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A B S T R A C T

Rotating scattering masks have shown promise as an inexpensive, lightweight method with a large field-of-view
for identifying the direction of a gamma emitting source or sources. However, further examination of the current
rotating scattering mask design shows that changing the geometry may improve the identification by reducing or
eliminating degenerate solutions and lower required count times. These changes should produce more linearly
independent characteristics for the mask, resulting in a decrease in the mis-identification probability. Three
approaches are introduced to generate alternative mask geometries. The eigenvector method uses a spring–mass
system to create a geometry basis. The binary approach uses ones and zeros to represent the geometry with
many possible combinations allowing for additional design flexibility. Finally, a Hadamard matrix is modified
to examine a decoupled geometric solution. Four criteria are proposed for evaluating these methodologies. An
analysis of the resulting detector response matrices demonstrates that these methodologies produced masks with
superior identification characteristics than the original design. The eigenvector approach produces the least
linearly dependent results, but exhibits a decrease in average efficiency. The binary results are more linearly
dependent than the eigenvector approach, but this design achieves a higher average efficiency than original. The
Hadamard-based method produced a lower maximum, but a higher average linear dependence than the original
design. Further possible design enhancements are discussed.

1. Introduction

Identifying a gamma source’s direction is important in a variety
of applications such as portal monitoring, treaty compliance verifica-
tion, and locating orphan sources. Three general categories exist for
gamma source direction identification; count-based systems, collimator
and coded aperture systems, and Compton cameras. In count-based
systems, a source’s direction is determined by the relative change in
the count number as the detector changes positions. This method can
be inefficient and increase the user’s exposure as they search for the
source. Collimator and coded aperture systems use intervening material
or a mask to create a unique detection pattern, which can be used
to identify the source’s direction. However, the intervening material
reduces the detector’s field-of-view (FOV) [1], which increases the
time required to survey surrounding areas. For higher gamma energy
levels, the system’s weight and portability can become problematic as
shown by the 32,000 lb SuperMISTI system [2] and 2700 lb Large-Area
Imager [3]. These systems are mounted on mobile platforms in order to
image the area of interest. Complicate Compton Cameras can offer up

* Corresponding author.
E-mail address: dholland@cedarville.edu (D.E. Holland).

to a 4𝜋 FOV [4] and can distinguish between background and source
radiation [1,5]. However, these systems require multiple detectors to
measure coincident Compton events and usually ignore full-energy-peak
(FEP) information.

A novel approach, similar in concept to the coded aperture system,
exists that eliminates many of the alternative’s limitations. This system
utilizes a Low-Z mask placed over a single position-insensitive detec-
tor [6]. The system records energy spectra as a function of the geo-
metrically varying mask, which is accomplished through a set, constant
mask rotation. The measured position dependent spectra, referred to as
detector response curves (DRCs), depend on the source position and can
be used to identify the source direction. FitzGerald’s mask geometry [6]
generates some DRCs that are nearly identical, which can lead to mis-
identification of the source direction. This work seeks to reduce the
DRCs’ linear dependence by optimizing the mask’s geometry.

The rotating scatter mask (RSM) concept offers many benefits over
other gamma source position identification detectors. Specifically, it
‘‘provides a nearly 4𝜋 field-of-view, operates for a broad range of gamma
energies, and has a relatively simple design [7]’’. This system uses a
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Fig. 1. Isometric view of the unstructured mesh used to model the FitzGerald
RSM in MCNP.

spherical reference system, where 𝜃 is the azimuthal and 𝜙 the polar
angle. The mask works by attenuating and scattering the incoming
particles in order to produce unique detector response curves [7]. To
obtain the measurements for the position identification, the mask starts
at an initial 𝜃 and 𝜙 position. It then rotates in 𝜃 around the detector
with the signal recorded at each discrete 𝜃 position. The measured DRC
is generated by summing the counts over a desired energy range for
each 𝜃 position in one complete mask rotation. Comparing this curve
with each possible DRC, which are known through experimentation
or simulation using a mean square error, least squares, or maximum
likelihood estimate approach identifies the source direction.

FitzGerald introduced the RSM shown in Fig. 1 that has a 14
in diameter and surrounds a 3 × 3 in cylindrical NaI scintillating
detector [6]. His original MCNP model contained 31 elements or one
element every 11.6◦. In order to increase the accuracy of the geometric
representations, the model’s angular resolution was later increased to
every degree.

FitzGerald’s design methodology assumes that the detector response
is related to the mask geometry. Without this assumption, intentional
mask design degenerates into random trial and error. In addition, he
proposed three desirable characteristics for the RSM system. First, for
any given initial source position, there is a unique response curve
generated as the mask rotates 360◦. This condition is necessary as a non-
unique response would make at least two initial source position DRCs
indistinguishable and a unique identification impossible. The second
characteristic requires the mask’s average thickness over a 360◦ rotation
to be a constant value for all 𝜙s. This criteria prevents higher or lower
average responses for different 𝜙 positions. This requirement is not
necessary to ensure the uniqueness of the DRC; however, DRCs with
widely varying average thicknesses may have a lower average count,
which makes them more susceptible to measurement noise and increases
the time required to obtain an accurate measured response. The final
characteristic is for the solid angle from the detector centroid to be
equal for all cells. This constraint provides the same spatial resolution
in both azimuthal and polar directions. Not explicitly mentioned by
FitzGerald is an assumption that the geometry should be continuous,
thereby allowing the DRCs to be discretized as desired.

The remainder of this paper is organized as follows. Section 2 pro-
vides an overview of the RSM experimental setup, design assumptions
and limitations, design criteria, and the design methodologies used to
generate improved RSM designs. Section 3 describes the performance
of each of the alternative designs and compares that performance to
the FitzGerald baseline. Finally, Section 4 discusses possible future
improvements on the methodologies presented here and key results from
the improved RSM designs.

2. RSM design

Logan et al. [8] showed statistical agreement between experimental
and simulated DRCs using GEANT4 [9] and agreement of simulated
DRCs [7] using GEANT4 and MCNP [10]. Thus, this work will use
MCNP to simulate the experimental DRCs needed to evaluate each RSM
design’s performance. Instead of using only the full energy peak (FEP),
the DRC for this work is formed by summing all counts above 200 keV
to increase the source direction identification’s efficiency. The 200 keV
limit was chosen as Logan et al. noted discrepancies for counts below
this value due to scatter in the environmental elements not considered
in the model [7].

Originally, both the analysis of FitzGerald’s RSM and the new designs
were to be discretized into 10◦ increments in 𝜃 and 5◦ in 𝜙. However,
due to requirements for the Hadamard method, (which is discussed in
Section 2.3.4) the proposed designs are broken into 32 discrete angles
in 𝜃 resulting in 𝛥𝜃 = 11.25◦ and 𝛥𝜙 = 5.625◦ for 30 angles in 𝜙.

The RSM design is to be optimized for a 137Cs point source located
34 in from the center of the detector, mimicking Logan et al.’s setup [7].
To simulate the relative source rotation in MCNP, the mask is stationary,
while the source is rotated in spherical coordinates every increment
for 𝜃 from 0 to 348.75◦ and for each 𝜙 from 5.625◦ to 168.75◦. The
modeled NaI detector includes a 1/8 in 2024 Aluminum alloy sleeve
on which the acrylic RSM is placed. The maximum width of the RSM
depends on the methodology, but the maximum mask thickness is a
constant 7.87 in (20 cm). A sphere of air surrounds the source and
detector, and all other environmental factors were ignored. To increase
the solution convergence rate, particles were emitted within a 27.26◦

half angle cone extending from the source to the detector’s center.
This variance reduction technique assumes that the effect of the few
particles that scatter in the air outside of the cone, though the mask,
and into the detector will have negligible contributions to the simulated
DRCs. In addition, a 0.095 in air gap between the mask and aluminum
sleeve constrains the mask geometry from impinging on the sleeve and
provides a space for grease to be applied between the moving parts.
Finally, due to manufacturing constraints, each mask angle must have a
non-zero thickness.

2.1. Design assumptions and limitations

It is assumed that the detector-mask-source geometry is related to the
DRC and that geometry can be reconstructed using the DRC. Qualitative
studies of this correlation showed that, in general, this assumption is
valid with two qualifications. First, a discontinuous geometry results in a
continuous DRC due to correlations with neighboring rotations. Second,
while the RSM may offer an increase in the total counts, it comes with
a limit on the spatial resolution. To understand this statement in detail,
consider a rectangular prism cell with a given thickness extending from
the centroid of the detector (outside of the aluminum sleeve) in a given
direction. Since the cells do not have impenetrable walls, particles from
one source position enter cells pointed at other positions. In fact, this
phenomena is one of the desirable characteristics of FitzGerald’s design
as an increase in scattered particles can increase the total number of
counts seen by the detector thereby increasing the efficiency. However,
if the cells are too small compared to the detector footprint, then
neighboring cells may see a response comparable to the cell located
between the detector and source.
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To best enable source direction identification, a unique set of DRCs
must be obtained. The complete set of DRCs for all rotations angles
forms the design response matrix (DRM). The primary criterion for the
design choice will be the design with the most unique DRM. To achieve
this goal, the requirements for maintaining a constant spatial resolution
in both spherical directions and requiring a continuous geometry are
relaxed. However, to obtain a more constant response level, a constant
average thickness for each 𝜙 angle is maintained.

For this application, it is desirable that the curve generated at each
initial source position be unique, i.e. orthogonal to all other curves
associated with the other source positions. Let this curve be denoted
𝐃𝐑𝐂𝑖,𝑗 , where 𝑖 = 0, 1,… , 𝑛 is the initial 𝜃 and 𝑗 = 0, 1,… , 𝑚 is the initial
𝜙 index relative to a reference location on the mask. Since the mask
rotates, the 𝑖th DRC will be identical to 𝐃𝐑𝐂𝑔,𝑗 shifted by 𝑔− 𝑖 indices. A
negative number corresponds to a shift to the left and a positive number
a shift to the right. This property greatly impacts the mask design as any
periodic vector with respect to 𝜃 will then result in duplicate 𝑖 and 𝑔
DRCs. The duplication due to periodicity would fail to meet the design’s
uniqueness requirements.

2.2. Modal assurance criterion

The modal assurance criterion (MAC) is a normalized number that
indicates the similarity between two vectors [11]. A MAC value of zero
indicates the two vectors are orthogonal, while a value of one indicates
that they are identical. Eq. (1) defines the MAC number as

𝑀𝐴𝐶𝑔,ℎ,𝑖,𝑗 =

(

𝐮𝑇𝑔,ℎ𝐯𝑖,𝑗
)2

(

𝐮𝑇𝑔,ℎ𝐮𝑔,ℎ
)(

𝐯𝑇𝑖,𝑗𝐯𝑖,𝑗
) , (1)

where 𝐮𝑔,ℎ and 𝐯𝑖,𝑗 are the DRCs for the respective initial positions
(𝜃 = 𝑔𝛥𝜃, 𝜙 = ℎ𝛥𝜙) and (𝜃 = 𝑖𝛥𝜃, 𝜙 = 𝑗𝛥𝜙). Logan’s work established a
connection between the measured and the simulated DRCs. Thus,
assuming the measured response can be represented by the simulated
spectrum, it is possible to analyze the design’s uniqueness by comparing
each simulated DRC with every other possible simulated DRC to find the
worst performance.

Considering all vector shifts, the maximum MAC number, which
corresponds to the most similar pair of DRCs is given in Eq. (2).

𝑀 = 𝑚𝑎𝑥𝑔,ℎ,𝑖,𝑗
(

𝑀𝐴𝐶𝑔,ℎ,𝑖,𝑗
)

, (2)

where 𝑔 ≠ 𝑖 and ℎ ≠ 𝑗. An examination of Eq. (2) shows that a bias in
vectors 𝑢 and 𝑣 will result in a non-zero 𝑀 value. Thus, the DRCs are
normalized such that each one is zero mean over 𝜃. These normalized
DRCs form the reduced DRM or 𝐃𝐑𝐌𝐫𝐞𝐝.

2.3. Design methodologies

There are two general classes for creating a design’s geometry. The
first method assumes that both the initial 𝜃 and 𝜙 positions are to be
identified. The second approach uses a geometric marker, which allows
the initial 𝜃 location to be calculated. This assumption simplifies the 𝜃
identification and removes the 𝜃 shift effects. Both of these classes create
a two dimensional matrix, which is mapped as the mask thickness to
three dimensional space using spherical coordinates.

2.3.1. Identifying 𝜃 and 𝜙
To function properly, the optimal mask design would have unique

DRCs so that no information is shared among the curves. This condition
implies that the DRCs should be orthogonal to each other resulting in
linearly independent curves. If one creates an 𝑛 by 𝑚 matrix where 𝑚 < 𝑛
there are at most 𝑛 linearly independent vectors. Thus, there are 𝑛 − 𝑚
vectors, which make up the space not spanned by the matrix. For the
mask, this matrix defines the geometry (and presumably the DRCs) for
initial position 𝜃 = 0. However, the design must be unique for over
all initial 𝜃s (𝜃 shifts). Looking at one shift in 𝜃, one would obtain an

Fig. 2. Equivalent spring–mass system used to generate the eigenvectors.

additional 𝑛 by 𝑚 matrix. This space would be spanned by 𝑛 vectors,
which for linear independence would need to be in the 𝑛−𝑚 space. For
this condition to be true, 𝑛 ≤ 𝑛 − 𝑚 → 𝑚 ≤ 0, which is impossible as
𝑚 > 0.

As a result, it is mathematically impossible to create linearly in-
dependent DRCs when 𝜃 and 𝜙 are to be simultaneously identified.
So, our optimized design objective is to create a design with the
least amount of linear dependence. The three following methods are
tailored to create designs for identifying both 𝜃 and 𝜙 with a low linear
dependence. The eigenvector approach shown in Section 2.3.2 solves a
mass normalized eigenvalue problem. The binary method described in
Section 2.3.3 uses patterns of ones and zeros to represent the geometry.
Lastly, Section 2.3.4 discusses the modification and application of the
Hadamard approach used for rotating encoding masks.

2.3.2. Eigenvector approach
The eigenvector approach creates a basis set, which may be used

to define the geometry space. First, 𝑛 𝑘 values are chosen, where 𝑘 is
the coupling constant analogous to a spring–mass coupling problem.
These values are then placed in a stiffness matrix corresponding to the
coupled spring–mass problem shown in Fig. 2. The mass is assumed to be
normalized. This approach assumes there is additional coupling between
nearby springs, which represents the spatial coupling among nearby 𝜙
positions on the RSM. Other coupling methods could be introduced if
desired.

Note that the values chosen do not need to represent physical
systems (e.g. negative stiffness values are acceptable). Thus, systems
with positive, negative, and a combination of both were explored. Two
options were considered in coupling the masses with springs. First,
springs were added to couple the neighboring masses on the right and
left. Both wall and cyclically symmetric (the last mass is coupled to
the first) boundary conditions were tested. The second type coupled
the two neighboring masses on the left and right, while applying
wall boundary conditions. As an example, Fig. 2 shows the spring–
mass system with springs connecting two neighboring masses and wall
boundary conditions that is further discussed in Section 2.4. For brevity,
the other coupling systems are not shown as the results were found to
be not optimal.

Once the system is constructed, an eigenvalue problem is solved
resulting in 𝑛 orthonormal eigenvectors used to represent the geometry
for initial position 𝜃 = 0 and all initial 𝜙 positions. As the first
vector tends to be planar motion (a cyclical vector) it is not chosen.
This elimination results in a matrix formed by eigenvectors 2…𝑚 + 1.
However, observations led to the conclusion that the orthogonal linear
independence for 𝜃 = 0 caused some high 𝑀 values when considering
all initial 𝜃 positions. Introducing linear dependence to the 𝜃 = 0 matrix
was seen to result in decreased 𝑀 values for 𝜃 ≠ 0 combinations. To
introduce linear dependence, a modified Gram–Schmidt orthogonality
approach is used. Specifically,

𝐄𝑛𝑒𝑤
𝑑 = 𝐄𝑑 − 𝑐

∑

𝑒=1,…,𝑛−1

𝐄𝑇
𝑒,𝑒𝐄𝑑

𝐄𝑇
𝑒,𝑒𝐄𝑒,𝑒

𝐄𝑒,𝑒, (3)

where 𝑑 denotes the 𝑑th eigenvector, 𝑐 is a constant between 0 and 1
such that 0 adds no linear dependence and 1 adds a portion of all other
𝐄𝑒,𝑒 vectors, and 𝑒 = 1… 𝑛−1 is the 𝑒th left shift of eigenvector 𝐄𝑒. Thus,
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Fig. 3. Design surface generated by different 𝑘 step increments and 𝑐 values
used to minimize 𝑀 .

the similar component of shifted versions of each other vector, 𝐄𝑒,𝑒, is
subtracted from the initially linearly independent basis (𝜃 = 0) vectors.

This formulation leads to a decrease in the 𝑀 values, but an increase
in the individual MAC values for the basis vectors as the non-shifted
vectors are no longer orthogonal. Other combinations of eigenvectors
and shifts for 𝐄𝑒,𝑒 are acceptable, however a shift is required due to the
initial orthogonality (otherwise there is no similar portion to subtract).

Next, the average of each new eigenvector is subtracted from the
corresponding vector. Since mask material may only be added, the
minimum value (plus the 0.1 cm addition to the geometry) is added
to the eigenvector to make all the thicknesses positive. Lastly, each
eigenvector is normalized by the maximum vector value and scaled.
These steps produce a minimal thickness of approximately 0.1 cm and
a maximum mask thickness of 20 cm.

Multiple geometries for various 𝑘 and 𝑐 combinations can be tested
resulting in the design surface shown in Fig. 3. These results are based
solely on the geometry vectors and not 𝐃𝐑𝐌𝑟𝑒𝑑 . Using this information,
the 𝑘 and 𝑐 combination with the lowest 𝑀 value can be chosen for the
more time expensive MCNP simulations.

2.3.3. Binary approach
The binary approach uses ones and zeros to represent the geometry

thickness. Notice that the mask’s cyclic nature causes vectors such as [1
1 0 0] to be the same as [1 0 0 1], where the first vector is the second
shifted by one entry to the right. If the design uses binary patterns such
as these two, the DRCs for two initial positions will be identical. As
shown in Appendix, for 𝑛 > 7 any combination of vectors with three ones
placed in an arrangement that avoids cyclic behavior with themselves
(such as [1 0 1 0 1 0]) or others (such as [1 1 1 0 0 0] and [0 1 1 1 0 0])
produces a theoretical 𝑀 value of 4∕9. Note that including the binary
‘‘1’’ vector represented using 6 bits as [0 0 0 0 0 1]) does not change this
𝑀 value. For 𝑛 = 32, there are many possible basis vectors; especially
considering that the vectors can be shifted left or right (corresponding
to multiplication or division by 2), and the 𝜙 vector order (1st, 2nd,
3rd, etc.) may be swapped. This flexibility allows one to create unique
geometries, mechanically balance the mask, or improve the likelihood
of obtaining a signal given a random source position by more evenly
spreading the ones and zeros around the mask.

2.3.4. Decoupling 𝜃 and 𝜙
An alternative approach introduces additional material to create a

low measurement ‘‘dead’’ zone at a consistent 𝜃 position. As a result,
the initial 𝜃 position is assumed to be the angular distance difference
between the start of the measurement and the minimum measurement
location. The sign of the angle depends on the mask’s rotation direction.
It is conjectured that this association will be valid except when there

are multiple sources in which spectral stripping is not possible or for
distributed sources. Further work in this area is ongoing.

As the initial 𝜃 position is known, the reference DRM angle may be
changed to the known 𝜃 position by shifting the basis matrix entries by
the corresponding index number. This knowledge decouples the 𝜃 and 𝜙
identification, resulting in only needing to compare the measured DRC
to the 𝑚 𝜙 curves in 𝐃𝐑𝐌𝑟𝑒𝑑 . Using this method, it is possible to create
𝑚 linearly independent geometric basis vectors.

One such linearly independent basis is the Hadamard matrix, which
has been used in the design of stationary encoding masks in the fields of
spectrometry and imaging [12–14]. What began as a one dimensional
approach was extended to multi-dimensional problems [15–17], result-
ing in methods applicable to the RSM design optimization. Of particular
interest is Bellamy et al.’s attempt to produce a two dimensional,
moveable encoding mask [18]. Unfortunately, the mask positioning
reproducibility difficulty and the mask’s slow translation time hinder
using moving mechanical masks in spectroscopy and imaging applica-
tions [17]. Similar to the RSM design, Fateley et al. [19] introduced
a variable mask with a single element detector for spectroscopy and
imaging use.

While this matrix has been used in spectroscopy for many years,
Hadamard encoding masks assume that some of cells are ‘‘on’’, ‘‘off’’,
or detected by a second sensor [17]. In addition, it is assumed that one
knows the on/off state of the cells. The equivalent RSM design goal is to
identify this on/off state and thus, it corresponds to an inverse problem.
In contrast to the encoding masks, each cell in the RSM design is not
in a fully on/off state, but may have particles passing through it even
when the source is not directly aligned.

The Hadamard matrix is thought to only exist for square matrices
where 𝑛 is 1, 2, or divisible by 4 [12]. By construction, the mask design
under consideration is discretized in order to have 𝑛 = 32. Also, a
Hadamard matrix has ones and negative ones. To convert it to a binary
pattern, the negative one entries were changed to zeros. In order to
create the ‘‘dead’’ zone, the vector of ones corresponding to 𝜃 = 0 were
changed to twos. A normalized geometry resulted by following the same
steps as outlined in the eigenvector approach.

2.4. Design evaluation

To assess the design optimality, four criteria relevant to the perfor-
mance of the RSM are proposed. The first, the maximum MAC value,
was discussed in Section 2.2. The average MAC number, 𝐴, is given in
Eq. (4) and provides information about the mean linear dependence.

𝐴 = 1
𝑏

∑

𝑔,ℎ,𝑖,𝑗

(

𝑀𝐴𝐶𝑔,ℎ,𝑖,𝑗
)

, (4)

where 𝑔 ≠ 𝑖, ℎ ≠ 𝑗, and 𝑏 is the total number of combinations given by
𝑏 =

(

𝑚
2

)

+(𝑛−1)
(

𝑚+1
2

)

. Note that
(

𝑚
2

)

is the total number of combinations

without 𝜃 shifts (aka 𝜃 = 0), 𝑛 − 1 is the total number of 𝜃 shifts
possible, and

(

𝑚+1
2

)

is the number of combinations for DRCs shifted one
𝜃 position. For the 𝑛 = 32 and 𝑚 = 30 mask design, 𝑏 = 14 850. The
optimal design should have low 𝑀 and 𝐴 values.

The average, minimum, and maximum DRC values for a given 𝜙
remain the same for different initial 𝜃 values. Thus, no 𝜃 shifting needs to
be considered in the following two criteria. The third criteria measures
the RSM’s average efficiency for a mask cell. A high-efficiency design
produces more accurate results in less measurement time, an important
factor to consider for the intended RSM applications. This value is
calculated as

𝜖 =
∑

𝑖,𝑗 𝐃𝐑𝐌𝑟𝑒𝑑

𝑛 𝑚
, (5)

where 𝑛 𝑚 is the total number of mask cells. Note, this is not the absolute
detection efficiency as the spectra obtained remove the < 200 keV
counts.
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Fig. 4. RSM geometry created by the eigenvector approach.

Fig. 5. RSM geometry created by the binary approach.

The final evaluation criterion focuses on the design’s sensitivity.
The ratio of the maximum to minimum response in Eq. (6) provides
information on the relative amount of measurement time required and
the measurement’s sensitivity to random measurement noise.

𝑆 = 𝑚𝑖𝑛𝑗

(

𝑚𝑎𝑥𝑖
[

𝐃𝐑𝐌𝑟𝑒𝑑
]

𝑚𝑖𝑛𝑖
[

𝐃𝐑𝐌𝑟𝑒𝑑
]

)

. (6)

The following section applies the four evaluation criteria to DRC
simulations for all possible discrete source positions for the designs
generated from the three approaches outlined in Section 2.3.

3. Results and analysis

The proposed design methodologies produced the geometries shown
in Figs. 4 to 6.

The eigenvector approach used 32 𝑘 values from 0.1 to −0.2999
in increments of −0.0129 with stiffness coupling to the nearest two
neighbors on both sides of the mass. 𝑐 was determined to be 0.999
from the design surface minimization depicted in Fig. 3. Other coupled
systems did not have an optimal 𝑐 value close to one.

The binary pattern was constructed to have a fin that spirals around
the mask. As it is not possible to have the fin completely cover the mask
geometry, four other vectors were added to create the necessary basis.

Fig. 6. RSM geometry created by the Hadamard approach.

Fig. 7. Representation of the FitzGerald RSM MAC numbers for 𝜃 = 0.

The FitzGerald’s RSM was used as a baseline to establish the design
improvement for the RSM designs shown in Figs. 4 to 6. The simulation
of FitzGerald’s design involved a mask discretization of 10◦ in 𝜃 and 𝜙;
corresponding to 𝑛 = 36. However, the Hadamard 𝑛 = 36 matrix cannot
be created by lower order Hadamard matrices [20], thus the proposed
designs use 𝑛 = 32. This change in discretization will only have a minor
impact to the evaluation criteria as the discretizations are sufficiently
coarse to avoid the spatial resolution limit for a single point source.

Fig. 7 shows a visual MAC number representation for 𝜃 = 0 obtained
by using Eq. (1).

It is worth pointing out a couple of key features for these MAC plots.
First, the diagonal entries correspond to comparing a vector to itself, and
thus will always be equal to one. Second, the plots are symmetric about
the diagonal. Finally, the large off-diagonal regions are of particular
interest because these high values could result in the mis-identification
of the source direction. The new proposed designs significantly lower
off-diagonal values resulting in less degeneracy in the source direction
as shown in Figs. 8 to 10.

The adjacent off-diagonal terms in Figs. 7, 9 and 10 show that there
is a limit to the spatial resolution. Specifically, vectors 𝑗, 𝑗+1, 𝑗+2, and
𝑗 + 3 have MAC numbers that incrementally decrease indicating that
information is shared by neighboring initial positions. In the presence
of measurement noise, it may only be possible to identity the position
to an accuracy that is a multiple of the 𝜃 or 𝜙 discretization.
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Fig. 8. Eigenvector RSM MAC values for the basis 𝜃 = 0.

Fig. 9. Binary RSM MAC values for the basis 𝜃 = 0.

Table 1
Evaluation criteria comparisons from the original design and the three proposed
designs from this work.

Criteria FitzGerald EV Binary Hadamard

M 1.00 0.808 0.963 0.935
A 0.210 0.0663 0.125 0.423
𝜖
(

×10−4
)

3.75 2.96 3.86 3.70
S 1.00 1.07 1.16 1.07

The off diagonal terms for the binary design are indicative of the
limits of the design approach pursued. Since a full optimization was
not performed, it is likely that the binary design can be improved by
replacing the last four vectors with alternatives. This could result in a
decrease in the off-diagonal terms corresponding to these four vectors
thereby improving the performance characteristics of this design class.

Table 1 summarizes the evaluation results for the original RSM,
binary, eigenvector (EV), and Hadamard approaches. Recall that the
Hadamard values correspond to those obtained without shifting vectors
since the initial 𝜃 position can be deduced.

Notice that the original design has a maximum MAC number of 1.00.
This value corresponds to a part of the geometry that has a constant
thickness as 𝜃 varies. As a result, a shift in the initial 𝜃 produces the
same DRC and a MAC number of 1. For the same reason, the sensitivity
value is 1.00. In contrast, the proposed methods have lower 𝑀 values

Fig. 10. Hadamard MAC numbers for the basis 𝜃 = 0.

with the most desirable corresponding to the eigenvector approach. The
Hadamard method vectors on average share 42.3% of their information.
Thus, this design performs worse than the original. The rapid change
between ones and zeros coupled with the spatial resolution limits make
the Hadamard method non-ideal for this problem. The lowest average
MAC number corresponds to the eigenvector approach with only 6.63%
similarity. These results indicate that the method that produces the
most unique DRCs is the eigenvector approach. However, the trade-
off is that the eigenvector method produced a RSM with a lower
average normalized number of counts per cell. The binary method has
the most average normalized number of counts per cell, but also the
highest sensitivity. This high sensitivity may indicate that certain initial
positions are more susceptible to measurement noise.

4. Conclusions

Rotating scattering masks (RSMs) have shown promise for a gamma
source direction identification, but previous results indicate that the
original RSM design has degenerate detector response curves. This
degeneracy may result in an incorrect source position identification,
especially when considering noise, finite count times, and statistical
confidence intervals. To improve upon the current state-of-the-art, this
work introduced three methods to optimize the RSM geometry to limit
the mis-identification of a gamma source’s direction.

The eigenvector approach produced the most unique detector re-
sponse curves when compared to the original FitzGerald RSM and
other proposed methodologies. Thus, this approach reduces the source
direction mis-identification possibility inherent to the FitzGerald design.
Unfortunately there is a corresponding decrease in the average normal-
ized counts per cell. On average the eigenvector mask requires 21%
more particles and, therefore, longer measurement times to produce
the same statistical accuracy as the original design. However, due to an
increase in DRC differentiation for initial positions exhibiting a high off-
diagonal maximum MAC, the count number needed to correctly identify
these source directions will increase by less than 21% and may decrease.

While these results demonstrate the binary and eigenvector methods
decrease the overall and average linear dependence of the DRCs, the
full design space was not explored and more optimal designs may exist.
Specifically, choosing an alternative last four vectors for the binary
pattern may reduce the corresponding off-diagonal MAC terms, and,
as a result, 𝐴 should decrease. Additionally, rotating or swapping the
binary vectors would allow for a better mechanical balance. Finally, the

109



D.E. Holland et al. Nuclear Inst. and Methods in Physics Research, A 901 (2018) 104–111

eigenvector approach has a large design space especially when other
coupled systems are considered. Further exploration of this space and
its refinement may produce a geometry with lower 𝑀 and 𝐴 values.
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Appendix. Binary approach proof

The objective of the following work is to choose 𝑛 binary numbers
such that the MAC number denoted as

𝑀𝐴𝐶𝑎,𝑏 =
(𝐚 ⋅ 𝐛)2

(𝐚 ⋅ 𝐚) (𝐛 ⋅ 𝐛)
(A.1)

is minimized for every combination of numbers 𝐚 and 𝐛 including their
the corresponding cyclically shifted versions.

Consider an 𝑛 bit binary number greater than zero with 𝑝 ones and
𝑛 − 𝑝 zeros, where 0 < 𝑝 < 𝑛. Further, shift this number by a number of
bits so that the left-most bit contains a one. Because of the mask’s cyclic
nature, the binary number can be written as a vector containing the
integer number of zeros bounded on either end by ones. For example,
the number 0 1 1 would be shifted to 1 0 1 and could be written as
the vector [1]. Also, the number [0 1 0 1 0 1 0 0] can be shifted to [1
0 1 0 1 0 0 0], and the corresponding vector is [1 1 3]. Recall that
the vector’s cyclic nature causes the last one to wrap around to the
first position. In general, we can write any non-zero binary number as
the vector 𝐯 =

[

𝑣1 𝑣2 𝑣3 ⋯ 𝑣𝑝
]

, where each 𝑣𝑖 is the number of zeros
between two ones and 𝑣𝑝 = 𝑛 − 𝑝 −

∑

𝑖𝑣𝑖.
Now, cyclic redundancy can be avoided by ignoring any 𝐯 that

become duplicated under shifts. For example, [0 3 2] and [3 2 0]
represented the same binary number, where the second vector is the
first shifted to the left by 𝑣1 + 2 bits. To avoid this behavior, we require
𝑣1 < 𝑣𝑝 and 𝑣2 ≤ 𝑣𝑝, 𝑣3 ≤ 𝑣𝑝,… , 𝑣𝑝−1 ≤ 𝑣𝑝. Note that by construction two
vectors with a different number of ones cannot be cyclically identical.

Consider two vectors, 𝐮 =
[

𝑢1 𝑢2 𝑢3 ⋯ 𝑢𝑝𝑢
]

and 𝐯 =
[

𝑣1 𝑣2 𝑣3 ⋯ 𝑣𝑝𝑣
]

containing 𝑝𝑢 and 𝑝𝑣 ones respectively. If 𝑢𝑖 = 𝑣𝑖 the vector has at least
two ones in the corresponding binary number that would align for some
shift of 𝐮. We want to choose 𝑛 vectors, 𝑎1, 𝑎2,… , 𝑎𝑛, that produce the
minimum value of 𝑚𝑎𝑥

{

𝑀𝐴𝐶𝑎1…𝑎𝑛

}

, where the maximum is taken over
all possible shifts of 𝐚𝑖, 𝐚𝑗 , 𝑖 = 1… 𝑛, and 𝑗 = 1… 𝑛. Note that if 𝑖 = 𝑗, then
the second vector must be shifted by at least one bit to avoid comparing
a vector with itself. For a binary number undergoing all possible shifts,
the denominator becomes 𝑝𝑢𝑝𝑣, while the numerator is the square of
the total number of ones that simultaneously align as each vector is
rotated. As the number of ones increases, denominator increases, while
the numerator remains the same or increases. Thus, it becomes unclear
if the MAC number increases or decreases as 𝑝𝑢 and/or 𝑝𝑣 increase.

First, consider 𝑝 = 1. There is only one non-cyclically redundant
vector, which can be expressed as [𝑛 − 1]. Letting 𝐚 be this vector and 𝐛
be any shifted version of the vector results in a maximum MAC number
of 0

1∗1 = 0.
Next, consider 𝑝 = 2. Recall that a 𝑝 = 2 type vector contains two 1s,

so if two 1s aligned the vectors would be identical. By construction, all
of the possible 𝑝 = 2 indices should be unique indicating that only one 1
aligns over all possible rotations. Thus, possible non-redundant vectors
include [0 𝑛− 𝑝], [1 𝑛− 𝑝− 1], [2 𝑛− 𝑝− 2],… , [ 𝑛−𝑝−12

𝑛−𝑝+1
2 ] if 𝑛 is odd or

a limit of [ 𝑛−𝑝2 − 1 𝑛−𝑝
2 + 1] if 𝑛 is even. Also, there are only 𝑛−𝑝+1

2 (if 𝑛 is
odd) or 𝑛−𝑝

2 (if 𝑛 is even) possible 𝑝 = 2 type vectors, but 𝑛 are desired.
Thus, more vectors from other 𝑝 types would be required to complete
the 𝑛 basis set. As a result, the maximum MAC number for any two 𝑝 = 2
vectors is 12

2∗2 = 1∕4.
Consider 𝑝 = 3, the set of all binary vectors containing three 1s. Let

the matrix 𝐕 contain terms 𝑉𝑖𝑗 = 𝑣𝑖 for the 𝑗th basis vector including
the dependent 𝑣𝑝, where 1 < 𝑖 < 𝑝 and 1 < 𝑗 < 𝑛. For a given 𝑛 and
𝑝, the number of unique indices is less than or equal to ⌊

𝑛−𝑝
2 ⌋ + 1 since

𝑣𝑖 ≤ 𝑣𝑝. Any column in 𝐕 contains 𝑛 values. Thus, it is not possible for
one column to only contain unique indices since 𝑛 > ⌊

𝑛−𝑝
2 ⌋ + 1. This

result implies that it is impossible to form a complete basis using only
𝑝 = 2 type vectors as previously mentioned. In addition, a 𝑝 = 3 basis
must have duplicate indices.

However, it is possible to create an 𝑛 basis, where only one index in
each 𝑝 = 3 vector is duplicated over all vector shift considerations. This
𝑝 = 3 basis has a maximum MAC number equal to 22

3∗3 = 4∕9, where one
duplicate index results in two aligned 1s. Let 𝑞 = ⌊

𝑛−𝑝−1
𝑝 ⌋, 𝑟 = ⌊

𝑛−𝑝
2 ⌋, and

𝑠 is 0 if 𝑛 is odd and 1 if 𝑛 is even, where ⌊ ⌋ denotes the floor function.
Possible vectors with 𝑣1 ≤ 𝑞 form sets of decreasing size

{[0, 0, 𝑛 − 𝑝 − 0]; [0, 1, 𝑛 − 𝑝 − 1];⋯ [0, 𝑟 − 0, 𝑟 + 𝑠 − 0]},

{[1, 0, 𝑛 − 𝑝 − 1]; [1, 1, 𝑛 − 𝑝 − 2];⋯ [1, 𝑟 + 𝑠 − 1, 𝑟 − 0]},

{[2, 0, 𝑛 − 𝑝 − 2]; [2, 1, 𝑛 − 𝑝 − 3];⋯ [2, 𝑟 − 1, 𝑟 + 𝑠 − 1]},

{[3, 0, 𝑛 − 𝑝 − 3]; [3, 1, 𝑛 − 𝑝 − 4];⋯ [3, 𝑟 + 𝑠 − 2, 𝑟 − 1]},

{[4, 0, 𝑛 − 𝑝 − 4]; [4, 1, 𝑛 − 𝑝 − 5];⋯ [4, 𝑟 − 2, 𝑟 + 𝑠 − 2]},

⋮

{[𝑞, 0, 𝑛 − 𝑝 − 𝑞], [𝑞, 1, 𝑛 − 𝑝 − 𝑞 − 1],…[𝑞, 𝑟 − ⌊

𝑞 + 1
2

⌋ + 𝑠 𝑚𝑜𝑑(𝑞, 2),

𝑟 − ⌊

𝑞
2
⌋ + 𝑠 𝑚𝑜𝑑(𝑞 + 1, 2)]}.

In general, the 𝑖th set (𝑖 = 0 … 𝑞) can be expressed as

{[𝑖, 0, 𝑛 − 𝑝 − 𝑖], [𝑖, 1, 𝑛 − 𝑝 − 𝑖 − 1],…[𝑖, 𝑟 − ⌊

𝑖 + 1
2

⌋ + 𝑠 𝑚𝑜𝑑(𝑖, 2),

𝑟 − ⌊

𝑖
2
⌋ + 𝑠 𝑚𝑜𝑑(𝑖 + 1, 2)]}, (A.2)

where the total number of terms, 𝑡1, is

𝑡1 =
𝑞
∑

𝑖=0
⌊

𝑛 − 𝑝
2

⌋ − ⌊

𝑖 + 1
2

⌋ + 𝑠 𝑚𝑜𝑑(𝑖, 2) + 1. (A.3)

Since 𝑣1 < 𝑣3, sets with 𝑣1 > 𝑞, can be expressed using the following
approach,

{[𝑞 + 1, 0, 𝑛 − 𝑝 − 𝑞 − 1]; [𝑞 + 1, 1, 𝑛 − 𝑝 − 𝑞 − 2];⋯

[𝑞 + 1, 𝑛 − 𝑝 − 2𝑞 − 3, 𝑞 + 2]},

{[𝑞 + 2, 0, 𝑛 − 𝑝 − 𝑞 − 2]; [𝑞 + 2, 1, 𝑛 − 𝑝 − 𝑞 − 3];⋯

[𝑞 + 2, 𝑛 − 𝑝 − 2𝑞 − 5, 𝑞 + 3]}

{[𝑞 + 3, 0, 𝑛 − 𝑝 − 𝑞 − 3]; [𝑞 + 3, 1, 𝑛 − 𝑝 − 𝑞 − 4];⋯

[𝑞 + 3, 𝑛 − 𝑝 − 2𝑞 − 7, 𝑞 + 4]}

⋮

{[⌊
𝑛 − 𝑝 − 1

2
⌋, 0, 𝑟 + 1]} if 𝑛 is even.

{[⌊
𝑛 − 𝑝 − 1

2
⌋, 0, 𝑟 + 1]; [⌊

𝑛 − 𝑝 − 1
2

⌋, 1, 𝑟]} if 𝑛 is odd.

In general, the 𝑖th set (𝑖 = 𝑞 + 1 … ⌊

𝑛−𝑝−1
2 ⌋) can be expressed as

{[𝑖, 0, 𝑛 − 𝑝 − 𝑖 − 0], [𝑖, 1, 𝑛 − 𝑝 − 𝑖 − 1],…

[𝑖, 𝑛 − 𝑝 − 2𝑖 − 1, 𝑖 + 1]}, (A.4)

where the total number of terms, 𝑡2, is

𝑡2 =
⌊

𝑛−𝑝−1
2 ⌋

∑

𝑖=𝑞+1
𝑛 − 𝑝 − 2𝑖 − 1 + 1 =

⌊

𝑛−𝑝−1
2 ⌋

∑

𝑖=𝑞+1
𝑛 − 𝑝 − 2𝑖. (A.5)

Thus, the total number of terms for 𝑝 = 3 and a given 𝑛 is 𝑡 = 𝑡1 + 𝑡2.
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Fig. A.11. The number of possible terms for 𝑝 = 1 and 3 equals or exceeds 𝑛 if
𝑛 > 7.

Recall that 𝑝 = 1 only has a single ‘‘1’’ which will align with any
𝑝 = 3 vector for three shifted positions. As a result, the 𝑝 = 1 vector can
be combined with the 𝑝 = 3 vectors, since the maximum MAC number
between a 𝑝 = 1 and 𝑝 = 3 vector is 12

1∗3 = 1
3 < 4

9 . Fig. A.11 shows that
the number of possible 𝑝 = 3 terms (including 𝑝 = 1) equals (if 𝑛 = 8)
or exceeds 𝑛 (if 8 < 𝑛 ≤ 360). Due to manufacturing constraints, 𝑛 was
limited to 360 as this corresponds to one degree increments in 𝜃 and 0.5
degree in 𝜙. As a result, if 𝑛 > 7 a full 𝑛 basis with a 4

9 maximum MAC
number can be formed from these vectors.

Now, consider creating a basis using both 𝑝 = 2 and 𝑝 = 3 vectors.
Since some of the vector indices are duplicated, there are three resulting
cases. First, if all the vectors with duplicate entries are of type 𝑝 = 3,
then the maximum MAC number remains the previously derived 4

9 , 𝑝 = 3
value. Second, 𝑝 = 2 cannot have duplicated entries with other 𝑝 = 2
vectors as these vectors only have one degree of freedom. The index
duplication would result in duplicated 𝑝 = 2 vectors and a maximum
MAC number of 1. The previous 𝑝 = 2 construction addressed this issue.
Lastly, if a 𝑝 = 2 vector index matches a 𝑝 = 3 vector index, then the
maximum MAC number is 22

2∗3 = 2
3 > 4

9 . Combining 𝑝 = 2 and 𝑝 = 3
type vectors will not decrease the maximum MAC number and if done
incorrectly, could increase its value to 2

3 .
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