopy. Cells were harvested after overnight incuba-
tion with mf or chloroquine (Sigma-Aldrich) and washed with PBS three
times, followed by fixation with 2% prewarmed paraformaldehyde for 20
min. The cells were then treated with 1� permeabilizing buffer (BD Bio-
sciences) according to the manufacturer’s instructions and then blocked
for 60 min at 4°C in blocking buffer with 5% bovine serum albumin
(BSA). After washing once with PBS, cells were incubated overnight at 4°C
in 1:100 rabbit LC3B/MAP1LC3B antibody (DyLight 488; Novus Biolog-
icals) for detection of LC3II. Following three washes with PBS, cell nuclei
were stained with 4=,6-diamidino-2-phenylindole (DAPI) at a final con-
centration of 2 �g/ml, followed by an additional three washes. Slide covers
were mounted using Mowiol mounting reagent (Calbiochem, San Diego,
CA). Confocal images were collected using a Leica DMI 6000 confocal
microscope (Leica Microsystems, Exton, PA) enabled with a 63� oil im-
mersion objective (numeric aperture, 1.4). Images were acquired using
highly sensitive hybrid detectors to achieve a maximum signal-to-noise
ratio for LC3 cluster analysis. Images were deconvolved using Huygens
deconvolution software with fixed parameters across the sample (Scien-
tific Volume Imaging B.V., The Netherlands) and further analyzed using
Imaris image processing software (Bitplane, South Windsor, CT). Cluster
size (dots) was fixed to 0.3 �m across the sample using an Imaris spot
analysis process to pick the total number of clusters. The relative differ-
ence in intensity was quantified by counting the fluorescent dots in five
random microscopic fields with approximately 5 to 10 cells each.

ELISA for p62 analysis. DC pellets were washed with PBS and lysed
with radioimmunoprecipitation assay (RIPA) buffer containing protease

inhibitors. p62 expression was measured with a p62 enzyme-linked im-
munosorbent assay (ELISA) kit (Enzo Life Sciences, Farmingdale, NJ)
according to the manufacturer’s instructions. The range of the standard
curve was 625 to 40,000 pg/ml. For each assay, all samples were assayed in
duplicate. Results were normalized per milligram of protein from the cell
lysate.

Statistical analysis. The statistical significance of regulated proteins
(DC that were exposed to live mf of B. malayi [DC/mf] versus DC) was
calculated by one-way analysis of variance (ANOVA) (JMP11; SAS). The
P values were calculated using the normalized spectral abundance factors
(NSAF) for each protein (see Fig. 1 and also Table S1 in the supplemental
material). The nonparametric Wilcoxon signed-rank test was used for Fig.
3 to 6. All statistical analyses were performed with GraphPad Prism 6.0
(GraphPad Software, Inc.).

Accession number. The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium via the PRIDE part-
ner repository with the dataset identifier PXD004522.

RESULTS
Proteomic analysis of DC and DC/mf. Previously, we demon-
strated that the function and viability of monocyte-derived DC
(mDC) are altered by the mf of B. malayi (2, 3). To gain insight
into the mechanisms involved in this altered function, we per-
formed global shotgun proteomic analysis of mDC that were ei-
ther unexposed (DC) or were exposed to live mf of B. malayi
(DC/mf) for 48 h. A total of 5,024 human proteins (see Table S1 in
the supplemental material) were identified, of which 1,394 were
present in the DCs of all four donors (DC and DC/mf) (Fig. 1A);
1,973 proteins were found in at least 3/4 donors (Fig. 1A). Inter-
estingly, there were no proteins that were discretely expressed in
parasite-exposed or -unexposed DC. To examine if there was a
correlation between a previously studied transcriptomic analysis
(16) and the abundance of identified proteins from the current
study, normalized fold changes (DC/mf over DC) were assessed as
a function of the corresponding fold change in values from the
microarrays. A significant correlation was observed between the
2 studies, highlighting the significantly increased expression lev-

FIG 1 Proteomic analyses of unexposed and mf-exposed human DC. Human DC, unexposed or mf exposed for 48 h, were harvested, lysed, processed, and
analyzed by LC-MS/MS. (A) Venn diagram representing the number of proteins identified in human DC (unexposed or mf exposed) from 4 healthy donors. A
total of 1,394 proteins (marked in blue) were identified in all four donors in both DC and mf-exposed DC. (B) Volcano plot of significantly regulated proteins
by mf in human DC (�1.5-fold) with log10 values (P values) on the x axis and log2 ratios (fold change) on the y axis. Significantly upregulated proteins are shown
in red, and significantly downregulated proteins are shown in blue. The P values were calculated using the normalized spectral abundance factors (NSAF) for each
protein. See also Fig. S1 and Table S1 in the supplemental material.
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els of ICAM-1 and IL-1RA (r � 0.3307, P 	 0.0001) (see Fig. S1
in the supplemental material).

Analysis of differentially expressed proteins induced by mf in
DC resulted in the identification of 207 proteins that were 1.5-fold
up- or downregulated over DC alone. Of these 207 proteins, 13
were significantly upregulated and 25 were significantly down-
regulated (P 	 0.05 by one-way ANOVA) (Fig. 1B; see also Table
S1 in the supplemental material). Among these 38 proteins, the 5
that were most significantly upregulated were intercellular cell
adhesion molecule 1 (ICAM1; P05362), normal mucosa of esoph-
agus-specific gene 1 protein (NMES1; Q9C002), interleukin-1 re-
ceptor antagonist (IL1RA; P18510); antigen peptide transporter 1
(TAP1; Q03518), and tryptophanyl-tRNA synthetase, cytoplas-
mic (WARS; P23381) (Fig. 1B; see also Table S1). Notable among
the significantly downregulated proteins were stabilin-1 (STAB1;
Q9NY15), adenosine deaminase CECR1 (CECR1; Q9NZK5),
HLA class II histocompatibility antigen gamma chain (CD74;

P04233), macrophage mannose receptor 1 (MRC1; CD206;
Q5VSK2), and phospholipase D3 (Q8IV08).

In addition, LC-MS/MS analysis of DC/mf samples resulted in
the detection of 539 proteins of B. malayi origin and 13 proteins of
Wolbachia origin. Of the 539 B. malayi-specific proteins, 53 were
detected in DC/mf samples from all 4 donors, and 118 were de-
tected in any three DC/mf samples (see Table S2 in the supple-
mental material).

mf modulate the expression of proteins associated with
mTOR and its related pathways in human DC. Utilizing Ingenu-
ity pathway analysis (IPA), subcellular localization of the proteins
identified in DC and DC/mf revealed that a large proportion were
cytosolic (see Table S1 in the supplemental material). Further-
more, DC exposed to mf exhibited significant enrichment of en-
zymes, including proteases, phosphatases, and kinases (see Table
S1 in the supplemental material). Interestingly, mf-exposed DC
showed a significant downregulation of important metabolic

FIG 2 mf regulated mTOR signaling pathway in human DC. Ingenuity pathway analyses of 1,394 proteins identified in all four donors resulted in identification
of mTOR and its related pathways (eIF2 and p70S6K) as significantly regulated by mf in human DC; downregulated proteins are illustrated in green and
upregulated proteins in red. See also Table S2 in the supplemental material.
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pathways, including the mTOR pathway, as well as pathways in-
volved in eukaryotic initiation factor (eIF2) signaling, the regula-
tion of eIF4, p70S6K signaling, and protein ubiquitination (Fig.
2). Downmodulation of mTOR by mf was of particular interest, in
that this pathway is a master growth regulator and is important in
many cellular activities. In fact, through activation of mTOR by
environmental signals, phosphorylation of downstream proteins
such as p70S6K (also shown to be downmodulated by mf; Fig. 2)
can facilitate cellular growth.

Basal expression of pmTOR, pp70S6K, and p4EBP1 in hu-
man DC is significantly downregulated by mf. To further con-
firm the proteomics data, we investigated the effect of live mf on
mTOR pathway protein expression in DC utilizing immunoblot
analysis, examining whether mf modulate the activity of mTOR,
the translational repressor 4EBP1, and p70S6K. In agreement with
the proteomics data, exposure of DC to live mf significantly down-
regulated the phosphorylation of mTOR, p70S6K, and 4EBP1,
similar to that seen for rapamycin, a process seen as early as 5 min
(Fig. 3A) and that was sustained for at least 60 min (Fig. 3A and B)
following exposure to mf. These data suggest that live mf of B.
malayi significantly modulate mTOR in human DC.

Preexposure of human DC to mf downmodulates LPS-in-
duced phosphorylation of pp70S6K. mTOR signaling can be ac-
tivated in response to TLR agonists such as LPS (17). We therefore
assessed whether mf can inhibit LPS-induced mTOR activation in
human DC. Our data indicate that 30 min of exposure to LPS
significantly augmented the phosphorylation of p70S6K1 (Fig. 4A
and B). Furthermore, preexposure of DC to mf (Fig. 4A and C) or
to rapamycin (data not shown) downregulated the phosphoryla-
tion of p70S6K1 following LPS activation. Since LPS did not sig-
nificantly induce the phosphorylation of mTOR or 4E-BP1 (Fig.
4A and B), preexposure to mf did not alter the phosphorylation of
these two proteins in DC following activation (Fig. 4C). These
data collectively suggest that mf inhibit the mTOR pathway in
human DC at the basal level (Fig. 3) and also prevent the activa-
tion of this pathway in response to mTOR activators such as LPS
(Fig. 4).

mf induce the phosphorylation of Beclin 1 and conversion of
LC3II, suggesting the induction of autophagy in human DC.
Having established that mf inhibit activation of the mTOR path-
way in human DC, both basally and in response to activation
signals, we next investigated whether mf are involved in the regu-
lation of autophagy in human DC, a process previously linked to
the inhibition of mTOR (14). Following exposure to various num-

bers of mf or to rapamycin, a known inducer of autophagy, ex-
pression of Beclin 1 (a component of the phosphatidylinositol
3-kinase [PI3K] complex) and LC3 (microtubule-associated pro-
tein light chain 3), both of which are required for autophagy, were
assessed by immunoblotting (Fig. 5). As can be seen, live mf sig-
nificantly upregulated the phosphorylation of Beclin 1 (Fig. 5A
and B) and induced the conversion of LC3II to the same degree as
rapamycin. mf also significantly upregulated the ratio of LC3II to
LC3I (Fig. 5B), suggesting that mf induce the lipidated form of
LC3 that is known to be recruited to autophagosomes and associ-
ated with the autophagosome membranes.

To further demonstrate mf-induced autophagy in DC, we
measured LC3II accumulation using confocal microscopy and
staining with anti-LC3B antibody (Fig. 5C). Exposure of human
DC to mf induced LC3II accumulation as measured by an increase
in fluorescent staining of autophagosomes (Fig. 5C). The data
indicate that mf induce the accumulation of LC3II in autophago-
somes, as shown by an increase in LC3II fluorescence in DC/mf
(geometric mean [GM], 22.1 fluorescent dots) compared to LC3II
fluorescence in DC not exposed to mf (GM, 6.7) (Fig. 5D). To
further demonstrate LC3II accumulation in autophagosomes, we
used chloroquine (CQ) as a control (Fig. 5C). CQ blocks au-
tophagy by inhibiting lysosomal proteases and autophagosome-
lysosome fusion, therefore resulting in accumulation of LC3II.

mf induce autophagy in human DC by p62. The p62 protein,
also known as sequestosome 1, serves as a link between LC3 and
ubiquitinated proteins and is involved in the autophagic machin-
ery. An alternative method for detecting the autophagic flux is by
measurement of p62 degradation (18), as decreased levels of p62
suggest induction of autophagy. Hence, we measured the expres-
sion of p62 in human DC after exposure to mf. Both mf (P � 0.02)
and rapamycin (P � 0.003) significantly inhibited the levels of p62
in human DC compared with those seen in unstimulated DC (Fig.
6). These data collectively suggest that live mf induce autophagy in
human DC, a process that involves the inhibition of the mTOR
pathway in these cells.

DISCUSSION

Although helminth parasites appear to affect APC function, the
mechanism by which this occurs is largely unknown. Previously
we have shown that live mf of B. malayi impair the viability and
function of monocyte-derived DCs (2, 3). The current study elu-
cidates the mechanism underlying this impaired function and
suggests that cell death operates through the inhibition of the

FIG 3 DC expression of pmTOR, pp70S6K, and p4EBP1 is significantly downregulated by mf. Immunoblots of lysates from human DC unexposed (in medium
alone) or exposed to mf or rapamycin (Rap; 100 nM) for 5 min or 60 min. (A) One representative image for 5 or 60 min of pmTOR, pp70S6K, p4EBP1, and
�-actin expression using Western blot analysis. (B) Line graphs represent the ratio of intensity of protein to �-actin in either unexposed DC (closed circles) or
following 60 min of exposure to either mf or rapamycin (open circles) in each independent donor. *, P � 0.05; **, P � 0.001.
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mTOR signaling pathway and the induction of autophagy by this
extracellular parasite.

DC are critical components in the development of immunity
against a variety of pathogens by interpreting various pathogen-
derived signals and by polarizing T-cell responses (19). In the
presence of inflammatory stimuli or infectious organisms, imma-
ture DCs undergo maturation that is an orchestrated process in-
volving the regulation of a variety of signaling pathways. Global
transcriptional and proteomic profiling of different stages of DC
have attempted to gain insights into these maturation and activa-
tion processes, with most studies utilizing monocyte-derived DC
that are differentiated from monocytes in vitro (20–23). To gain an
understanding of the mechanisms involved in filarial parasite-
induced DC dysfunction, we initially utilized global proteomic
profiling, a process that demonstrated 207 intracellular proteins
being altered (either up or down). Twenty-five of these proteins,
including HLA class II histocompatibility antigen gamma chain
(CD74) and DC-SIGN (CD209), were significantly downregu-
lated (see Table S1 in the supplemental material), providing more
evidence for the suppressive effect of mf on human DC. In fact,
mf-induced downregulation of DC-SIGN has been suggested to
play a role in the infection of human DC with Mycobacterium
tuberculosis (24).

Proteomic analysis also strongly suggested that mf markedly

impaired the mTOR pathway (Fig. 2), a finding corroborated ex-
perimentally (Fig. 3). These findings differed from studies using
antigens from Schistosoma mansoni, including soluble egg anti-
gens (SEA) and the major immunomodulatory component
omega-1 (12, 25), in which the helminth-induced alterations in
mTOR function differed from those induced by rapamycin. In
marked contrast, extracellular live B. malayi mf behaved more like
rapamycin by significantly inhibiting the phosphorylation of the
two downstream targets, 4EBP1 and p70S6k, in DC (P 	 0.05)
(Fig. 3A and B); this inhibition required live parasites in that par-
asite antigen (or heat-killed mf) failed to alter mTOR-related pro-
cesses (data not shown). Previous work has demonstrated that DC
activation and longevity following exposure to TLR agonists relies
on mTOR (26). Interestingly, our data indicate that mf can inhibit
mTOR activation (particularly phosphorylation of p70S6K1) fol-
lowing exposure to the TLR agonist LPS (Fig. 4) or to poly(I·C)
(data not shown).

Intracellular parasites, viruses, and bacteria are known to be
capable of activating or inhibiting the mTOR pathway to ensure
their survival and replication (reviewed in references 27 and 28).
The dephosphorylation of 4EBP1 by the intracellular parasite
Leishmania major has been reported in macrophages, a process
that allowed for the parasite’s survival (12). Using a different spe-
cies of Leishmania, Leishmania donovani, IL-12 and IL-10 produc-

FIG 4 Preexposure of human DC to mf downmodulates LPS-induced phosphorylation of pp70S6K. Human DC were either unexposed (medium alone) or
preexposed to mf or rapamycin (Rap) for 60 min and then either left in medium alone or activated with LPS for another 30 min. (A) One representative image
of pmTOR, pp70S6K, and p4EBP1 using immunoblotting is shown. (B) Line graphs represent the ratio of intensity of protein to �-actin in either unexposed DC
(closed circles) or following 30 min of exposure to LPS (1 �g/ml; open circles). *, P 	 0.05. (C) Line graphs represent the ratio of intensity of protein to �-actin
in either DC exposed to LPS (1 �g/ml; closed circles) or preexposed to mf for 60 min and following 30 min of exposure to LPS (1 �g/ml; open circles).
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tion was modulated through the mTOR pathway (29). In contrast
to Leishmania infection, infection with Toxoplasma gondii main-
tained mTOR-dependent cellular growth that was independent of
S6K and 4EBP1, suggesting a parasite-specific mechanism of
mTOR regulation (12). Our results demonstrate that extracellular
helminth parasites inhibit the mTOR pathway in DC both at the
basal level and in response to TLR activation (Fig. 3 and 4), likely
through internalization of actively secreted/excreted molecules.

The mTOR complex also plays an important role in T cell
differentiation and activation (30). In CD4� T cells, mTORC1
selectively regulates Th1 and Th17 differentiation (31, 32), and
complete inhibition of mTOR in CD4� T cells was shown to result
in the generation of regulatory T cells (33). How mf-induced
mTOR inhibition in DC affects CD4� and CD8� differentiation is
an important area of research that needs further exploration.
Studies from our laboratory suggest that in patent filarial infec-
tion, there is an expansion of regulatory T cells (34). Whether this
is the direct effect of a downregulation of mTOR in the DCs of
infected individuals is an open question. Studies have indicated
that the inhibition of mTOR by rapamycin supports the induction
of tolerogenic DCs (35–37), a phenomenon that needs to be fur-
ther investigated in the context of filarial infection.

It has been well documented that inhibition of mTOR by nu-

FIG 6 mf reduce p62 levels. DC left unexposed (closed circles) or exposed to
mf or rapamycin (Rap; open circles) for 24 h were harvested and lysed, and
intracellular concentrations of p62 (ng/ml) levels were measured by ELISA.
Each line represents an independent donor. P values were calculated based on
levels of p62 in exposed DC compared to unexposed DC. *, P � 0.05; **, P �
0.001.

FIG 5 mf induce phosphorylation of Beclin 1 and conversion of LC3II in human DC. DC left unexposed (medium alone) or exposed to mf at different
concentrations (5,000 mf/1 � 106 [lo], 25,000 mf/1 � 106 [med], or 50,000 mf/1 � 106 [hi]) or rapamycin (Rap) for 24 h were harvested and lysed. (A) One
representative image of phospho-Beclin 1, LC3I, and LC3II expression using Western blot analysis is shown. (B) Line graphs represent the ratio of intensity of
protein to �-actin in each independent donor in either unexposed DC (closed circles) or exposed DC (open circles). *, P � 0.05; **, P � 0.001. (C) DC unexposed
(medium alone) or exposed to mf or chloroquine (CQ) for 24 h were harvested and stained with anti-LC3B rabbit polyclonal antibody (LC3II). DIC (differential
interference contrast) and fluorescent images of DC stained with LC3 (green) and nucleus (blue). The mf-exposed DC show increased LC3II granules compared
with the unexposed DC. (D) Cumulative average fluorescent clusters (0.3-�m size), measured in unexposed DC and in DC exposed to mf or CQ from at least 5
to 10 cells, were averaged and plotted. Error bars represent standard deviations (SD) from 5 to 10 cells. DC geometric mean (GM), 6.7; DC/CQ GM, 54.6; DC/mf
GM, 22.1.
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trient starvation can induce autophagy (reviewed in references
37–39). Furthermore, reactivation of mTOR leads to the termina-
tion of autophagy and the initiation of lysosome formation (40).
Therefore, we determined whether mf induce autophagy in hu-
man DC through mTOR inhibition. Proteomic analyses resulted
in the identification of several autophagy-associated proteins.
However, only two, ATG3 and ATG7, were identified in all 4 do-
nors (see Table S1 in the supplemental material). Nevertheless,
none of these proteins was shown to be significantly upregulated
(�1.5-fold) by mf in DC. It is likely that the limitations of pro-
cessing by mass spectrometry and/or kinetics of DC exposure to
mf (48 h for proteomics, 24 h for other assays) contributed to the
lack of identification of autophagy-related proteins using pro-
teomics.

To assess autophagy, we measured the induction of phosphor-
ylation of Beclin 1 (41), since starvation-induced autophagy has
been shown to occur through the MK2/MK3-dependent phos-
phorylation of Beclin 1 (42). In the present study, we were able to
demonstrate that live mf (at the three concentrations tested) sig-
nificantly induced the phosphorylation of Beclin 1 in human DC
(Fig. 5A and B). We further examined the impact of mf on the
formation of autophagosomes in DC. LC3 is the only known
mammalian protein that specifically associates with the autopha-
gosome membrane; LC3I, a diffuse cytosolic form, conjugates
with phosphatidylethanolamine upon autophagy induction, re-
sulting in the autophagosome-membrane-associated LC3II form
(43, 44). In this study, live mf not only induced the LC3II protein
but, similar to rapamycin, also significantly increased the LC3II/
LC3I ratio (Fig. 5B). As the amount of LC3II is closely associated
with the number of autophagosomes, it can serve as a good indi-
cator of autophagosome formation (45). We further confirmed
the induction of LC3II in DC in response to mf utilizing confocal
microscopy by measuring LC3II fluorescence (Fig. 5C, phago-
somal staining), demonstrating that mf (like chloroquine) blocks
the degradation of LC3II (46) and results in LC3II accumulation
in DC (Fig. 5C and D).

To confirm that the increased levels of LC3II were not due to
inhibition of autophagic degradation and did not represent a
blockade in autophagosome maturation, a second method was
used for detecting the autophagic flux. We measured ubiquitin-
binding receptor p62 degradation, a marker of conventional au-
tophagy whose expression correlates inversely with LC3I-II con-
version. p62 is a scaffolding adaptor protein that can interact with
both LC3II and polyubiquitinated protein, leading to self-degra-
dation as well as degradation of polyubiquitinated proteins that
are in autophagosomes (47–49). mf significantly induced the deg-
radation of p62, providing independent corroboration that mf
could activate the autophagy machinery in DC.

Induction of autophagy by intracellular pathogens has been
previously reported (reviewed in reference 50). Indeed, autophagy
is an important mechanism used by host immune cells to kill
intracellular pathogens (e.g., Helicobacter pylori [51], Leishmania
amazonensis [52], and Toxoplasma gondii [53]) or to provide some
defense against intracellular pathogens (50). Furthermore, vari-
ous bacteria and viruses regulate autophagy to avoid degradation
through this pathway (54, 55). HIV, M. tuberculosis, and T. gondii
can prevent autophagic degradation by affecting signaling pro-
cesses that regulate the autophagy pathway (56, 57). These data
collectively suggest that pathogens can act to regulate their own
degradation through the autophagy machinery. Many intracellu-

lar pathogens, however, have developed strategies to avoid au-
tophagy or inhibit autophagy for their survival (reviewed in refer-
ence 50). Listeria organisms, for example, inhibit autophagy as an
important mechanism for survival (58). In other organisms, such
as T. gondii, the parasites derive nutrients and promote their in-
tracellular growth by the induction of autophagy (53).

How the induction of autophagy might be beneficial to B. ma-
layi mf is still not known; for example, it may provide nutrients for
parasite survival or facilitate degradation. Nevertheless, there is
mounting evidence that apoptosis and autophagy coexist within
the same cell and that these pathways share common upstream
signals (59). Whether autophagy and the apoptotic machinery
work in parallel as a consequence of exposure of DC to mf (2, 60)
is an important question. Our study suggests that B. malayi mf
employ mechanisms of metabolic modulation in DC that influ-
ence the host immune response by downregulating mTOR signal-
ing, resulting in increased autophagy, a process that may be the
result of parasite-secreted rapamycin-like molecules.
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