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APPLICATION OF A FINITE-VOLUME TIME-DOMAIN 
TECHNIQUE TO THREE-DIMENSIONAL OBJECTS 

Frederick G. Harmon, Andrew J. Terzuoli, Jr. 
Air Force Institute of Technology 

Abstract-Concurrent engineering approaches for the disciplines of computational fluid dynamics (CFD) and 
electromagnetics (CEM) are necessary for designing future high-performance aircraft. A characteristic-based finite-volume 
time-domain (FVTD) computational algorithm used by CFD and herein applied to CEM is implemented to analyze the 
radar cross section (RCS) of two three-dimensional objects, the ogive and cone-sphere, by utilizing a scattered-field 
formulation of the time-dependent Maxwell equations. The FVTD formulation uses a monotone upstream-centered scheme 
for conservation laws (MUSCL) for the flux evaluation and a Runge-Kutta multi-stage scheme for the time integration. The 
RCS results are obtained from the electromagnetic fields via a Fourier transform and a near-to-far field transformation. 

The FVTD code and algorithm are evaluated for electromagnetic scattering problems by comparing FVTD code RCS 
results to data obtained from a Moment Method (MoM) code (CICERO) and empirical RCS data published by the 
Electromagnetic Code Consortium (EMCC). The FVTD RCS results for the ogive and cone-sphere are within 3.0 dB of the 
bistatic MoM results and 3.1 dB of the monostatic empirical RCS data. Accurate FVTD computations of diffraction, 
traveling waves, and creeping waves require a surface grid point density of 15-30 cells/X, dependent on frequency. 

I. FVTD Formulation of Maxwell Equations 
The FVTD computational technique is capable of concurrently solving the Euler equations of fluid dynamics and the 

Maxwell equations of electromagnetics. CFD has used the FVTD technique since the early 1980's [21] to analyze the 
airflow about an aircraft or airfoil and the technique has recently been applied to CEM. Several engineers, Blake, Shang, 
Shankar [2-3, 7-20] and others are exploring and advancing .the application of the FVTD technique to the Maxwell 
equations of electromagnetics. The FVTD formulation and numerical procedure implemented in Shang's FVTD code is 
discussed and used to obtain the RCS results for the ogive and cone-sphere. 

A. Grid Generation of Finite-Volume Cells 
To use FVTD, the physical space surrounding an object of interest must be discretized into volumetric cells. The space 

containing the finite-volume cells is referred to as the space grid [22]. The frequency of interest and the electrical length of 
the object determines the number of cells in the grid. 

For the characteristic-based FVTD formulation, a structured grid using curvilinear coordinates is used so the wave 
propagation is aligned closely with one of the coordinate axes [10]. The compatibility condition used for the radiation 
boundary condition is exact if the wave propagation parallels a coordinate axis. In addition, the curvilinear coordinates 
permit higher accuracy in the computation of the electric and magnetic scattered fields. 

B. Maxwell's Equations in Conservation Form 
The two time-domain Maxwell curl equations, in differential form, are shown below and will be used in the 

development of the electromagnetic FVTD equations: 

Faraday's Law: V x E = - — (1) Ampere's Law:        V x H = 1- J (2) 
at dt 

where    E:   Electric field strength vector (Vim) B:   Magnetic flux density vector (Wb/m2 or T) 
D:   Electric flux density vector (C/m2) J:    Electric current density vector (A/m2) 
H.   Magnetic field strength vector (A/m) 

Using the constitutive parameters to relate the field strength vectors and the flux density vectors, wh -n the material is 
linear and isotropic, the constitutive relations are D = EE and B = pH where E is the electric permittivity (F/m) and u. is the 
magnetic permeability (H/m). 

For use in FVTD, the two Maxwell equations are cast in conservation form [12]. The solution of Maxwell's equations 
do not require the conservation form; however, the form is required by the Euler equations to conserve physical properties 
such as energy, mass, and momentum. The Maxwell equations are cast in conservation form solely to take advantage of the 

374 



same computational technique used to solve the Euler equations.  To this end, the curl operations are carried out and the 
constitutive parameters are implemented. The result is given by 

dU     dF     dG     dH 

dt     dx     dy     3z 
+ ^ = -J (3) 

where 
~Bx~ 0 'Dzlt '-Dy I i "0 " 
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Dz -ßv/U. Bx/\i _ 0 A 
Equation (3) is a system of six linear equations. V is the independent variable and the F, G, and H flux vectors are the 

dependent variables. The equations are not linearly independent; therefore, a characteristic-based technique is used to 
uncouple the six equations. 

C. Coordinate Transformation 
To analyze the scattering of various objects, such as the ogive and cone-sphere, a curvilinear coordinate transformation 

is required. A curvilinear structured grid minimizes the errors introduced in the cell metrics and the flux calculations. The 
variables %, T), and £ are used to convert the Cartesian coordinates to curvilinear coordinates. After a coordinate 
transformation, Equation (3) becomes [12, 13] 

du     dF     dG     dH        j 

9t      dB,     dr\     dt, 
(4) 

where     V = — 
V 

3x       3y       9z 
G = 

dz dx        3y 
—       H- KF+KG+KH 

dx        dy        dz 
and V is the Jacobian of the coordinate transformation. 

D. Finite-Volume Formulation 
Equation (4) is applied to every finite-volume cell in the grid.  An integration is performed over each finite-volume 

cell: 

J£f-J£ f ♦!♦£ K-E'" (5) 

(6) 

The divergence theorem is then applied to the second integral: 

EfdV+I(/+d+Ä)ndS=-IIJ/dV 

where    n:    Unit vector normal to the surface (5, T), and X, for F, G, and H, respectively) 
S:    Closed surface bounding the finite volume (m2) 

Equation (6) is the expression for a generic FVTD formulation.  The unknown components of the U vector are the 

magnetic and electric flux densities. The vectors F, G, and H are the flux vectors and can be expressed in terms of the 
magnetic and flux densities. A multitude of techniques are used to solve Equation (6) giving rise to the myriad of FVTD 
numerical algorithms. 

E. Flux Evaluation and Time Integration 
The flux vectors in Equation (6) can be evaluated numerically using one of several techniques.   The technique 

implemented by Shang is an explicit characteristic-based scheme that produces third-order accuracy. The van Leer's kappa 
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scheme calculates the flux on a surface of a cell by extrapolating data from adjacent cell centers [10]. The scheme is 
referred to as a Monotone Upstream-Centered Scheme for Conservation Laws (MUSCL) and is a windward approach that 
considers the direction of wave propagation. A flux-vector splitting algorithm developed by Steger and Warming [21] is 

used to calculate the fluxes from the independent variable U calculated at the cell faces. The incoming and outgoing 
electromagnetic waves are split based on the positive and negative sign of the eigenvalue, hence, the name split-flux 
vectors. 

Equation (6), in the temporal or time-stepping domain, can be solved using several techniques, just as in the spatial 
domain. Shang uses a Runge-Kutta family of single-step multi-stage procedures [13] which gives varying degrees of 
accuracy. For example, with van Leer's kappa scheme for the flux evaluation, Shang uses a four-stage Runge-Kutta method 
that produces fourth-order accuracy [10]. 

F. Boundary Conditions 
Shang uses a first-order accurate radiation boundary condition [7-16] in which the incoming flux component is set to 

zero at the boundary. For the compatibility condition, the fields traveling perpendicular to the boundary are not reflected. 
For example, in the case of the propagation of a wave from a dipole, the BC is exact since the wave travels along the radial 
coordinate direction. However, numerical errors can result if the wave is not traveling perpendicular to th; boundary. The 
coordinate transformation discussed previously increases the component of the wave traveling perpendicular to the outer 
boundary [12]. 

A surface boundary condition is implemented on the surface of PEC scatterers. The boundary condition sets the 
tangential electric field equal to zero and the normal component of the magnetic flux density equal to zero [2-3,8]. 

G. Green's-Function-Based Near-to-Far Field Transformation 
The spatial and time integration of Equation (6) gives time-domain results in the near-field whereas the RCS is a far- 

field calculation. Green's-function-based transformations allow the scattered fields in the far-field to be easily calculated 
from the near-field results subsequent to a Fourier transform [22]. 

The far-field results are obtained by creating a virtual surface around the object. An imaginary surface in the FVTD 
grid space can serve as a virtual surface.   The surface equivalence theorem is applied to the surface to obtain the equivalent 
time-harmonic electric and magnetic currents and charges. The currents and charges on the virtual surface are then 
weighted by a free-space Green's function to obtain the far-field E and H fields [22]. The far-field is easily calculated from 
the far-field scattered E and H fields. 

II. Electromagnetic Scattering Results 
The RCS using the fourth-order accurate characteristic-based FVTD algorithm, implemented by Shang [7-16], for the 

ogive and cone-sphere test bodies are discussed [24]. Bistatic and monostatic RCS are presented for each perfect electric 
conducting (PEC) test body and compared to MoM and empirical data to evaluate the FVTD algorithm and code for CEM. 

To analyze the scattering from the 
ogive, a grid convergent study was 
performed to obtain the optimum grid point 
density (GPD) for each coordinate 
direction (r,6,<)>). The radial direction is 
approximately orthogonal to the surface 
and the theta and phi directions correspond 
to the surface of the object. The grid for 
the cone-sphere was generated using the 
optimal GPDs. The RCS results for the 
cone-sphere confirm the grid requirements 
obtained for the ogive and validate the 
FVTD algorithm for another PEC test 
body. 
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A.     Ogive Electromagnetic  Scattering 
Results 

Three ogive tests, including several 
subtests,   are   labeled   with   a   character 
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Figure 1: Ogive Bistatic RCS, 1.18 GHz, HH, Fine (71-125-55) vs. Coarse 
(71-43-25) Grid 
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Figure 2: Ogive Monostatic RCS, 1.18 GHz, HH 

designator. "OG" in the test designator refers 
to a test for the ogive, and the number in the 
test designator refers to the test number. The 
last letter in each test designator refers to the 
subtest. The subtests are groups of tests that 
use a specific frequency or grid size. A 
designator such as OG3X refers to the entire 
group of subtests. 

The RCS for the ogive for each test are 
compared to MoM RCS results and 
experimental data for either W (transmit 
vertical, receive vertical) or HH (transmit 
horizontal, receive horizontal) polarization. 
The first ogive tests, OG1X, use a sinusoid 
incident wave at 1.18 GHz. Tests OG3X are 
monostatic calculations at 1.18 GHz. The 
bistatic RCS for the ogive at 9.0 GHz is test 
OG4a. For all of the bistatic tests, the angle 
of incidence is tip-on at 0°. 

The bistatic RCS is calculated for the ogive at 1.18 GHz using a sinusoid incident wave. The ogive is one wavelength 
long at this frequency. The HH polarization RCS is shown in Figure 1 and compares the RCS for the coarse grid (OGle) to 
the fine grid (OGld). The fine grid has a surface grid point density of 80-116 cells/X and the coarse grid has a grid point 
density of 22-32 cells/X. The FVTD results are within 3.0 dB of the MoM data for the coarse grid and for the fine grid are 

within 2.0 dB of the MoM. 
The frequency data for tests OGld and OGle were taken from the fourth to the fifth periods. These tests reveal that for 

1 18 GHz the transients introduced with the sinusoid incident wave require at least four periods to dimmish before 
frequency data can be taken for the RCS calculations. Taflove [22] recommends that at least four times the electrical length 
(in periods) is required. The ogive results show that this approximation is appropriate for this frequency; however, fewer 

periods are used for higher frequencies to obtain accurate data. 
In addition to bistatic RCS, the FVTD code can also obtain monostatic data. Multiple simulations must be completed 

to obtain monostatic data for one frequency as compared to one test for bistatic data.  One simulation produces a bistatic 
plot for 0° to 180°.   The simulation produces a monostatic result for only the angle of incidence.   To obtain a full 
monostatic sweep, a bistatic-to-monostatic approximation is used. The approximation requires tests to be completed every 
10° and bistatic data completes the monostatic approximation [6]. Tests OG3X are monostatic calculations for the ogive at 
1.18 GHz. A test was completed for an angle of incidence every 10° from 0° to 90°. The ogive is symmetric about the xy 

plane resulting in a symmetric monostatic plot about 

6=90°. 
The    monostatic    approximation    for    HH 

polarization  is  plotted  in  Figure  2.     The  HH 
monostatic test used a moderate grid size of (71-74- 
45) and frequency data was taken from the fifth to 
the seventh period.    The FVTD RCS is plotted 
against MoM results and empirical data.  As can be 
seen in the plot, the MoM and FVTD results are 
almost identical and differ from the empirical data 
by nearly the same value. FVTD results differ from 
the MoM by no more than 2.5 dB.   If the large 
fluctuations are ignored in the empirical data, the 
FVTD results are within 3.1 dB of the empirical 
data. 

Further analysis is completed for the ogive 
using FVTD by running a test, OG4a, for the ogive 
at 9.0 GHz.     The  ogive  is  approximately 7.6 
wavelengths long at this frequency.   The grid size 

i         , t i : 1 

I              FVTD1-OG4a(61-12S95)     |       ; 

I      o   MofTBrtlwfethod(aCERO)   ,      j ' 
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80 100 
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Figure 3: Ogive Bistatic RCS, 9.0 GHz, W 
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in 
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required for this frequency is much larger (61-125- 
95). The FVTD results for 9.0 GHz, W, are shown 
in Figure 3. The FVTD results are plotted against 
MoM RCS data. The results are excellent except 
there are small discrepancies in the backscatter and 
forward scattering regions. The surface grid point 
densities (GPD) for these tests are smaller than for 
1.18 GHz. The grid point densities in the theta and 
phi directions are 15.2 cells/>. and 18.8 cellsfl., 
respectively. The results for the ogive at 1.18 GHz 
showed that a GPD of at least 22-32 cells/X gives the 
best data. These results depict the dependence of 
the required GPD on the electrical size of the object. 
The GPD can be 15-20 cells/A. if the electrical length 
of the object increases. 

The 9.0 GHz results for the ogive illustrate the 
dependence of the length of simulation time (in 
periods) to the length of the object. At 1.18 GHz, 
the test had to be at least four times (in periods) the 
length of the object. The same factor would require 
a simulation time of 30 periods for 9.0 GHz. This is not required because, at 9.0 GHz, the ogive is in the optical region. 
At 9.0 GHz, the diffraction and the traveling waves can be considered to be more of a local phenomena than for 1.18 GHz. 
This reduces the simulation time for the test to approximately three times the length of the object (in periods) instead of 
four. 
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Figure 4: Cone-Sphere Bistatic RCS, 0.869 GHz, W, Tip-On 
Incidence 

B. Cone-Sphere Electromagnetic Scattering Results 
The RCS calculations for the cone-sphere provide further validation of the FVTD code and algorithm. The cone- 

sphere is a common RCS test body but the narrow cone portion and the sphere cap provide a unique body for analysis. At 
lower frequencies, the scattering from the cone-sphere can be modeled as traveling waves along the narrow cone, creeping 
waves around the sphere cap, and diffraction from the tip. Three tests were completed which include several subtests with 
designators "CS" instead of "OG" to refer to the cone-sphere. 

The electromagnetic scattering via FVTD are compared to MoM RCS results and experimental data for W and HH 
polarization. The cone-sphere is two wavelengths long at 0.869 GHz. An incident angle of 0° corresponds to incidence on 
the cone-sphere along the axis of symmetry directly onto the sphere-cap. Tests CS2X are bistatic tests at 0.869 GHz with a 

sinusoid incident wave at 180° (tip- 
on incidence). Tests CS3X are tests 
for the monostatic calculations at 
0.869 GHz. The monostatic RCS is 
computed every 10° from 0° to 
180°, and bistatic data completes the 
monostatic plot. CS5a is a bistatic 
simulation for the cone-sphere at 3.0 
GHz using a sinusoid incident wave 
at tip-on incidence (8=180). 

FVTD RCS data for tip-on 
incidence were obtained in test 
OG2X. The     incident    wave 
propagates toward the cone-sphere 
from 180°. The accuracy of the 
bistatic RCS depends on the correct 
calculation of creeping waves, 
traveling waves, and tip diffraction. 
The W polarization case is shown 
in Figure 4.   The finer grid, CS2b, 
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Figure 5: Cone-Sphere Monostatic RCS, 0.869 GHz, HH 

378 



produces much better results than the grid 
with the coarser spacing (CS2a) in the 
radial direction. The forward scatter 
results (8=0°) are only accurate if the fine 
grid is used (CS2b). 

The monostatic RCS data for the cone- 
sphere, HH polarization, is plotted in 
Figure 5. The FVTD and MoM RCS 
match each other much closer than they 
match the empirical data. Volakis [24] 
states that errors exist in the experimental 
data, especially in the forward sector (120°- 
180°). The MoM and FVTD results are 
almost identical for every location except 
for several of the bistatic-to-monostatic 
approximation junctions. The agreement 
between the techniques suggest that the 
empirical data is not correct from 120°- 
180°. 

The bistatic RCS for the cone-sphere 
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Figure 6: Cone-Sphere Bistatic RCS, 3.0 GHz, W, Tip-On Incidence 

at 3.0 GHz is presented. Test CS5a is the tip-on incidence test. The length of the cone-sphere is 6.9 wavelengths at this 
specific frequency. The cone-sphere at this frequency is in the optical region, just as the ogive was for 9.0 GHz. The 
electromagnetic phenomena, such as diffraction, creeping waves, and traveling waves, are local and the test time (in 
periods) is not as long as for lower frequencies. 

Figure 6 is the W polarization RCS for tip-on incidence (CS5a). The FVTD results are almost identical to the MoM 
RCS results. The FVTD RCS data for the forward scatter region, from the sphere-cap (6=0°), differs by 1.0 dB from the 
MoM data. The FVTD data for the backscatter region (6=180°) from the tip differs by 1.2 dB from the MoM RCS results. 
As seen with the ogive, errors in the FVTD RCS calculations first occur at the tips. 

IQ. Conclusions 
The electromagnetic scattering and RCS results for the ogive and cone-sphere test bodies were presented. Bistatic and 

monostatic RCS results were compared to MoM and empirical RCS results. 
The FVTD RCS for the ogive is excellent compared to MoM and empirical data. Several bistatic and monostatic tests 

at various frequencies showed that a grid point density (GPD) on the surface of approximately 22-32 cells/), produced the 
best results for lower frequencies (1.18 GHz) and could be reduced to 15.2-18.8 cellsA for larger frequencies (9.0 GHz). 
Shankar [17] reports a GPD requirement of 30-50 cells/X for objects with edges or tips, like the ogive, for his second-order 
accurate algorithm. The lower GPD requirement for Shang's fourth-order accurate FVTD code is consistent with the order 
of accuracy of the algorithms. As the GPD decreases, the errors in the RCS occur first in the backscatter and forward 
scatter direction as would be expected because of the diffraction at the tips of the ogive. As the electrical size of the object 
increases, traveling waves and diffraction contribute less to the RCS. These phenomena become local and the grid point 
density does not have to be as large to accurately compute the propagation of the wave. The bistatic tests for 1.18 GHz 
differed from the MoM results by no more than 3.0 dB. The FVTD calculations for the monostatic tests were compared to 
empirical results in addition to MoM results. The FVTD results are within 2.5 dB of the MoM moncstatic values and 
within 3.1 dB of the empirical results. 

The bistatic and monostatic cone-sphere results confirm the accuracy and grid requirements for the ogive. For 0.869 
GHz, the surface grid spacing required is 22-26 cells/X. The results differed by no more than 1.6 dB from the MoM results 
and 0.5 dB from the empirical results. The bistatic RCS for 3.0 GHz differed by no more than 2.1 dB from the MoM 
results. Accurate results required a surface grid spacing of 14-26 cells/X to accurately consider diffraction and traveling 
waves. These grid point density requirements confirm the ogive conclusion that a lower grid point density is needed for 
electrically larger objects since diffraction and traveling waves contribute less to the RCS. 

The electromagnetic phenomena which occurs from the surfaces of an ogive and cone-sphere are challenging for many 
computational codes. The smooth curved surfaces, tips, and diffraction points are surface characteristics which can pose 
difficulties for accurately computing scattering results.   Based on the FVTD results for the ogive and cone-sphere, the 
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electrical size of the object is critical when determining grid size and spacing. For a small object, 1-2X, the grid spacing 
must be 22-25 cells/A. on the surface. For an object which is electrically larger (7A-8>.), the surface grid spacing may be 
reduced to 15-19 cells. These findings are critical for the expansion of the code to studying electrically larger objects such 
as airfoils and aircraft shaped bodies. A grid must be generated which will incorporate these features for a particular 
frequency. 
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