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Hybrid Gauss Pseudospectral and Generalized Polynomial
Chaos Algorithm to Solve Stochastic Trajectory Optimization

Problems
Maj Gerald C. Cottrill∗

Air Force Institute of Technology, Wright-Patterson AFB, OH, 45433, USA

Lt Col Frederick G. Harmon†

Air Force Institute of Technology, Wright-Patterson AFB, OH, 45433, USA

Anumerical algorithm combining the Gauss Pseudospectral Method (GPM) with a Generalized Polynomial
Chaos (gPC) method to solve nonlinear stochastic optimal control problems with constraint uncertainties

is presented. The GPM and gPC have been shown to be spectrally accurate numerical methods for solving
deterministic optimal control problems and stochastic differential equations, respectively. The gPC uses col-
location nodes to sample the random space, which are then inserted into the differential equations and solved
using standard solvers to generate a set of deterministic solutions used to characterize the distribution of the
solution by constructing a polynomial representation of the output as a function of uncertain parameters.
The proposed algorithm investigates using GPM optimization software in place of deterministic differential
equation solvers traditionally used in the gPC, providing minimum cost deterministic solutions that meet path,
control, and boundary constraints. A trajectory optimization problem is considered where the objectives are to
find the path through a two-dimensional space that minimizes the probability a vehicle will be ’killed’ by lethal
threats whose locations are uncertain and to characterize the effects those uncertainties have on the solution
by estimating the statistical properties.

Nomenclature

ẑ gPC expansion coefficients
E Expected value operator, expectation, expected value
P Projection operator
C Path constraints
D Differentiation matrix
p Stochastic input parameters
U Polynomial approximation of the control vector
u Control vector
X Polynomial approximation of the state vector
x State vector
z Outputs/observables of gPC method
A Sigma-algebra of probability space
P Measure of probability space
cov Covariance
d Degree of the one-dimensional polynomial basis elements
F Function of states and random inputs in gPC formulation
f General function of states and controls defining the system dynamics
g Function of initial conditions in gPC formulation

∗Ph.D. Student, Department of Aeronautical and Astronautical Engineering, 2950 Hobson Way, Wright-Patterson AFB, OH 45433, Student
Member.

†Assistant Professor of Aeronautical Engineering, Department of Aeronautical and Astronautical Engineering, 2950 Hobson Way, Wright-
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g General functional of states and controls used in integral cost functional term
H Hermite polynomial
h Orthogonality condition constant
i Counting index
J Cost functional
k Counting index
L Lagrange interpolating polynomial
M Total number of basis elements in the N-dimensional polynomial space
m Counting index
N Number of collocation points
NM Nautical Miles
P Total degree of the polynomials making up the N-variate polynomial space
Q Number of collocation points in the N-dimensional probability space
q Number of collocation points in one-dimensional probability space
Rmin Minimum turn radius, ft
t0 Initial time
t f Final or terminal time
V Speed, kts
var Variance
W One-dimensional orthogonal polynomial space
w Quadrature weight
x1 Position with respect to x1 axis, NM
x2 Position with respect to x2 axis, NM
gPC Generalized Polynomial Chaos
GPM Gauss Pseudospectral Method
GPOPS Gauss Pseudospectral Optimization Software
HBVP Hamiltonian Boundary Value Problem
KKT Karush-Kuhn-Tucker
kts Knots
MCS Monte-Carlo Simulation
N Number of random input variables in gPC formulation
NLP Nonlinear Programming
OC Optimal Control
PDF Probability Distribution Function
POK Probability of Kill
RV Random Variable
SDE Stochastic Differential Equation
TO Trajectory Optimization

Symbols
α Collocation weight in gPC expansion
Γ Finite domain of PDF
µ Mean or Expected Value of a probability distribution
Ω Space of all possible outcomes
φB Boundary conditions in optimal control problem formulation
Φ Basis polynomial element in the N-dimensional polynomial space
φ One-dimensional polynomial basis element
ΦB Mayer cost functional term associated with boundary conditions
ρ PDF of random variable
σ Standard deviation of a probability distribution
τ Scaled time variable, [−1,1]
θ Angle between x1 axis and velocity vector, Rad

Superscripts
m Dimension of the control vector
n Dimension of the state vector
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I. Introduction

REAL-WORLD trajectory optimization (TO) and optimal control (OC) problems are typically solved using deter-
ministic models, which are often simplified representations of a system’s true physics that neglect several potential

sources of uncertainty. Higher-fidelitymodelsmay be cost-prohibitive to develop, not feasible due to unknown physics,
or difficult to use in engineering work. Additionally, virtually all sensors used to measure system states, for example
speed, altitude, latitude, longitude, etc., are corrupted by noise thus inducing measurement errors that can degrade the
validity of TO or OC solutions. The environment can also introduce randomness through phenomena such as wind
gusts and turbulence. Therefore, all real-world problems have uncertainties that can make it difficult to find effective
solutions and cause deterministic methods to fail to meet objectives.

Nonlinear optimization problems are typically too complex to use analytical solution techniques necessitating use
of numerical methods. When stochastic elements are included, numerical methods become essentially the only way to
solve these problems. This paper investigates combining two numerical techniques, the Gauss Pseudospectral Method
(GPM) and Generalized Polynomial Chaos (gPC), to solve TO and OC problems with uncertain parameters. The
GPM is a powerful deterministic numerical method for solving both linear and nonlinear optimal control problems
and the gPC is an equally powerful method for solving stochastic differential equations. Effectively combining the
two methods, drawing on the spectral accuracy of each, provides a new numerical approach for addressing nonlinear
optimization problems where model, measurement, and environmental disturbance uncertainties may be included in
the formulation and their effects assessed by constructing distribution functions showing dependence of the solutions
on uncertain parameters.

This paper is organized as follows. Section II summarizes a general OC problem statement, Sections III and
IV briefly describe the GPM and gPC, respectively, and Section V presents the hybrid algorithm combining the two
methods. Section VI discusses application of the hybrid algorithm to a nonlinear TO problem, the results of which are
presented in Section VII. The paper ends with conclusions and recommendations for future work in Section VIII.

II. General Optimal Control Problem

THE hybrid algorithm presented in this paper is a combination of numerical methods for solving TO and OC prob-
lems where uncertainties are present. Therefore, an appropriate starting point in the discussion is to briefly state

the general problem, the traditional solution technique, and associated difficulties. The continuous-time Bolza-type
problem can be generally stated as:1,2 Determine the state, x(τ) ∈ Rn, control, u(τ) ∈Rm, and the terminal time, t f if
unknown, to minimize the cost functional, (J):

J =ΦB(x(−1),x(1))+
t f − t0
2

∫ 1

−1
g(x(τ),u(τ),τ;t0, t f )dτ (1)

subject to the differential (dynamic), boundary, and path constraints, respectively:

dx
dτ

=
t f − t0
2

f(x(τ),u(τ),τ;t0, t f ) (2)

φB(x(−1),x(1)) = 0 ∈ R
q (3)

C(x(τ),u(τ),τ;t0, t f )≤ 0 ∈R
c (4)

where: g defines the running cost in the Lagrange (integral) term in the cost functional, f is the system dynamics, ΦB
associates a cost penalty with the boundary conditions, φB defines the boundary conditions, and C places boundaries
on acceptable state trajectories and control solutions. Note that Eqs. (1)-(4) have been written in the time variable, τ ,
to be in the proper domain for GPM formulation, however transformations between the time domain, t ∈ [t0, t f ], and
τ ∈ [−1,1], are accomplished by:

t =
t f − t0
2

τ+
t f + t0
2

(5)

Classical OC theory (cf. Refs. 3,4, and 5) seeks to solve this problem indirectly by transforming it into a Hamilto-
nian Boundary Value Problem (HBVP) using Calculus of Variations theory and Pontryagin’s Minimum Principle. The
cost functional and constraints are adjoined via Lagrange multipliers to form the Hamiltonian function. The Hamil-
tonian is then used to derive first-order optimality conditions, known as the Euler-Lagrange equations, which results
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in a set of coupled, generally nonlinear, differential equations that are solved simultaneously for the optimal state and
costate trajectories and control inputs. Solving the Euler-Lagrange equations indirectly solves the original OC problem
by finding the minimizing solution of the Hamiltonian, thereby minimizing the original cost functional.

Numerical solution techniques to solve the HBVP are usually necessary since analytical solutions are often impos-
sible to find. This indirect approach yields highly accurate results while providing assurances that first-order optimality
conditions are satisfied,6 but explicit derivations of the Euler-Lagrange equations are required and prior knowledge
of the activeness of inequality constraints (Eq. (4)) is necessary.7 Numerical techniques applied to solve the HBVP
generally require good initial guesses of the costates which are often difficult to make since they generally do not have
direct physical interpretations.6,8 These difficulties in solving the HBVP problem have motivated research in direct so-
lution methods, such as the GPM, using pseudospectral discretization and nonlinear programming (NLP) techniques.

III. Gauss Pseudospectral Method

THERE are several pseudospectral methods available to solve nonlinear optimal control problems such as the Leg-
endre9,10 , Chebyshev,11 GPM, and Radau6,8,12 pseudospectral methods. These methods are based on the same

general procedure that parameterizes the states, x(t), and controls, u(t), using Lagrange interpolating polynomials,
discretizes the constraints (Eqs. (2)-(4)) and the cost functional (Eq. (1)) using a quadrature rule, converts the differen-
tial dynamic constraints to algebraic constraints, and uses a NLP solver to find the solution to the resulting parameter
optimization problem.1,6,8,10,11 Several software packages, a sampling of which are listed in Ref. 6, have been de-
veloped to directly solve the continuous-time OC problem by discretizing and transcribing it into a NLP problem
using this general procedure. Two common packages, both written for use in Matlab! and using SNOPT13 as the
NLP solver, are DIDO,14 which implements the Legendre pseudospectral method developed in Ref. 10, and Gauss
Pseudospectral Optimization Software (GPOPS),2 which implements the GPM developed in Refs. 1, 6 and, 8.

In this research, the GPM was chosen based on equivalence of the direct numerical solution and the indirect HBVP
numerical solution as shown in Refs. 6 and 8. The key equations GPOPS uses to transform the continuous OC problem
into a parameter optimization problem for SNOPT to solve are derived in Refs. 6 and 8, summarized in Refs. 1 and
2, and paraphrased below. Equations for the NLP optimality conditions, i.e. Karush-Kuhn-Tucker (KKT) conditions,
and discussion of their equivalence to the HBVP optimality conditions can be found in Refs. 1, 2, 6 and 8.

The GPM process is to discretize the continuous equations (1)-(4) and transcribe them into a NLP problem. The
process begins by choosingN Legendre-Gauss collocation points∈ (−1,1), noting that the end points are not included
in the set. The states, x(τ), and controls, u(τ), are approximated using N+ 1 Lagrange interpolating polynomials (L)
of the form:

x(τ)≈X(τ) =
N

∑
i=0
X(τi)Lxi (τ) (6)

u(τ)≈ U(τ) =
N

∑
i=1
U(τi)Lui (τ) (7)

where lower case symbols, x(τ) and u(τ), denote the continuous state and control vectors while the capitalized sym-
bols, X(τ) and U(τ), represent the corresponding polynomial approximations. Additionally, superscripts x and u are
used to distinguish between Lagrange polynomials representing the state and control approximations, respectively.
The differential dynamic constraints (Eq. (2)) are approximated by differentiating Eq. (6):

ẋ(τ)≈ Ẋ(τ) =
N

∑
i=0

x(τi)L̇xi (τ) (8)

The derivatives of the Lagrange polynomials evaluated at the Legendre-Gauss collocation points can be written in a
differentiation matrix, D, which has dimension N×N+1, as given in Refs. 1 and 2. The dynamic constraints (Eq. (2))
are discretized and transformed to algebraic constraints suitable for the NLP solver using Eq. (6), (7), (8), and the
differentiation matrix as follows:

N

∑
i=0

DkiXi−
t f − t0
2

f(Xk,Uk,τk;t0, t f ) = 0 (9)

where the counting indices are i= 0, ...,N and k = 1, ...,N.
For clarity, key shorthand notation used in this section is summarized by the following list:
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• Discretized state vector at the k th collocation point: Xk ≡ X(τk) ∈Rn for k= 1, ...,N.

• Discretized control vector at the k th collocation point: Uk ≡ U(τk) ∈ Rm for k = 1, ...,N.

• Discretized state vector at the initial time: X0 ≡ X(−1), where τ =−1 is not a collocation point.

• Discretized state vector at the final/terminal time: X f ≡ X(1), where τ = 1 is not a collocation point.

Since X(τ) and U(τ) are not collocated at the end points, it’s necessary to approximate the terminal state, X f ,
using Gaussian quadrature:

X f = X0+
t f − t0
2

N

∑
k=1

wkf(Xk,Uk,τk;t0, t f ) (10)

The discretized form of the cost functional, obtained using Gaussian quadrature to approximate the integral term in
Eq. (1), is written as:

J =Φ(X0, t0,X f , t f )+
t f − t0
2

N

∑
k=1

wkg(Xk,Uk,τk;t0, t f ) (11)

The last necessary items for the NLP are discretized forms of the boundary constraints (Eq. (3)) and path constraints
(Eq. (4)), stated as:

φ (X0, t0,X f , t f ) = 0 (12)

and:
C(Xk,Uk,τk;t0, t f )≤ 0 (k = 1, ...,N) (13)

The NLP problem can now be stated as: find Xk and Uk that minimizes Eq. (11) subject to Eqs. (9), (10), (12),
(13), and X(τ0) = X0. GPOPS calls the SNOPT NLP solver to find the solution, which is an approximate solution
to the continuous Bolza OC problem. In this paper, GPOPS is used as the deterministic solver in the gPC algorithm
presented in the next two sections.

IV. Generalized Polynomial Chaos

Asurvey of stochastic differential equation (SDE) solutionmethods, the most common being the brute-forceMonte-
Carlo Simulation (MCS) method, can be found in Ref. 15. MCS generates random samples of a stochastic

variable taken from an assumed probability distribution function (PDF). Each random sample is subsequently inserted
into the SDE, making it a deterministic problem that can be solved using deterministic differential equation solution
methods. A set, or ensemble, of solutions is collected from which the statistical information, such as expected value
(mean), variance, and covariance, is calculated. Convergence is checked at some arbitrary interval, after every 500 or
1000 samples for example, and is said to have been achieved when the change in expected value between successive
intervals is below a desired tolerance. The solution to the problem is the combination of expected value, the most likely
solution to the stochastic problem, and second moment variance and covariance information, which characterizes
the distribution of the solution by showing how much the solution varies from the mean as a function of uncertain
parameters and correlations between solution variables, respectively. MCS is relatively easy to implement using
existing deterministic differential equation solvers, will eventually converge to a solution regardless of the PDF of
the process, and is not limited by the amount of uncertainty in the variable. However, it’s well known that the mean
converges slowly, which implies high computational burden, especially in multi-dimensional problems. The gPC was
formulated to preserve the ease of implementation by using sampled data and repetitive application of deterministic
solvers, as in the MCS, while reducing computational burden by using collocation points as the sample points and a
polynomial approximation to determine the solution.16

The gPC is a spectral approximation of a stochastic process used to solve stochastic differential equations, analo-
gous to the deterministic spectral OC problem solution methods described in Section III. The beginnings of gPC theory
can be traced back to 1938 when Norbert Wiener introduced “Homogeneous Chaos” theory, also known as Hermite
Chaos. Wiener used Hermite (orthogonal) polynomials to approximate Gaussian processes.17 It has been shown that
the Hermite Chaos converges for any second-order random process with finite second moments (variances), and spec-
trally for Gaussian processes since the Hermite polynomial and Gaussian PDF weighting functions closely match.18
Later work extended Wiener’s Homogeneous Chaos by correlating orthogonal polynomial bases with other statistical
distributions by matching weighting functions,18,19 thus leading to generalized Polynomial Chaos theory for solving
stochastic differential equations.
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There are two forms of the gPC: the Galerkin and collocation forms. The Galerkin form is described in Refs. 16
and 18, detailed development of the collocation form can be found in Refs. 20,21,22 and 23, and rigorous convergence
analysis is discussed in Refs. 20 and 24. Both types of gPC have been applied to solve SDEs in many engineering
disciplines such as: analysis of nonlinear integrated circuit response,25 fluids,26,27,28,29,30 heat transfer,31,32,33 and
others referred to by the authors of these references.

The collocation form of the gPC was used in this work since it is more easily implemented. The Galerkin for-
mulation can be cumbersome to implement since it results in a set of coupled partial differential equations in time,
state space, and random space, which may be difficult or even impossible to derive, and generally requires coding
problem-specific numerical solvers. In contrast, the collocation approach collapses multi-dimensional numerical in-
tegration into a single summation to solve a set of uncoupled differential equations that can usually be solved with
existing numerical solvers.15 Implementation of the collocation form of the gPC with GPOPS as the deterministic
solver, generically referred to as gPC in the rest of this paper, will be described in Section V, but first it’s necessary to
summarize the key equations, paraphrased from Ref 16.

Consider a general system of differential algebraic equations in the following form:






F(t,x,x′, ...,x(l),p) = 0
g(t0,x(t0), ...,x(l)(t0),p) = 0

t ∈ (t0,T ] (14)

where F and g represent the SDE and initial conditions, respectively, and the key variables are:

• State variables: x = (x1, ...,xJ) ∈ RJ . Note that J = n in the GPM formulation.

• Stochastic input parameters (random variables): p = (p1, ..., pN) ∈ RN

• Outputs or observables: z = G(x) = (z1, ...,zK) ∈ RK

The vector of random variables (RV), p, is defined as an N-variate random vector whose elements are assumed to
be independent. Further assume that the probability space is defined by the tuple (Ω,A ,P), where the space of all
possible basic outcomes, Ω, is equipped with σ -algebra, A , which can be thought of as the space of possible events
that can be derived from Ω, and probability measure,P .34

The key probabilistic variables in the gPC development are:

• PDF: ρi is the PDF of the random variable pi(ω), for i= 1, ...,N and ω ∈Ω. The joint PDF is given by:

ρ(p) =
N

∏
i=1

ρi(pi) (15)

• Finite domain of ρi: Γi ≡ pi(Ω) transforms the infinite domain, Ω, to the finite domain, Γ, which are intervals
in R, for i= 1, ...,N. The total finite domain is defined as:

Γ≡
N

∏
i=1

Γi ⊂ R
N (16)

One of the key elements of the gPC expansion is to approximate the random variables in p using orthogonal
polynomials. Each one-dimensional orthogonal polynomial space,Wi,di , is defined by:

Wi,di ≡ {v : Γi → R : v ∈ span{φm(pi)}dim=0} (i= 1, ...,N) (17)

where the counting index, i, denotes the space associated with the random variable pi and di specifies the order of
the polynomial space. The one-dimensional polynomial basis set, {φm(pi)}, has di +1 elements and satisfies the
orthogonality conditions:

∫

Γi
ρi(pi)φm(pi)φn(pi)dpi =

[

∫

Γi
ρiφ2mdpi

]

δmn = h2mδm,n (18)

where scaling of the polynomial basis elements is chosen such that h2m = 1 for all m.15 The N-variate orthogonal
polynomial space of polynomials of total degree of at most P is constructed by taking the tensor product of the N
one-dimensional orthogonal polynomial bases, written as:

WP
N ≡

⊗

|d|≤P
W i,di (19)
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where the relationship between di and P is given by:

|d|=
N

∑
i=1

di ≤ P (20)

and satisfies the orthogonality conditions:
∫

Γ
Φm(p)Φn(p)ρ(p)dp ≡ E [Φm(p)Φn(p)] = δmn (21)

Note that the lower case φ is used to indicate the one-dimensional polynomial basis element and the upper case Φ
is used to represent the N-dimensional polynomial basis element resulting from the tensor product. The effect of
Eq. (20) is to select a subset of basis elements from the tensor product space defined by Eq. (19) in order to reduce
computational burden, however the entire set of basis elements can be used,15 in which case M is equal to the total
number of tensor product basis elements.

The approximation of the solution, z, as a function of the random parameters, p, can be written as:

P
P
Nz≡ zPN(p) =

M

∑
m=1

ẑmΦm(p) (22)

where:
M =

(

N+P
N

)

(23)

or is the total number of tensor product elements if the entire basis set is used in the approximation. The projection
operator in Eq. (22), PPN , projects the discrete probability space Γ onto the polynomial space WP

N . The expansion
coefficients, ẑm, are determined by:

ẑm = E [z(p)Φm(p)] =
∫

Γ
z(p)Φm(p)ρ(p)dp (m= 1, ...,M) (24)

Another key element in the gPC method is to approximate the integral in Eq. (24) using Gaussian quadrature.
To apply quadrature, a set of collocation points and quadrature weights must be chosen. For each random dimen-
sion, Γi, i = 1, . . . ,N, qi collocation points and weights are chosen based on the quadrature rule. For example, if
Hermite orthogonal polynomial bases are chosen to approximate a Gaussian distribution (see Refs. 15 and 35), then
Gauss-Hermite quadrature is an appropriate quadrature rule and will be most accurate using Gauss-Hermite nodes and
weights. The N-dimensional grid with Q collocation nodes and weights is obtained by taking the tensor product of
the one-dimensional node and weight sets. Alternatively, a sparse grid can be generated to reduce the total number of
tensor product nodes while providing accurate integral approximation using the Smolyak algorithm, first published in
Ref. 36 and included, along with other sparse grid schemes, in Ref. 37. In general, the tensor product grid works well
for low-dimensional problems, but suffers the curse of dimensionality as N gets larger (N > 5) making sparse grids a
more attractive choice for reducing computations.15,20

The collocation approximation of Eq. (24) based on the quadrature rule chosen is given by:

ẑm =
Q

∑
j=1

z(p j)Φm(p j)α j; (m= 1, ...,M) (25)

where p j denotes the jth collocation node of the random vector p j = (p1, j, ..., pN, j) and α j denotes the associated
quadrature weight, thus defining the set of collocation nodes and weights, {p j,α j}Qj=1. Note that z(p j) is the deter-
ministic solution using the jth sample of the random vector.

The solution to the SDE given by Eq. (22) is a distribution function that approximates the outputs (observables) as
functions of the random inputs and can be evaluated for any given sample point or set of points p ∈ Γ to see individual
solutions and how they vary with changes in p. The expansion coefficients, Eq. (25), can be used to calculate the
distribution’s statistical properties; expected value, variance, and covariance, to find the most likely solution to the
stochastic problem, characterize how the solution varies with uncertain parameters, and describe the dependencies
between solution variables. The equations for expected value, variance, and covariance are derived in Ref. 15 and are
stated below:

E(z(t))≈ E(zPN(t)) =
∫

[

M

∑
m=1

ẑm(t)Φm(p)
]

ρ(p)dp = ẑ1(t) (26)
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var [z(t)]≈
M

∑
m=2

[

ẑ2m(t)
]

(27)

cov [zi(t),z j(t)]≈
M

∑
m=2

[ẑi,m(t)ẑ j,m(t)] (28)

The material presented in this section provides the basis for a general solution procedure where the GPM and gPC
can be combined to address stochastic optimization problems, which is presented in the next section.

V. Hybrid Algorithm

THE algorithm presented in this section and shown in figure 1 is an adaptation of the algorithm published in Ref. 16
that was originally written to solve SDEs using initial value and boundary value problem differential equation

routines to solve the set of deterministic sample problems used in stochastic computations.



ẑm =
Q
∑

j=1

z(pj )Φm(pj )αj

(m = 1, . . . ,M)



zPN (p) =
M
∑

m=1

ẑmΦm(p)

      
  
 {pj ,αj}

Q
j=1

     


var [z(t)] ≈
M
∑

m=2

[

ẑ
2

m(t)
]

E(z(t)) = ẑ1(t) ;

cov [zi(t), zj(t)] ≈
M
∑

m=2

[ẑi,m(t)ẑj,m(t)]

   


z(pj) = [xj(t;pj),uj(t;pj), tf , Jj(xj ,uj)]

T

(j = 1, ..., Q)

Figure 1. Hybrid algorithm combining GPM and
gPC methods.

Xiu’s algorithm has been adapted in this work to be applicable
to TO and OC problems by using GPOPS in place of the ini-
tial value and boundary value problem solvers because the Gauss
pseudospectral method implemented in GPOPS assures spectrally ac-
curate deterministic solutions, if they exist, that satisfy optimal-
ity conditions and minimize the performance index while meeting
specified constraints. Therefore, GPOPS, or similar pseudospec-
tral method solvers, provides the best possible approximations to the
Q deterministic problems, while avoiding the difficulties of formu-
lating and solving the HBVP, to be used in the gPC aprroxima-
tion.

Step #1: Choose a set of collocation nodes and quadrature weights
{p j,α j}Qj=1 in the finite probability space Γ. The collocation nodes
should be chosen to be consistent with both the quadrature rule evaluat-
ing the expansion coefficients in Eq. (24) and the polynomial basis ele-
ments Φm. There are many Matlab! functions available for download
on the MathWorksTM website to generate quadrature nodes and weights and
descriptions of various quadrature rules can be found in Refs. 38, 39 and
40.

Step #2: Using each of the Q sample points, p j, solve the deterministic OC
problem using GPOPS, or any other pseudospectral method software, and
build the observables array z= [x(t),u(t), t f ,J(x,u)]T . Other variables of in-
terest, such as costates and the Hamiltonian, can be included in the observables
array.

Step #3: Evaluate the gPC expansion coefficients using Eq. (25).

Step #4: Build the gPC approximation using Eq. (22). This
output of the gPC algorithm is a function of the random inputs
p.

Step #5: Evaluate the statistics of the gPC approximate solution using Eqs. (26), (27), and (28).
The algorithm combining the GPM with the gPC was applied to a challenging nonlinear TO problem with random

inputs affecting the cost functional described in the next section.
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VI. Trajectory Optimization Problem

ATrajectory optimization problem, notionally sketched in figure 2, is considered to demonstrate the ability of the
hybrid algorithm to quantify the effects of uncertain parameters on an optimal trajectory solution.







x1

x2















θ

V

(tf , x1(tf ), x2(tf ), θ(tf ))

(t0, x1(t0), x2(t0), θ(t0))

(t, x1(t), x2(t), θ(t))

Figure 2. Notional sketch of the trajectory optimization
problem

The scenario was designed to represent an aircraft travelling to a desired
target location through an environment where there are potential risks of
lethal engagements. The objective was to find the optimal path in a two-
dimensional space that takes a vehicle from an initial position to a tar-
get location while minimizing the probability that it will be killed by the
threats whose locations are uncertain. It’s assumed that at some point in
time the center locations were perfectly known but have possibly moved
in the time between intelligence gathering and mission planning according
to an assumed probability distribution. The deterministic TO problem will
be described first, which will form the basis for the subsequently discussed
stochastic problem.

VI.A. Deterministic Problem Formulation

To begin adding details to the notional scenario in figure 2, a two-
dimensional grid of 50 x 50 nautical miles (NM) was chosen. Three
threats with effective ring diameters of approximately 20NM were ar-
bitrarily placed in the grid at (10NM,30NM), (25NM,15NM), and
(35NM,30NM). The target was chosen to be located at (25NM,50NM).
Threat and target locations can be easily changed to accommodate user-
supplied scenario specifications. Likewise, the diameters of the threat
rings can be adjusted and are not constrained to be uniformly sized. Units
of nautical miles and knots (kts) were used since they are familiar to air-
crews and mission planners who have interest in this type of problem.

The vehicle dynamics are generically represented with theDubinsmodel in Eq. (29). This model was used to avoid
adding the complexity of developing and coding a model for a specific vehicle’s dynamics, which is not necessary to
demonstrate the algorithm’s performance.

ẋ1(t) =V cos(θ (t))
ẋ2(t) =V sin(θ (t)) (29)
θ̇ (t) = u(t)

The state and control vectors are defined as x(t) = [x1(t), x2(t), θ (t)]T ∈R3 and u(t) = [θ̇ (t)] ∈R1, respectively. The
vehicle speed (V ) is assumed to be a constant 470 knots (kts), chosen based on a mission profile of a generic large
aircraft, and the control is bounded as:

|u(t)| ≤
V
Rmin

(30)

where the minimum turn radius (Rmin) based on the constant speed is estimated to be 11,326 feet. The initial and
terminal boundary conditions are:

x(t0) = x(−1) = [0,0,1.1071]T (31)
x(t f ) = x(1) = [25,50, f ree]T

where t f is unspecified. Lastly, admissible paths are restricted to lie in the boundaries of the grid, stated in the form of
Eq. (4) as:

[−x1(τ), (x1(τ)− 50), −x2(τ), (x2(τ)− 50)]T ≤ 0 (32)

The most important element in setting up the TO problem is to appropriately choose a cost functional in the form
of Eq. (1) that leads to the trajectory that allows the aircraft to reach the target while minimizing the vehicle’s exposure
to lethal threats and not prohibiting it from passing through higher threat areas of the space. The integrand of the
Lagrange term in Eq. (1) must be chosen to define the areas of the space shown in figure 2 that pose the greatest risk to
the vehicle. In an obstacle avoidance problem, the threat shapes would be treated as path constraints, as investigated
by Gong et al.41 and Lewis et al.,42 making any trajectory that passes through those areas of the space inadmissible.
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Numerical solvers would only return solutions that totally avoid those areas of the space or output a message stating
that no optimal solution exists that satisfies these constraints. However, in this case, the threats are treated as regions
of the space that represent varying probabilities that the vehicle will be killed, not as hard obstacles that should be
totally avoided. The threat rings represent likelihood, or probabilities, that travelling into those areas would result in
the vehicle being eliminated. Random elements, discussed later in this section, are introduced through uncertainty
of the exact center locations of the threat rings, making it possible for the threat rings to overlap and impossible
to completely avoid the threats. Therefore, the integrand of the cost functional, g(x(τ),u(τ),τ;t0, t f ), should be
something that describes the probabilities of kill (POK) in the space, assuming that the highest probabilities will be
near the center of the threat rings and decrease with distance away from the center. Minimizing such a functional will
allow the vehicle to pass through regions of the space occupied by the threat rings while finding the least threatening
path to the target. A bi-variate Gaussian PDF for each threat was used to describe the high-threat regions of the two
dimensional space, written as:

gi(x1(τ),x2(τ),τ;t0, t f ) =
1

2πσi,x1σi,x2
exp

(

−
1
2

[

(x1(τ)− µi,x1)2

σ2i,x1
+

(x2(τ)− µi,x2)2

σ2i,x2

])

(33)

where the mean values, µi,x1 and µix2, and the standard deviations, σi,x1 and σi,x2, define the center and variation in
lethality of the ith threat in the x1 and x2 directions for i = 1, . . . ,3. Figure 3 depicts the high POK regions using the
previously stated center locations and σi,x1 = σi,x2 = 5NM to create rings with 20NM effective diameters.

One final consideration is necessary in defining the cost functional. Looking at figure 3, it is obvious that multiple
trajectories may exist that have equal minimum POK, meaning that a unique solution may not exist, resulting in
GPOPS failure to return a solution. To minimize this possibility, the Mayer term in the cost functional should be
chosen to drive the software to return the minimum POK path with shortest travel time to the target. Including the
Mayer term in the cost functional gives:

J(x1(τ),x2(τ),τ;t0, t f ) = (10−5)t f +
t f − t0
2

∫ 1

−1

3

∑
i=1

gi(x1(τ),x2(τ),τ;t0, t f )dτ (34)

where the weighting factor on t f is used to make sure theMayer and Lagrange terms are on the same order of magnitude
to avoid having the minimum time requirement dominate the solution.
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x 2
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Figure 3. Threat ring locations and deterministic solution to the trajectory op-
timization problem

Finally, the TO problem can be stated as: Minimize
J (Eq. (34)) subject to the dynamics (Eq. (29)), control
constraint (Eq. (30)), boundary conditions (Eq. (31)),
and path constraints (Eq. (32)). This is a continuous-
time Bolza-type TO problem that is nonlinear in both
the cost functional and the state dynamics, with fixed fi-
nal state and free final time, and constrained boundary
conditions and control input. The solution to the prob-
lem described thus far will be referred to as the deter-
ministic solution, i.e the noise-free solution, which was
found using GPOPS and is shown in figure 3. The mean
solution of the stochastic variant discussed in the next
sub-section will be compared to this solution and should
closely match it since the uncertainties will be assumed
to be zero mean.

VI.B. Stochastic Problem Formulation

The stochastic problem is formulated in this section by modifying the deterministic version in the previous sub-
section following the development in Section IV. Uncertainty is added to the deterministic problem by introducing
three random input parameters, A1, A2, and A3, and making the following substitutions indicated by the (→) into the
Lagrange term of the cost functional (Eqs. (33) and (34)).

µi,x1 → µi,x1+Ai (35)
µi,x2 → µi,x2+Ai (36)
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The integrand of the modified cost functional becomes:

gi(x1(τ),x2(τ),τ;t0, t f ) =
1

2πσi,x1σi,x2
exp

(

−
1
2

[

(x1(τ)− (µi,x1+Ai))2

σ2i,x1
+

(x2(τ)− (µi,x2+Ai))2

σ2i,x2

])

(37)

resulting in the modified cost functional:

J(x1(τ),x2(τ),τ;Ai, t0, t f ) = (10−5)t f +
t f − t0
2

∫ 1

−1

3

∑
i=1

gi(x1(τ),x2(τ),τ;Ai, t0, t f )dτ (38)

where the Ai’s are assumed to be independent Gaussian RVs with zero mean, µ = 0, and standard deviation, σ , of 1.
The random inputs thus defined and written into Eqs. (37) and (38) introduce uncertainties on center locations of the
threats, transforming J, x, u, and t f into RVs whose solutions will have statistical properties.

It should be noted that the objective of a stochastic OC problem is typically to find the control signal and state
trajectories that minimize the expected value of the cost functional, written as:

J = E

[

(10−5)t f +
t f − t0
2

∫ 1

−1

3

∑
i=1

gi(x1(τ),x2(τ),τ;Ai, t0, t f )dτ

]

(39)

However, in this paper, quantification of the effects of uncertain parameters on J(x,u), x(t), u(t), and t f solutions is
sought since there is no way to control the uncertainties or minimize their effects. So, the cost functional as expressed
by Eqs. (37) and (38) is used when solving each of the Q sampled deterministic problems, and the set of solutions is
used to construct gPC approximations of the states, control, cost, and final time as functions of the random inputs to
assess the effects of those uncertainties.

The dynamics (Eq. (29)), control bounds (Eq. (30)), boundary conditions (Eq. (31)), and path constraints (Eq. (32))
remain the same in the stochastic problem.

Following the development in Section IV, the following definitions are made to identify the key details needed to
apply the gPC method:

• State variables: x= (x1,x2,θ ) ∈ R3 (J = n= 3)

• Stochastic input parameters (random variables): p= (A1,A2,A3) ∈ R3 (N = 3).

• Outputs or observables: z= (x1,x2,θ ,u, t f ,J) ∈ R6 (K = 6)

The PDFs (Gaussian) of A1, A2, and A3 are denoted by ρ1(A1), ρ2(A2), and ρ3(A3), respectively. The joint PDF is
given by Eq. (15) as:

ρ(p) =
3

∏
i=1

ρi(pi) = ρ1(A1)ρ2(A2)ρ3(A3) (40)
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Figure 4. Collocation points: Tensor grid of 343 points (7 in each dimension)
used as random inputs A1, A2, and A3.

While continuous Gaussian distributions are defined
on the sample spaceΩ= (−∞,∞)×(−∞,∞)×(−∞,∞),
the finite sample space is defined by the collocation
points. Since Gaussian PDFs were used in this case,
Hermite polynomial basis functions collocated at Gauss-
Hermite quadrature points were chosen for the gPC
expansion as suggested in Refs. 15 and 35. It’s im-
portant to note that the statistical version of the Her-
mite polynomials was used, where the weighting func-
tion is exp[− (x−µ)2

2σ2 ], instead of the typical exp[−x2],
which means that the traditional Gauss-Hermite quadra-
ture points need to be scaled by a factor of

√
2σ2 and

shifted by adding µ and the quadrature weights scaled
by (

√
π)−1. Recall there are q points in each random di-

mension, which are calculated by finding the roots of the
qth Hermite polynomial, Hq, and scaled accordingly. The number of collocation points in the three random dimen-
sions, q1, q2, and q3, was chosen to be 7, resulting in Q = 343 collocation nodes and the finite probability space
[−4,4]× [−4,4]× [−4,4] as shown in figure 4.

11 of 16

American Institute of Aeronautics and Astronautics



The one-dimensional polynomial spaces were chosen, as given in Eq. (17), to be defined by the following polyno-
mial basis sets:

{φ1}5d1=0 = {H0, ...,H5} (41)

{φ2}5d2=0 = {H0, ...,H5}

{φ3}5d3=0 = {H0, ...,H5}

where Hi denotes the Hermite polynomial of the ith order. Thus, the 3-dimensional polynomial space, defined using
the tensor product in Eq. 19, is:

{φ1}5d1=0
⊗

{φ2}5d2=0
⊗

{φ3}5d3=0 (42)
Selecting the entire set of basis functions yields 216 total basis elements, where each one-dimensional basis set is at
most fifth order and the highest order of the tensor product set is 15. The number of basis elements was chosen, all
of which are used in computations, to provide a balance between computational burden and accuracy of the solution
when compared to MCS.

This section has presented all of the details necessary to implement the hybrid algorithm steps described in Section
V. The results of applying the algorithm to the sample problem considered in this paper are presented in the next
section.

VII. Results

RESULTS of applying the hybrid GPM-gPC algorithm to the trajectory optimization problem are presented in this
section. The expected value solutions and variances are plotted for x1(τ), x2(τ), x3(τ), and u(τ) and tabulated for

J and t f . Covariances between the states x1(τ) and x2(τ), x1(τ) and x3(τ), and x2(τ) and x3(τ), as well as between
the states and control, x1(τ) and u(τ), x2(τ) and u(τ), and x3(τ) and u(τ), are also shown. The results for u(τ) are
not necessary since this is a TO problem, but are included to show agreement between MCS and gPC approximations
and that the gPC solution satisfies the bounded control constraints given by Eq. (30). Since this is a free final time
problem, expected values, variances, and covariances are plotted versus the time vector τ . Stochastic computations
evaluating the gPC output function (Eq. (22)), gPC expansion coefficients (Eq. (25)), and statistical quantities derived
from the expansion coefficients are not possible in the time domain since the time points in the Q sampled solutions
are not the same once GPOPS makes the transformation from the τ domain to the time domain using Eq. (5). The
τ vectors, however, remain consistent throughout regardless of the differing terminal times and allows for stochastic
computations using a consistent time reference. In a fixed final time problem, these stochastic computations can be
performed using the time domain.

Figure 5 on the next page shows the mean solutions for x1(t), x2(t), x3(t), and u(t). There are three curves on each
of the sub-plots. The first is an MCS estimation of the mean solution, which converged after 25K iterations using
random inputs (A1,A2,A3) drawn from Gaussian distributions with µi = 0 and σi = 1, requiring more than eight hours
of processing on a MacBook Pro computer with a 2.2 gigahertz quad-core processor and eight gigabytes of memory.
The ensemble of 25K optimal GPOPS trajectories was used to calculate the expected values (mean) shown on in the
figure. The second curve in the sub-figures is the solution to the deterministic OC problem, given by Eqs. (29)-(34) or
equivalently by the stochastic formulation using Eqs. (29)-(32), (37), and (38) with A1 = A2 = A3 = 0, which serves as
another check of the mean solution. Since the stochastic inputs are unbiased (zero mean), it was expected that the gPC
mean solution would be close to the deterministic one, which is confirmed by figure 5 on the following page. This
check was possible by virtue of the sample problem formulation and may not be valid in more general problems. The
last curve is the hybrid GPM-gPC algorithm approximation of the expected value, recalling that it is given by the first
gPC expansion coefficient as stated in Eq. (26). It’s interesting to note that the hybrid GPM-gPC method using GPOPS
required just over seven minutes to solve the 343 TO problems and use the data to construct the gPC approximation of
the solution. Bars indicating two standard deviations are included to quantify how much the solution varies from the
mean. These plots show that the gPC and MCS closely match each other, which both match the deterministic solution
as expected, and the desired terminal conditions x1(t f ) and x2(t f ) are satisfied.

Figure 6 on page 14 shows the variances of the hybrid algorithm solutions of x1(τ), x2(τ), x3(τ), and u(t) using
Eq. (27). These plots show close correlation between they hybrid algorithm and MCS variance estimates and that
desired terminal conditions, x1(t f ) and x2(t f ), are satisfied since the variances are zero at the terminal time with the
hybrid method performing the computations more than 90% faster than the MCS.

Covariance estimations further characterize the distributions of the stochastic solution by providing indications of
dependence between the output variables. Figure 7 on page 15 shows the covariance estimates provided by the hybrid
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Figure 5. MCS, deterministic, and gPC expected value estimates of states, x1(τ), x2(τ), and x3(τ), and control, u(τ).

algorithm and compares them with MCS estimates. As with the mean and variance estimates, the hybrid algorithm
results closely match the MCS results, indicating that the algorithm is generating reasonable solutions. The covariance
plots also show that the state variables and control outputs are dependent even though the random inputs are assumed
to be independent, which is as expected since the variables are related through the equations of motion (Eq. (29)).

Expected value and variance results for estimating the cost, J, and final time, t f , are given in table 1. The hybrid

Table 1. MCS and gPC Expected Value and Variance of J and t f

Expected Value Expected Value Difference Variance Variance Difference
Algorithmc MCSd Algorithm MCS)

Ja 1.6129E-5 1.6131E-5 2.0E-9 1.4998E-12 1.5359E-12 3.61-14

t f b 0.1232 0.1232 0.0 7.3970E-7 8.4716E-7 1.0746E-7

a Deterministic solution of J: 1.6164E-5
b Deterministic solution of t f : 0.1230 hours
c Computation time: approximately 7 minutes
d Computation time: 8+ hours

algorithm and MCS approximations for the expected value and variance closely match each other as shown by the
small differences given in the table and are actually equal, to four decimal places, in expected value of the final time.
Furthermore, the expected values of both J and t f agree with the deterministic solution.

The expected value plots (figure 5), along with the variance plots (figure 6 on the following page) and covariance
plots (figure 7 on page 15) give the most likely solution to the stochastic trajectory optimization problem and describe
the nature of the output distributions by quantifying the affects of the Gaussian random parameters on the output so-
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Figure 6. MCS and gPC variance estimates of states, x1(τ), x2(τ), and x3(τ), and control, u(τ).

lutions. The agreement of the hybrid algorithm and MCS results shown in this section provides confidence that the
gPC-based hybrid algorithm provides accurate approximations of the output distributions while reducing computa-
tional workload.

VIII. Conclusions and Future Work

Ahybrid algorithm combining GPM and gPC methods was presented and applied to a nonlinear stochastic TO
problem with uncertain parameters included in the cost functional. The hybrid method extends current well-

established methods to solve SDEs to be applicable to solve TO and OC problems by combining a powerful and
accurate pseudospectral method to solve the sampled deterministic TO and OC problemswith a pseudospectral method
that characterizes the statistical effects of the uncertain parameters on the solution. Using GPOPS as the deterministic
solver provided accurate deterministic solutions at the sample points, thus is well suited to be used in place of standard
differential equation solvers. The results demonstrated that the method is able to generate solutions to the stochastic
TO and OC problems by determining the expected value solutions for the state variables, control, cost, terminal time
and characterize the probabilistic information about the solutions that agrees with MCS results, thus characterizing
how the optimal solution changes with uncertainty.

Further investigation will focus on improving numerical efficiency of the hybrid algorithm by seeking a “rule-
of-thumb” for selecting appropriate numbers of polynomial basis elements that balance accuracy with computational
burden. Sparse grids will also be incorporated to further improve efficiency by reducing the number of sample solutions
necessary to quantify the effects of uncertain parameters on the solution, which will be critical in higher-dimensional
problems. Calling GPOPS 343 times to solve the sampled OC problemswas not overly time consuming, but keeping in
mind that GPOPS uses a NLP solver, which is an iterative routine in itself, to calculate state and control solutions that
meet optimality conditions, it is not difficult to surmise that as the number of states, controls, and random inputs grow
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Figure 7. MCS and gPC covariance estimates between the states, x1(τ), x2(τ), and x3(τ), and between the states and control, u(τ).

the computational burden will increase exponentially. Additionally, problems will be considered where the random
elements are not assumed to have the same PDFs, leading to a mix of polynomial basis sets in the gPC approximation
that will provide insight into how the interactions between random input distributions affect the distributions of the
observables estimates. Lastly, future research will seek to further develop the algorithm to address problems with
time-varying random parameters, such as wind gusts and sensor noise, that could eventually lead to hybrid algorithm
application to real- or near-real-time state estimation and control problems.

This paper was a first-look at combining the gPC algorithmwith the GPM to solve trajectory optimization problems
with stochastic inputs. The results show great potential, but also highlight the need for much further work.
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