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A Simulated MANO Machine -- A Novel Project for Undergraduate 

Computer Architecture Class 
 

Abstract: 

 

Hands-on experience and visualization are both crucial to enhance undergraduate engineering 

education. This paper will describe a novel project that we feel meets both of these key elements 

for a first undergraduate computer architecture class. Instruction level simulation, though helpful, 

does not expose students to the hardware behavior or the internal instruction behavior. Likewise, 

FPGA simulation alone will not provide a good real-time visualization of the many digital 

signals which make up the microprocessor hardware. To avoid such drawbacks, we designed a 

project that requires each student to implement a 16-bit general-purpose computer on a real time 

digital logic simulator named Cedarlogic.   

 

Students are given an instruction set specified in the textbook and a short assembly level test 

program. Students will: 1) build the entire computer hardware using the Cedarlogic simulator 

from fundamental logic gates; 2) write an assembler to translate the test program into binary 

code; 3) load the program into the memory of their computers; and 4) run the test program on 

their hardware. Cedarlogic is a unique real-time digital logic simulator designed by six of our 

senior engineering and computer science students for their capstone project over two successive 

years. In Cedarlogic, a logic high signal is shown in red, a logic low signal is shown in black, 

while high impedance is shown in green. As a result, when a project is working correctly 

students can actually watch all the internal signals within the computer “dancing” with the clock. 

Students can watch how the address buses change, how the data is latched, and how the ALU 

calculates... It is a real-time simulation, an experience which uncovers the mysterious veil of the 

computer. The students are excited to watch their computer executing the test program, clock 

cycle by clock cycle. It is truly an enlightening experience for the undergraduate computer 

architecture student. 

 

Introduction 

 

Computer Architecture is a fundamental course in every computer engineering curriculum. Two 

important goals of the computer architecture class are to give the students a good understanding 

of:  

1. how digital hardware is used in the construction of a computer, and; 

2. how each instruction propagates through the microprocessor. 

These goals are especially important for the first exposure of the undergraduate student to 

computer architecture. Without a good understanding of these basics, all the student will receive 

will be some vague terminologies and theories. As a result, it will be hard for them to further 

develop and to receive advanced topics in computer architecture and apply them to the real 

world. 

 

To fulfill the above goals, many schools have developed projects to give their students hands on 

practice in these areas. These projects have a variety of forms. One approach is to use computer 

instruction simulators. For instance, the SPIM simulator will read and execute assembly 

language programs written for MIPS machines; the emu86 will run x86 instructions. Projects 
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developed by using these kinds of simulators will expose the student to the instruction level of 

the computer architecture. The student is able to watch data moving among registers and 

memory in the instruction cycle level within the simulated windows. The drawback is that the 

student is not exposed to the hardware behavior and inner-instruction operations.   

 

Another recent approach is to implement a simple processor on a FPGA board. The student can 

design digital logic blocks and put them together to form a small microprocessor. The 

implemented microprocessor can be burned and tested onto an FPGA board. Indiana University, 

for example, requires students to implement a simple RISC processor on a XSA-100 FPGA 

board [1]. Texas A&M University also adopted the FPGA implementation in their 

microprocessor class to let the students experience the design process [2]. Although it is 

advantageous to get students involved with computer hardware design, there are some limitations 

to this kind of project. First, it requires students who are taking computer architecture to be 

proficient in VHDL or Verilog, which is the language commonly used in programming an FPGA 

board. Second, with the FPGA board, only signals that are mapped to the I/O pins can be 

observed on an oscilloscope or logic analyzer. Most FPGA boards also provide the ability to 

display information on a VGA Monitor. The problem is that even in a very simple RISC 

microprocessor there are many signals and buses. With a limited screen size on the scope or 

computer monitor, it is hard to observe the various signals simultaneously. Finally, since the 

student cannot observe very many signals at once, it is harder to debug their designs. As a result, 

FPGA implementation can give the student a good hands-on experience on the hardware and 

machine cycle level simulation, but it does not provide good visualization of the signals, buses 

and hardware elements, and visualization is very helpful for the student.   

 

The authors of this paper have developed a novel project that fulfills both the need for hands on 

experience and visualization by using the Cedarlogic simulator [3].  We have received very 

positive feedback from the students who have completed this project and believe that it has 

tremendous educational value. 

 

Course Overview 
 

The Computer Architecture course at Cedarville University is a junior level offering with 

prerequisites of Digital Logic Design and Microprocessors. Since this represents a student’s first 

computer architecture class, the primary goal is to give her a solid foundation in the basics. The 

student will then be well prepared for the Advanced Computer Architecture class that is offered 

in their senior year.   

 

The textbook for computer architecture is “Computer System Architecture,” by M. Morris Mano 

(Prentice Hall) [4].   

 

Project Background 
 

The first four chapters of the textbook introduce digital logic circuits that are commonly used in 

computer organizations. These chapters give the student the desire to know how to connect all 

the isolated digital pieces and make them function together.   

Chapter five of the textbook leads the student through the entire design process of a small 

computer system, which includes instruction set selection, instruction format design, data path 

P
age 13.103.3



 

design, instruction cycle analysis and control signals derivation. Our project is to actually 

implement this small computer system on the Cedarlogic digital logic simulator. 

 

System Specification 

 

The computer to be implemented is a 16-bit wide general-purpose computer. The system 

specifications are shown in Figure 1 below: 

 

 
 

Figure 1.  Mano Machine System Specifications with Width Marked 

 

A 4k by 16 bits wide memory space will require a 12-bit wide address bus. This explains why 

the PC (program counter) register and AR (address register) are 12 bits wide. 16 bit wide 

registers are used for DR (data register), TR (temporary register), AC (Accumulator) and IR 

(instruction register). 8 bit wide registers are used for I/O operations (OUTR and INPR). A 

common bus will be used to connect them together as shown in Figure 2.  
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Figure 2.  Data Path of Mano Machine  
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The instruction format is defined in Figure 3. 

 

 
 

Figure 3.  Mano Machine Instruction Set Format. 

 

Bit 12-14 are used to indicate if the instruction is a memory reference instruction or not.  If bit 

12-14 are 111, the instruction is either a register-reference instruction or I/O instruction. Bit 15 is 

used to further distinguish each one. If bit 12-14 are not 111, the instruction is a memory-

reference instruction. Bit 15 is used to indicate indirect or direct addressing mode for memory 

reference instructions. A decoder will be used to further decode which type of instruction it is. 

 

Table 1 lists the entire instruction set that is to be implemented. The binary code of each 

instruction complying with the instruction format defined in Figure 3 is also listed.   

 

A complete list of micro-operations and timings for the interrupt cycle and all the instructions of 

the Mano machine are developed as shown in Table 2.  
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Table 1:  Mano Machine Instruction Set 
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Table 2:  Computer Micro-Operations and Controls for the Mano Machine. 
 

 
 

In Table 2, R is the interrupt flip flop, iT  is the output from the sequence counter at different 

cycles. iD  is the output of the decoder which decodes the instruction function. IR(i) and iB  refer 
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to the ith bit in the instruction register IR. Table 2 summarize how long each instruction takes, 

and what micro-operations are to be done in each clock cycle. It is not difficult to derive the 

control signals for the mano machine. Notice the following example: 

 

To derive the load control signal of Data Register DR, we scan the whole table and identify all 

the places that have DR← (indicating DR is the recipient of a load operation). We find that DR 

will load data when 0D ·
4T is true, or 

1D ·
4T  is true, or 

2D ·
4T is true, or 6D ·

4T  is true. Thus, the 

control signal of load DR is 0D ·
4T +

1D ·
4T +

2D ·
4T + 6D ·

4T . The control signal logic expressions 

can be derived by using the same method.  

 

Project Assignment 

 

The project requires that each student in the class implement this Mano Machine in Cedarlogic. 

To test the machine, a small assembly language program is used as shown in Table 3.  

 

Another significant part of this project involves students writing an assembler for the Mano 

machine using their favorite high level programming language, usually C++ or Java.  The 

assembler software accepts as input a text file of an assembly language program.  It must then 

parse each line of text, and translate it into the corresponding machine code.  The translated 

binary codes along with their memory addresses are output to a newly generated .txt file that will 

be loaded into the memory inside the Cedarlogic simulator.  This requirement helps students 

come to a better understanding of the three levels of program representation since they will need 

to code with a high level language, as well as manipulate assembly language and binary code.  

The students also realize the importance of the instruction set architecture.   

 

Once the binary code is ready,  it is then loaded into the 4096×16 simulated memory chip in the 

simulated computer system and run (Cedarlogic provides a simulated memory chip which can be 

written by loading text format files). A successful computer will compute the right sum “023FH” 

in both the accumulator and the memory when the program halts the machine.   
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Table 3: Test Program for Basic Computer 
 

Address Contents  /This programs Adds 10 numbers 

0000 4100  /jump to 100H where the test program stores 

           ORG 100   

0100 210B          LDA ADS  /Load first address of operands 

0101 310C          STA PTR /Store in Pointer 

0102 210D          LDA NBR /Load minus 10 

0103 310E          STA CTR /store in counter 

0104 7800          CLA /Clear Accumulator 

0105 910C LOP, ADD PTR I /Add an operand to AC Indirect 

0106 610C           ISZ PTR /Increment Pointer 

0107 610E           ISZ CTR /Increment Counter 

0108 4105           BUN LOP /Repeat Loop again 

0109 310F           STA SUM /Store Sum 

010A 7001            HLT /Halt 

010B 0150 ADS,  HEX 150  

010C 0000 PTR,  HEX 0  

010D FFF6 NBR,  DEC -10  

010E 0000 CTR,  HEX 0  

010F 0000 SUM, HEX 0  

             ORG 150  

0150 0019            DEC 25 /first # to add at address 150 

0151 0032            DEC 50  

0152 004B            DEC 75  

0153 0064            DEC 100  

0154 0019            DEC 25  

0155 0032            DEC 50  

0156 004B            DEC 75  

0157 0064            DEC 100  

0158 0019            DEC 25  

0159 0032            DEC 50 /10th # to add at address 159 

             END /end of program The sum should be 57510 = 23F16 

 

 
 

Cedarlogic Simulator 

 

This project could not be undertaken without the Cedarlogic simulator. Cedarlogic is a windows-

based digital logic simulator. It was the result of a senior design project of the computer science 

and engineering department of Cedarville University [5]. Cedarlogic functions in a similar way 

to the Diglog simulator [6], but it is Windows-based and provides a much better graphical user 

interface.  Figure 4 shows a screen shot of a simple circuit within Cedarlogic: 
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Note the left hand menu that provides all the basic digital gates, clock, input dip switches, output 

LED’s, keypad, and memory chips. In addition, the student can actually see the signals switching 

between high and low during this real-time simulation. Red indicates high, black indicates low, 

and green indicates high impedance. Besides an adjustable clock, registers and memory chips are 

also provided in Cedarlogic. They are shown in Figure 5.   

 

 
 

Figure  5.  Digital Components Provided by Cedarlogic to Carry Out the Project.   

Registers are available in 4, 8, 12, and16 bits wide. They can perform the functions of count (up 

or down), parallel load reset and hold. A memory chip can be loaded in the form of a txt file. If 

the student double clicks on a memory chip, a window will pop up requesting the input of a txt 

file. It has both write and read controls along with the synchronizing clock. Figure 5 shows some 

other basic digital components that are necessary to carry out the project, such as buffers, adders, 

and flip flops.   
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Project Implementation 

 

Data path 

 

The first step of this project is to require the student to complete the data path architecture in 

CedarLogic found in Figure 2, except arithmetic and logic operation units. A memory chip, 

registers and buffers are used. Figure 6 is one of the implementations of the data path with an 

accumulator.   

 

From Figure 6, it can be seen that all the required registers are connected according to Figure 2. 

All the control signals for memory, buffers and registers are named properly. When the machine 

is reset, it will be noted that all the registers are cleared to zero. 
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Arithmetic and Logic Unit 

 

In order to keep the circuit easy to see and manage the arithmetic and logic operation units are 

implemented on a different page. Cedarlogic supports up to 10 pages. As long as they are named 

correctly, signals from different pages can interact with each other just like a single page 

simulation. The ALU can be implemented using a bit slice technique, which means a single bit of 

ALU is implemented and then 15 more copies can be made to form a 16 bit wide ALU with 

slight modifications. Figure 7 shows one of the implementations. On this page, the majority of 

the hardware is composed of 16 pieces that are almost identical. Figure 8 shows a closeup view 

of one bit of the ALU. In this example, a four-bit built-in adder in the Cedarlogic simulator is 

used as shown in Figure 9.  
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Figure 8.  A Close-Up of a Single Bit of the ALU. 

 

 
Figure 9.  Four 4-bit Adders Used to Create the 16 Bits Addition Function Unit 
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As explained earlier, control signals can be derived from Table 2. Before implementing the 

control unit in Cedarlogic, students are asked to scan Table 2 to derive the Boolean expressions 

of all the control and timing signals on the registers, memory, bus buffers, instruction decoder, 

ALU, sequence counter, flip flops, etc. Once all the boolean expressions are ready, it is easy to 

convert them into a digital logic circuit. For instance, scan Table 2 about AR register, it can be 

summarize that:  AR will be loaded only when the following conditions is true: 

1. at T0 and not in the interrupt cycle (/R is true) 

2. at T2 and /R is true 

3. at T3 and indirect addressing mode (I=1) and it is memory reference instruction (D7=0) 

The boolean expression confine ldAR control signal will be   

ldAR=T0./R+T2./R+T3.I./D7 

As a result, the control hardware of the ldAR is shown in Figure 10. 
 

 
 

Figure 10.  Control Signal Implementation Example – Load AR Control Signal. 
 

Figure 11 shows the control unit with instruction decoder, sequence counter and all the control 

circuits related to memory, registers, buses, and resets. The entire control signal generated from 

the control unit will be propagated to the data path shown in Figure 6 to control the data flow and 

timing.   
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A Working Mano Machine Demonstration 

 

A working Mano machine will clearly demonstrate that, at a specific machine cycle, certain 

control signals are active depending on which instruction is propagating in the microprocessor. It 

will also show the data transfer among registers and memory and switching on the buses.   

 

Figure 12 shows one moment of the execution of the test program running on the Mano 

Machine. From this snap shot, it can be seen that the read control signal on the memory chip is 

active, the address buses are all black, the data bus shows red on bit 14 and bit 8. This indicates 

that memory at address 0000H is reading out; the content in that memory location is 4100H, 

which is a jump to 100H instruction. Meanwhile, the load control signal of the instruction 

register is also active, waiting for the clock to arrive. Once the rising edge of the clock arrives, 

this instruction will be latched into the instruction register as shown in Figure 12-2. The content 

of IR now has been modified to 4100H after the clock ticks one time.  
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A working Mano Machine implementation will allow the students to visualize every step of 

computer’s operation of the test program running T state by T state.  If the student makes an 

error in his hardware design it is relatively easy to catch and correct it since all signals are easily 

observed. For instance, since during state T1 the instruction fetch is to occur, the student would 

expect to see a high on the memory read and a high on the IR load, the sequence counter should 

be at 1. If one or more of those control signals does not function correctly, it will be easy to 

identify it.  The students can single clock the machine if necessary.   

 

Figures 13 and Figure 14 show the successful result of the test program 
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With an appropriate clock rate, students will see a “live” computer dancing under the control of 

the “program’s” commands.  They begin to really see through to the inside of how the computer 

signals are generated, how the data are transferred between registers and the memory and how 

each instruction propagates through the digital circuitry.  When the students get their machines to 

work they are usually very excited and really seem to better understand how a CPU works.   

 

Outcomes   

 

In class evaluations many students have written very positive comments about how much they 

enjoyed this project and how helpful it was to their understanding of computer architectures. 

 

The first midterm exam covers the concepts of computer basics.  Prior to implementing this 

project in Cedarlogic, the average of the first midterm exam was 88%.  After utilizing Cedarlogic 

with this project in spring 2007, the average of the first test increased to 91%.  Also the overall 

rating on the course evaluations is improved from the middle 40-50% to the higher 20% rating.   

 

This project extends the textbook and gives the students the opportunities to enhance their 

knowledge by actually implementing and visualizing the mano machine they designed. This 

project helps the students confirm the content they learned in class and consolidate their 

knowledge. 

 

*Cedarlogic can be freely downloaded from the site: http://sourceforge.net/projects/Cedarlogic. 
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