
Cedarville University
DigitalCommons@Cedarville

Engineering and Computer Science Faculty
Publications School of Engineering and Computer Science

6-22-2008

A Simulated Mano Machine An Novel Project For
Computer Architecture Class
Vicky Fang
Cedarville University, vfang@cedarville.edu

Clinton E. Kohl
Cedarville University, kohlc@cedarville.edu

Follow this and additional works at: https://digitalcommons.cedarville.edu/
engineering_and_computer_science_publications

Part of the Computer Engineering Commons

This Conference Paper is brought to you for free and open access by
DigitalCommons@Cedarville, a service of the Centennial Library. It has
been accepted for inclusion in Engineering and Computer Science Faculty
Publications by an authorized administrator of
DigitalCommons@Cedarville. For more information, please contact
digitalcommons@cedarville.edu.

Recommended Citation
Fang, Vicky and Kohl, Clinton E., "A Simulated Mano Machine An Novel Project For Computer Architecture Class" (2008).
Engineering and Computer Science Faculty Publications. 354.
https://digitalcommons.cedarville.edu/engineering_and_computer_science_publications/354

http://www.cedarville.edu/?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.cedarville.edu/?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.cedarville.edu?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.cedarville.edu/engineering_and_computer_science_publications?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.cedarville.edu/engineering_and_computer_science_publications?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.cedarville.edu/engineering_and_computer_science?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.cedarville.edu/engineering_and_computer_science_publications?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.cedarville.edu/engineering_and_computer_science_publications?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.cedarville.edu/engineering_and_computer_science_publications/354?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@cedarville.edu
http://www.cedarville.edu/Academics/Library.aspx?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.cedarville.edu/Academics/Library.aspx?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages

AC 2008-80: A SIMULATED MANO MACHINE--AN NOVEL PROJECT FOR
COMPUTER ARCHITECTURE CLASS

Vicky Fang, Cedarville University
assistant professor

Clinton Kohl, Cedarville University
associate professor

© American Society for Engineering Education, 2008

P
age 13.103.1

A Simulated MANO Machine -- A Novel Project for Undergraduate

Computer Architecture Class

Abstract:

Hands-on experience and visualization are both crucial to enhance undergraduate engineering

education. This paper will describe a novel project that we feel meets both of these key elements

for a first undergraduate computer architecture class. Instruction level simulation, though helpful,

does not expose students to the hardware behavior or the internal instruction behavior. Likewise,

FPGA simulation alone will not provide a good real-time visualization of the many digital

signals which make up the microprocessor hardware. To avoid such drawbacks, we designed a

project that requires each student to implement a 16-bit general-purpose computer on a real time

digital logic simulator named Cedarlogic.

Students are given an instruction set specified in the textbook and a short assembly level test

program. Students will: 1) build the entire computer hardware using the Cedarlogic simulator

from fundamental logic gates; 2) write an assembler to translate the test program into binary

code; 3) load the program into the memory of their computers; and 4) run the test program on

their hardware. Cedarlogic is a unique real-time digital logic simulator designed by six of our

senior engineering and computer science students for their capstone project over two successive

years. In Cedarlogic, a logic high signal is shown in red, a logic low signal is shown in black,

while high impedance is shown in green. As a result, when a project is working correctly

students can actually watch all the internal signals within the computer “dancing” with the clock.

Students can watch how the address buses change, how the data is latched, and how the ALU

calculates... It is a real-time simulation, an experience which uncovers the mysterious veil of the

computer. The students are excited to watch their computer executing the test program, clock

cycle by clock cycle. It is truly an enlightening experience for the undergraduate computer

architecture student.

Introduction

Computer Architecture is a fundamental course in every computer engineering curriculum. Two

important goals of the computer architecture class are to give the students a good understanding

of:

1. how digital hardware is used in the construction of a computer, and;

2. how each instruction propagates through the microprocessor.

These goals are especially important for the first exposure of the undergraduate student to

computer architecture. Without a good understanding of these basics, all the student will receive

will be some vague terminologies and theories. As a result, it will be hard for them to further

develop and to receive advanced topics in computer architecture and apply them to the real

world.

To fulfill the above goals, many schools have developed projects to give their students hands on

practice in these areas. These projects have a variety of forms. One approach is to use computer

instruction simulators. For instance, the SPIM simulator will read and execute assembly

language programs written for MIPS machines; the emu86 will run x86 instructions. Projects

P
age 13.103.2

developed by using these kinds of simulators will expose the student to the instruction level of

the computer architecture. The student is able to watch data moving among registers and

memory in the instruction cycle level within the simulated windows. The drawback is that the

student is not exposed to the hardware behavior and inner-instruction operations.

Another recent approach is to implement a simple processor on a FPGA board. The student can

design digital logic blocks and put them together to form a small microprocessor. The

implemented microprocessor can be burned and tested onto an FPGA board. Indiana University,

for example, requires students to implement a simple RISC processor on a XSA-100 FPGA

board [1]. Texas A&M University also adopted the FPGA implementation in their

microprocessor class to let the students experience the design process [2]. Although it is

advantageous to get students involved with computer hardware design, there are some limitations

to this kind of project. First, it requires students who are taking computer architecture to be

proficient in VHDL or Verilog, which is the language commonly used in programming an FPGA

board. Second, with the FPGA board, only signals that are mapped to the I/O pins can be

observed on an oscilloscope or logic analyzer. Most FPGA boards also provide the ability to

display information on a VGA Monitor. The problem is that even in a very simple RISC

microprocessor there are many signals and buses. With a limited screen size on the scope or

computer monitor, it is hard to observe the various signals simultaneously. Finally, since the

student cannot observe very many signals at once, it is harder to debug their designs. As a result,

FPGA implementation can give the student a good hands-on experience on the hardware and

machine cycle level simulation, but it does not provide good visualization of the signals, buses

and hardware elements, and visualization is very helpful for the student.

The authors of this paper have developed a novel project that fulfills both the need for hands on

experience and visualization by using the Cedarlogic simulator [3]. We have received very

positive feedback from the students who have completed this project and believe that it has

tremendous educational value.

Course Overview

The Computer Architecture course at Cedarville University is a junior level offering with

prerequisites of Digital Logic Design and Microprocessors. Since this represents a student’s first

computer architecture class, the primary goal is to give her a solid foundation in the basics. The

student will then be well prepared for the Advanced Computer Architecture class that is offered

in their senior year.

The textbook for computer architecture is “Computer System Architecture,” by M. Morris Mano

(Prentice Hall) [4].

Project Background

The first four chapters of the textbook introduce digital logic circuits that are commonly used in

computer organizations. These chapters give the student the desire to know how to connect all

the isolated digital pieces and make them function together.

Chapter five of the textbook leads the student through the entire design process of a small

computer system, which includes instruction set selection, instruction format design, data path

P
age 13.103.3

design, instruction cycle analysis and control signals derivation. Our project is to actually

implement this small computer system on the Cedarlogic digital logic simulator.

System Specification

The computer to be implemented is a 16-bit wide general-purpose computer. The system

specifications are shown in Figure 1 below:

Figure 1. Mano Machine System Specifications with Width Marked

A 4k by 16 bits wide memory space will require a 12-bit wide address bus. This explains why

the PC (program counter) register and AR (address register) are 12 bits wide. 16 bit wide

registers are used for DR (data register), TR (temporary register), AC (Accumulator) and IR

(instruction register). 8 bit wide registers are used for I/O operations (OUTR and INPR). A

common bus will be used to connect them together as shown in Figure 2.

P
age 13.103.4

Figure 2. Data Path of Mano Machine

P
age 13.103.5

The instruction format is defined in Figure 3.

Figure 3. Mano Machine Instruction Set Format.

Bit 12-14 are used to indicate if the instruction is a memory reference instruction or not. If bit

12-14 are 111, the instruction is either a register-reference instruction or I/O instruction. Bit 15 is

used to further distinguish each one. If bit 12-14 are not 111, the instruction is a memory-

reference instruction. Bit 15 is used to indicate indirect or direct addressing mode for memory

reference instructions. A decoder will be used to further decode which type of instruction it is.

Table 1 lists the entire instruction set that is to be implemented. The binary code of each

instruction complying with the instruction format defined in Figure 3 is also listed.

A complete list of micro-operations and timings for the interrupt cycle and all the instructions of

the Mano machine are developed as shown in Table 2.

P
age 13.103.6

Table 1: Mano Machine Instruction Set

P
age 13.103.7

Table 2: Computer Micro-Operations and Controls for the Mano Machine.

In Table 2, R is the interrupt flip flop, iT is the output from the sequence counter at different

cycles. iD is the output of the decoder which decodes the instruction function. IR(i) and iB refer

P
age 13.103.8

to the ith bit in the instruction register IR. Table 2 summarize how long each instruction takes,

and what micro-operations are to be done in each clock cycle. It is not difficult to derive the

control signals for the mano machine. Notice the following example:

To derive the load control signal of Data Register DR, we scan the whole table and identify all

the places that have DR← (indicating DR is the recipient of a load operation). We find that DR

will load data when 0D ·
4T is true, or

1D ·
4T is true, or

2D ·
4T is true, or 6D ·

4T is true. Thus, the

control signal of load DR is 0D ·
4T +

1D ·
4T +

2D ·
4T + 6D ·

4T . The control signal logic expressions

can be derived by using the same method.

Project Assignment

The project requires that each student in the class implement this Mano Machine in Cedarlogic.

To test the machine, a small assembly language program is used as shown in Table 3.

Another significant part of this project involves students writing an assembler for the Mano

machine using their favorite high level programming language, usually C++ or Java. The

assembler software accepts as input a text file of an assembly language program. It must then

parse each line of text, and translate it into the corresponding machine code. The translated

binary codes along with their memory addresses are output to a newly generated .txt file that will

be loaded into the memory inside the Cedarlogic simulator. This requirement helps students

come to a better understanding of the three levels of program representation since they will need

to code with a high level language, as well as manipulate assembly language and binary code.

The students also realize the importance of the instruction set architecture.

Once the binary code is ready, it is then loaded into the 4096×16 simulated memory chip in the

simulated computer system and run (Cedarlogic provides a simulated memory chip which can be

written by loading text format files). A successful computer will compute the right sum “023FH”

in both the accumulator and the memory when the program halts the machine.

P
age 13.103.9

Table 3: Test Program for Basic Computer

Address Contents /This programs Adds 10 numbers

0000 4100 /jump to 100H where the test program stores

 ORG 100

0100 210B LDA ADS /Load first address of operands

0101 310C STA PTR /Store in Pointer

0102 210D LDA NBR /Load minus 10

0103 310E STA CTR /store in counter

0104 7800 CLA /Clear Accumulator

0105 910C LOP, ADD PTR I /Add an operand to AC Indirect

0106 610C ISZ PTR /Increment Pointer

0107 610E ISZ CTR /Increment Counter

0108 4105 BUN LOP /Repeat Loop again

0109 310F STA SUM /Store Sum

010A 7001 HLT /Halt

010B 0150 ADS, HEX 150

010C 0000 PTR, HEX 0

010D FFF6 NBR, DEC -10

010E 0000 CTR, HEX 0

010F 0000 SUM, HEX 0

 ORG 150

0150 0019 DEC 25 /first # to add at address 150

0151 0032 DEC 50

0152 004B DEC 75

0153 0064 DEC 100

0154 0019 DEC 25

0155 0032 DEC 50

0156 004B DEC 75

0157 0064 DEC 100

0158 0019 DEC 25

0159 0032 DEC 50 /10th # to add at address 159

 END /end of program The sum should be 57510 = 23F16

Cedarlogic Simulator

This project could not be undertaken without the Cedarlogic simulator. Cedarlogic is a windows-

based digital logic simulator. It was the result of a senior design project of the computer science

and engineering department of Cedarville University [5]. Cedarlogic functions in a similar way

to the Diglog simulator [6], but it is Windows-based and provides a much better graphical user

interface. Figure 4 shows a screen shot of a simple circuit within Cedarlogic:

 P
age 13.103.10

F
ig

u
re

 4
.
 A

 S
cr

ee
n
 S

h
o
t

o
f

th
e

C
ed

ar
lo

g
ic

 S
im

u
la

to
r

P
age 13.103.11

Note the left hand menu that provides all the basic digital gates, clock, input dip switches, output

LED’s, keypad, and memory chips. In addition, the student can actually see the signals switching

between high and low during this real-time simulation. Red indicates high, black indicates low,

and green indicates high impedance. Besides an adjustable clock, registers and memory chips are

also provided in Cedarlogic. They are shown in Figure 5.

Figure 5. Digital Components Provided by Cedarlogic to Carry Out the Project.

Registers are available in 4, 8, 12, and16 bits wide. They can perform the functions of count (up

or down), parallel load reset and hold. A memory chip can be loaded in the form of a txt file. If

the student double clicks on a memory chip, a window will pop up requesting the input of a txt

file. It has both write and read controls along with the synchronizing clock. Figure 5 shows some

other basic digital components that are necessary to carry out the project, such as buffers, adders,

and flip flops.

P
age 13.103.12

Project Implementation

Data path

The first step of this project is to require the student to complete the data path architecture in

CedarLogic found in Figure 2, except arithmetic and logic operation units. A memory chip,

registers and buffers are used. Figure 6 is one of the implementations of the data path with an

accumulator.

From Figure 6, it can be seen that all the required registers are connected according to Figure 2.

All the control signals for memory, buffers and registers are named properly. When the machine

is reset, it will be noted that all the registers are cleared to zero.

P
age 13.103.13

F
ig

u
re

 6
.
 M

an
o
 M

ac
h
in

e
D

at
a

P
at

h
 I

m
p
le

m
en

ta
ti

o
n
.

M
em

o
ry

P
age 13.103.14

Arithmetic and Logic Unit

In order to keep the circuit easy to see and manage the arithmetic and logic operation units are

implemented on a different page. Cedarlogic supports up to 10 pages. As long as they are named

correctly, signals from different pages can interact with each other just like a single page

simulation. The ALU can be implemented using a bit slice technique, which means a single bit of

ALU is implemented and then 15 more copies can be made to form a 16 bit wide ALU with

slight modifications. Figure 7 shows one of the implementations. On this page, the majority of

the hardware is composed of 16 pieces that are almost identical. Figure 8 shows a closeup view

of one bit of the ALU. In this example, a four-bit built-in adder in the Cedarlogic simulator is

used as shown in Figure 9.

P
age 13.103.15

F
ig

u
re

 7
.

 O
v
er

v
ie

w
 o

f
1
6
-b

it
 A

L
U

P
age 13.103.16

Figure 8. A Close-Up of a Single Bit of the ALU.

Figure 9. Four 4-bit Adders Used to Create the 16 Bits Addition Function Unit

P
age 13.103.17

As explained earlier, control signals can be derived from Table 2. Before implementing the

control unit in Cedarlogic, students are asked to scan Table 2 to derive the Boolean expressions

of all the control and timing signals on the registers, memory, bus buffers, instruction decoder,

ALU, sequence counter, flip flops, etc. Once all the boolean expressions are ready, it is easy to

convert them into a digital logic circuit. For instance, scan Table 2 about AR register, it can be

summarize that: AR will be loaded only when the following conditions is true:

1. at T0 and not in the interrupt cycle (/R is true)

2. at T2 and /R is true

3. at T3 and indirect addressing mode (I=1) and it is memory reference instruction (D7=0)

The boolean expression confine ldAR control signal will be

ldAR=T0./R+T2./R+T3.I./D7

As a result, the control hardware of the ldAR is shown in Figure 10.

Figure 10. Control Signal Implementation Example – Load AR Control Signal.

Figure 11 shows the control unit with instruction decoder, sequence counter and all the control

circuits related to memory, registers, buses, and resets. The entire control signal generated from

the control unit will be propagated to the data path shown in Figure 6 to control the data flow and

timing.

P
age 13.103.18

F
ig

u
re

 1
1
.
 C

o
n
tr

o
l

U
n

it
 I

m
p
le

m
en

ta
ti

o
n

P
age 13.103.19

A Working Mano Machine Demonstration

A working Mano machine will clearly demonstrate that, at a specific machine cycle, certain

control signals are active depending on which instruction is propagating in the microprocessor. It

will also show the data transfer among registers and memory and switching on the buses.

Figure 12 shows one moment of the execution of the test program running on the Mano

Machine. From this snap shot, it can be seen that the read control signal on the memory chip is

active, the address buses are all black, the data bus shows red on bit 14 and bit 8. This indicates

that memory at address 0000H is reading out; the content in that memory location is 4100H,

which is a jump to 100H instruction. Meanwhile, the load control signal of the instruction

register is also active, waiting for the clock to arrive. Once the rising edge of the clock arrives,

this instruction will be latched into the instruction register as shown in Figure 12-2. The content

of IR now has been modified to 4100H after the clock ticks one time.

P
age 13.103.20

F
ig

u
re

 1
2

-1
.
 D

em
o
 1

 o
n
 a

 W
o
rk

in
g
 M

an
o

 M
ac

h
in

e:

M

em
o
ry

 L
o
ca

ti
o
n

 0
0
0
0

 i
s

b
ei

n
g
 R

ea
d
in

g
 O

u
t

4
1

0
0

H
 o

n
 b

u
s

ld
IR

 c
o

n
tr

o
l

si
g
n

al

o
n

P
age 13.103.21

F

ig
u

re
 1

2
 -

2
.
 D

em
o
 2

 o
f

a
W

o
rk

in
g
 M

an
o
 M

ac
h
in

e:
 I

n
st

ru
ct

io
n
 R

eg
is

te
r

IR
 L

at
ch

es
 t

h
e

In
st

ru
ct

io
n
 4

1
0
0

H
.

In
st

ru
ct

io
n
 4

1
0
0

H

la
tc

h
ed

 i
n

P
age 13.103.22

 F
ig

u
re

 1
2
-3

 s
h

o
w

s
th

at
 a

t
th

e
m

o
m

en
t

o
f

re
ad

in
g
 f

ro
m

 m
em

o
ry

,
th

e
se

q
u

en
ce

 c
o
u
n
te

r
is

 a
t

th
e

T
1
 s

ta
te

 o
f

th
e

in
st

ru
ct

io
n
 f

et
ch

 s
ta

g
e.

A
n
d

 t
h

e
ld

IR
 (

lo
ad

 i
n
st

ru
ct

io
n
 r

eg
is

te
r)

 c
o
n

tr
o
l

si
g
n
al

 i
s

h
ig

h
.

F
ig

u
re

 1
2
-3

 D
em

o
 3

 o
f

a
W

o
rk

in
g
 M

an
o
 M

ac
h

in
e:

 a
t

T
1
:

ld
IR

 C
o
n
tr

o
l

S
ig

n
al

 i
s

A
ct

iv
e.

ld
IR

 c
o
n
tr

o
l

si
g
n
al

 i
n

co
n
tr

o
l

u
n
it

 i
s

o
n

S
eq

u
en

ce

C
o

u
n

te
r

at
 T

1

P
age 13.103.23

 F
ig

u
re

 1
2
-4

 s
h

o
w

s
th

at
 a

ft
er

 t
h
e

cl
o
ck

 t
ic

k
s,

 t
h
e

T
-s

ta
te

 p
ro

ce
ed

s
to

 T
2

 s
ta

te
 a

n
d
 l

d
A

R
 i

s
in

ac
ti

v
e.

F
ig

u
re

 1
2
-4

.
 D

em
o
 o

f
a

W
o

rk
in

g
 M

an
o
 M

ac
h
in

e:
 a

t
T

2
:

ld
IR

 C
o
n
tr

o
l

S
ig

n
al

 i
s

R
es

et
.

S
eq

u
en

ce

C
o

u
n

te
r

at
 T

2

ld
IR

 C
o
n

tr
o
l

is

re
se

t

P
age 13.103.24

A working Mano Machine implementation will allow the students to visualize every step of

computer’s operation of the test program running T state by T state. If the student makes an

error in his hardware design it is relatively easy to catch and correct it since all signals are easily

observed. For instance, since during state T1 the instruction fetch is to occur, the student would

expect to see a high on the memory read and a high on the IR load, the sequence counter should

be at 1. If one or more of those control signals does not function correctly, it will be easy to

identify it. The students can single clock the machine if necessary.

Figures 13 and Figure 14 show the successful result of the test program

P
age 13.103.25

F
ig

u
re

 1
3
.
 C

o
rr

ec
t

S
u
m

 S
h
o
w

n
 i

n
 A

cc
u
m

u
la

to
r

C
o
rr

ec
t

R
es

u
lt

P
age 13.103.26

F

ig
u

re
 1

4
.
 C

o
rr

ec
t

S
u
m

 S
h
o
w

n
 i

n
 R

ig
h
t

M
em

o
ry

 L
o
ca

ti
o
n
.

C
o
rr

ec
t

R
es

u
lt

P
age 13.103.27

With an appropriate clock rate, students will see a “live” computer dancing under the control of

the “program’s” commands. They begin to really see through to the inside of how the computer

signals are generated, how the data are transferred between registers and the memory and how

each instruction propagates through the digital circuitry. When the students get their machines to

work they are usually very excited and really seem to better understand how a CPU works.

Outcomes

In class evaluations many students have written very positive comments about how much they

enjoyed this project and how helpful it was to their understanding of computer architectures.

The first midterm exam covers the concepts of computer basics. Prior to implementing this

project in Cedarlogic, the average of the first midterm exam was 88%. After utilizing Cedarlogic

with this project in spring 2007, the average of the first test increased to 91%. Also the overall

rating on the course evaluations is improved from the middle 40-50% to the higher 20% rating.

This project extends the textbook and gives the students the opportunities to enhance their

knowledge by actually implementing and visualizing the mano machine they designed. This

project helps the students confirm the content they learned in class and consolidate their

knowledge.

*Cedarlogic can be freely downloaded from the site: http://sourceforge.net/projects/Cedarlogic.

References

1. Guoping Wang, “Design Practice in Computer Architecture Teaching.” Computer in

Education Journal. Vol XVII No.1

2. 2. Yong-Kyu Jung, “Work In Progress – A Rapid Design Methodology for FPGA Based

Processor Platform Design Education.” FIE 2005 Proceedings.

3. Cedarlogic at http://sourceforge.net/projects/Cedarlogic

4. Morris Mano, “Computer System Architecture” 3
rd

 Ed. Prentice Hall.

5. Clint Kohl and Keith Shomper, “ Cedarlogic – a new Graphical Digital Logic CAD tool

to aid in the teaching of Digital Logic Design”. 2007 ASEE International conference,

Honolulu, Hawaii

6. UC Berkeley, CS Division 387 Soda Hall, Berkeley CA 94720

(http;//www.cs.Berkeley.edu/~lazzaro/chipmunk/)

Acknowledgements

Figures 1, 2 and 3, and Tables 1 and 2 are reproduced directly from Morris Mano,

“Computer System Architecture” 3
rd

 Ed. Prentice Hall.

P
age 13.103.28

	Cedarville University
	DigitalCommons@Cedarville
	6-22-2008

	A Simulated Mano Machine An Novel Project For Computer Architecture Class
	Vicky Fang
	Clinton E. Kohl
	Recommended Citation

	A Simulated Mano Machine An Novel Project For Computer Architecture Class

