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a b s t r a c t

MicroRNAs (miRNAs) are small conserved non-coding RNA molecules that post-transcriptionally regulate
gene expression by targeting the 30 untranslated region (UTR) of specific messenger RNAs (mRNAs) for
degradation or translational repression. miRNA-mediated gene regulation is critical for normal cellular
functions such as the cell cycle, differentiation, and apoptosis, and as much as one-third of human
mRNAs may be miRNA targets. Emerging evidence has demonstrated that miRNAs play a vital role in the
regulation of immunological functions and the prevention of autoimmunity. Here we review the many
newly discovered roles of miRNA regulation in immune functions and in the development of autoim-
munity and autoimmune disease. Specifically, we discuss the involvement of miRNA regulation in innate
and adaptive immune responses, immune cell development, T regulatory cell stability and function, and
differential miRNA expression in rheumatoid arthritis and systemic lupus erythematosus.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

MicroRNAs (miRNAs) are 20–22 nucleotide long non-coding
RNA molecules that were first discovered in 1993 [1,2]. Currently,
the known function of miRNAs is the post-transcriptional regula-
tion of certain subsets of messenger RNAs (mRNAs) by binding to
their 30 untranslated region (UTR) thus targeting them for degra-
dation or translational repression [3].

The importance of miRNA regulation to cellular functions is
becoming increasingly clear as new miRNA targets are revealed.
Currently, miRNA is known to regulate cellular processes such as
apoptosis, differentiation, cell cycle, and immune functions. To
date, the miRNA sequence database, miRBase, includes over 8000
predicted miRNAs in numerous species of plants, animals, and
viruses [4,5]. For humans alone, miRBase lists over 800 predicted
miRNAs, and other bioinformatics predictions indicate that as
much as one-third of all mRNAs may be regulated by miRNA [6].

2. Biogenesis and maturation of miRNA

miRNAs are first transcribed from the genome by RNA poly-
merase II as primary miRNA (pri-miRNA) transcripts [7,8]. In
animals, miRNA maturation is then achieved by two main pro-
cessing steps involving two ribonuclease III (RNase III) enzymes,
Drosha and Dicer. First, Drosha and its partner protein DGCR8

(DiGeorge syndrome critical region 8) process the nuclear pri-
miRNA into w70 nucleotide precursor miRNA (pre-miRNA) mole-
cule [9–13]. The pre-miRNA is then exported from the nucleus to
the cytoplasm by Exportin 5/RanGTP which specifically recognizes
the structure of pre-miRNA molecules [14–16]. Once in the cyto-
plasm, pre-miRNA is cleaved by Dicer along with its partner protein
TRBP (trans-activator RNA binding protein) into a w21 nucleotide
miRNA duplex and one strand is selected to be loaded into the RNA-
induced silencing complex (RISC) in a dynamic process that is not
yet fully understood [3,17]. Once loaded into RISC, the miRNA will
bind to its target mRNA in the 30UTR resulting in degradation or
translational repression via several proposed mechanisms
including cotranslational protein degradation, inhibition of trans-
lational elongation, premature termination of translation, and
inhibition of translation initiation (reviewed in Ref. [18]).

Recently, an alternative Drosha-independent pathway for miRNA
maturation has been reported in Caenorhabditis elegans, Drosophila
melanogaster, and mammals [19–21]. In this pathway, short hairpin
introns are spliced into pre-miRNA mimics referred to as ‘‘mirtrons’’
(pre-miRNAs/introns) that can enter the miRNA-biogenesis pathway
without Drosha-mediated cleavage. However, mirtrons represent
a relatively small number of miRNAs to date and the majority of
miRNAs are processed by the Drosha dependent pathway.

3. Cell biology and autoimmune targeting of the
miRNA pathway

The key components of RISC are the argonaute (Ago) family of
proteins. In mammals, there are four Ago proteins (Ago1–4), but
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only Ago2 is known to function in the miRNA and siRNA pathways.
Ago2 has been shown to cleave mRNA targeted by miRNA or small
interfering RNA (siRNA) and is known as the catalytic enzyme of
RNA interference (RNAi) [22,23]. In addition to Ago proteins, many
other proteins are required for miRNA functioning including
GW182 and Rck/p54, and these proteins all localize in discrete
cytoplasmic foci known as GW bodies (GWB). In mammals, these
foci were discovered in 2002 using an autoimmune serum from
a patient with motor and sensory neuropathy [24], and most
subsequent GWB reactive sera have been identified from patients
with neurological symptoms (33%), Sjögren’s syndrome (31%), and
various other autoimmune disorders including systemic lupus
erythematosus (SLE, 12%), rheumatoid arthritis (7%), and primary
biliary cirrhosis (10%) [25]. About the same time period, similar
foci were discovered in yeast and referred to as processing bodies
(P bodies) or Dcp-containing foci [26–28].

In 1994, Satoh et al. characterized autoantigens of 100/102 and
200 kDa recognized by anti-Su autoantibodies [29]. Autoantibodies
that immunoprecipitated the 100/102 and 200 kDa proteins were
detected in sera of up to 20% of patients with SLE, scleroderma, and
overlap syndromes [29]. In 2006, Jakymiw et al. reported that anti-
Su autoantibodies from human patients with rheumatic diseases
and a mouse model of autoimmunity recognize the catalytic
enzyme in the RNAi/miRNA pathways, Ago2, as well as Ago1, 3, 4
and Dicer [30]. Additionally, by immunofluorescence, the anti-Su
autoantibodies were shown to recognize GWB [30]. Recently, an
investigation into the clinical and serological features of patients
with autoantibodies to GWB revealed that the most common
clinical presentations of these patients were neurological symp-
toms, Sjögren’s syndrome, SLE, rheumatoid arthritis and primary
biliary cirrhosis [25]. The most common autoantigens targeted by
these patients were Ge-1/Hedls (58%), GW182 (40%), and Ago2
(16%) and 18% of GWB reactive sera did not react to any of the
antigens analyzed indicating that there are other target auto-
antigens yet to be discovered [25]. These data demonstrate an
autoimmune response to key components of the RNAi/miRNA
pathways which could indicate the involvement of the miRNA
pathway in the induction and production of autoantibodies.

4. Role of miRNA in normal immune functions

Regulation of the immune system is vital to prevent many
pathogenic disorders including autoimmune disease and cancers,
and mammals have developed a complex system of checks and
balances for immune regulation in order to maintain self tolerance
while allowing immune responses to foreign pathogens, most of
which are not fully understood. Recently, it has become evident
that miRNAs play an important role in regulating immune
response, as well as immune cell development. To date, a relatively
small number of specific miRNAs have been revealed as important
regulators of the immune system. Their functions are discussed
below and summarized in Table 1.

4.1. miRNA response to toll like receptor stimulus

In 2006, three miRNAs, miR-146a, miR-155, and miR-132, were
found to be upregulated in LPS-stimulated human monocytic THP-
1 cells [31]. Expression of miR-146a was also found to be inducible
by TNF-a and IL-1b, and further analysis revealed that this induc-
tion was NFkB-dependent [31,32]. Two targets of miR-146a were
confirmed, TNF receptor-associated factor-6 (TRAF6) and IL-1
receptor-associated kinase-1 (IRAK-1), which are key components
in the TLR4 signaling pathway [31]. Interestingly, miR-146a
expression was only inducible by cell-surface TLR (TLR2, TLR4,
TLR5) signaling and not intracellular TLR (TLR3, TLR7, TLR9)

signaling, indicating that miR-146a plays a role in regulating the
innate immune response to bacterial pathogens, but not viral
pathogens [31]. In human lung alveolar epithelial cells increased
miR-146a expression was found to negatively regulate the release
of the proinflammatory chemokines IL-8 and RANTES [32]. Overall,
these data suggest that miR-146a functions to downregulate the
inflammatory response to bacterial pathogens.

In mouse macrophages, miR-155 expression was upregulated by
IFN-b and polyriboinosinic:polyribocytidylic acid [poly(I:C)] and as
well as a variety of TLR ligands [33,34]. These data indicate the
involvement of miR-155 in the regulation of both bacterial and viral
innate immune responses. Additionally, miR-125b expression was
decreased in response to LPS in mouse macrophages [34]. Since
miR-125b was shown to be capable of targeting the 30UTR of TNF-
a mRNA, this miRNA may be downregulated to allow for LPS-
induced production of TNF-a [34].

4.2. miR-155 required for normal immune function, germinal center
response, and generation of Ig class-switched plasma cells

Given the abundance of miRNAs expressed in humans, it is
surprising that a single miRNA, miR-155, plays a role in regulating
several vital immune functions. In addition to its regulatory role in
innate immunity, miR-155 has been shown to be a key factor for
normal adaptive immune responses. miR-155 is processed from the
non-coding RNA known as bic, which is now known to be pri-miR-
155 [35,36]. Increased expression of bic/miR-155 can be detected in
activated B and T cells [37,38] as well as in activated macrophages
[31,33] and is associated with B cell malignancies [39–41].

In 2007, Rodriguez et al. found that mice deficient in bic/miR-
155 exhibited diminished adaptive immune responses and were
unable to develop immunity to Salmonella typhimurium after
intravenous immunization [42]. This diminished adaptive immune
response was found to be due to impaired B and T cell functioning
as well as defective antigen presentation by dendritic cells [42].
These data suggest that miR-155 is essential for normal functioning
of B and T lymphocytes and dendritic cells.

Concurrently, Thai et al. reported that miR-155 regulates the
germinal center response [43]. Initially, they demonstrated that
germinal center B cells upregulate miR-155 expression during the
course of normal germinal center response. Using bic/miR-155-
deficient mice, they determined that miR-155 regulates the
germinal center response at least in part at the level of cytokine
production [43].

Later in 2007, it was reported that miR-155 is also responsible
for regulating the generation of immunoglobulin (Ig) class-
switched plasma cells [44]. In this study, miR-155-deficient B cells
failed to generate high-affinity IgG1 antibodies [44]. Over expres-
sion of Pu.1, a transcription factor targeted by miR-155, leads to the
production of fewer IgG1 cells, indicating that miR-155 regulation
of Pu.1 may be responsible for the normal generation of Ig class-
switched plasma cells [44].

4.3. Role of miRNAs in immune cell development

Several studies have reported the involvement of miRNAs in
immune cell development [45–47]. One of the first miRNAs
described to have a role in immune cell development was miR-181a
which is highly expressed in thymus cells and expressed at a lower
level in the heart, lymph nodes, and bone marrow [48,49]. In bone
marrow-derived B cells, miR-181a expression was shown to
decrease during B cell development from the pro-B to the pre-B cell
stage [48]. Also, miR-181a may have a role in regulating lymphocyte
development based on evidence that expression of miR-181a in
hematopoietic stem and progenitor cells resulted in an increase in
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CD19þ B cells and a decrease in CD8þ T cells [48]. miR-181a has
also been shown to modulate T cell receptor (TCR) signaling, thus
affecting the sensitivity of T cells to antigens [49].

Recently, miR-181b was reported to regulate class switch
recombination in activated B cells [50]. Expression of miR-181b in
activated B cells impaired class switch recombination and resulted
in the downregulation of activation-induced cytidine deaminase
(AID) mRNA and protein levels [50]. These results provide evidence
for a new regulatory mechanism that restricts AID activity and
could be relevant to prevent B cell malignant transformation [50].

Other examples of miRNA-mediated regulation of immune cell
development include miR-223 which was recently reported to
regulate granulopoiesis [51,52] and miR-150 which has been shown
to be critical for B cell differentiation [47,53].

5. Role of miRNA in autoimmunity

Given that certain miRNA play critical roles in the regulation of
immune response and immune cell development, it is not
surprising that recent studies have revealed links between miRNA
function and autoimmunity (Table 2). In 2007, the involvement of
miRNA in a new pathway regulating autoimmunity was discovered
in T lymphocytes in the sanroque mouse [54]. The sanroque mouse
was originally selected from screening mutant mice derived from
the chemical mutagen N-ethyl-N-nitrosourea (ENU), and has been
shown to result from a mutation in the gene Roquin that encodes
a RING-type ubiquitin ligase. In normal T cells, Roquin regulates the
expression of inducible T-cell co-stimulator (ICOS) by promoting
the degradation of ICOS mRNA. In sanroque mice, however, the
absence of this regulation leads to an accumulation of lymphocytes
that is associated with a lupus-like autoimmune syndrome. Yu et al.
reported that miR-101 is required for the Roquin-mediated degra-
dation of ICOS mRNA [54]. Introducing mutations into the miR-101
binding sites in the 30UTR of ICOS mRNA disrupted the repressive

activity of Roquin [54]. These findings revealed a critical miRNA-
mediated regulatory pathway that prevents lymphocyte accumu-
lation and autoimmunity.

More recently, two studies revealed the importance of miRNA
regulation in safeguarding regulatory T cell (T reg) function in the
prevention of autoimmunity [55,56]. In these studies, mice with
conditional Dicer knockout within the T reg cell lineage were
developed and used to monitor T reg cell development and
function in the absence of functional miRNA. Although thymic T
reg cells developed normally in these miRNA-deficient mice, the
cells exhibited altered differentiation and dysfunction in the
periphery [56]. Specifically, the Dicer-deficient T reg cells failed to
remain stable and altered expression of multiple genes and
proteins associated with the T reg cell fingerprint, including FoxP3
[56]. In addition to their instability, Dicer-deficient T reg cells lost
suppressor activity in vivo, and the mice rapidly developed fatal
systemic autoimmune disease [56]. Interestingly, Liston et al.
found that in disease-free Foxp3Cre/wtDicerfl/fl mice, Dicer-deficient
T reg cells retained some suppressive activity, albeit reduced
compared to wild-type mice [55]. However, in diseased FoxpCre-

Dicerfl/fl mice exhibiting inflammatory conditions, Dicer-deficient
T reg cells were completely devoid of any suppressor activity and
instead showed a robust in vitro proliferative response leading to
the progression of fatal early onset lymphoproliferative autoim-
mune syndrome indistinguishable from that observed in Foxp3
mutant mice devoid of T reg cells [55]. These data suggest that
miRNAs preserve stable T reg cell function under inflammatory
conditions.

6. Involvement of miRNA in autoimmune diseases

It is becoming increasingly clear from cell culture and animal
studies that proper miRNA regulation is critical for the prevention
of autoimmunity and normal immune functions. However, it is not
yet well understood whether miRNA dysregulation could play
a role in autoimmune disease pathogenesis in human patients.
Several recent studies have uncovered possible roles for miRNA
regulation in autoimmune diseases (Table 2), specifically rheuma-
toid arthritis (RA) and systemic lupus erythematosus (SLE).

6.1. Rheumatoid arthritis

RA is a systemic autoimmune disorder characterized by chronic
inflammation of synovial tissue that results in irreversible joint
damage [57]. Inflammatory cytokines, especially TNF-a, IL-1b, and
IL-6 are known to play an important role in RA pathogenesis, as
inhibition of these cytokines can ameliorate disease in some
patients [58,59]. Three studies have discovered altered miRNA
expression in RA patients compared to controls [60–62].

Two of these studies examined miRNA expression in RA synovial
tissue and fibroblasts. Stanczyk et al. reported increased miR-155
and miR-146a expression in RA synovial fibroblasts compared to

Table 1
MicroRNAs in normal immune functions.a

miRNA Known target(s) Pathway References

miR-146a TRAF6/IRAK-1 Innate immune response,
TLR signaling

[31,32]

miR-125b TNF-a Innate immune response,
TLR signaling

[34]

miR-155 Pu.1 Innate/adaptive immune
responses,
germinal center response,
IgG class-switch

[33,34,37,38,42–44]

miR-181a Not determined B cell development,
T cell receptor signaling

[48,49]

miR-181b AID Class switch recombination
in activated B cells

[50]

miR-223 Not determined Granulopoiesis [51,52]
miR-150 Not determined B cell differentiation [47,53]

a Data obtained from cell culture and animal model studies.

Table 2
MicroRNAs in autoimmune disordersa.

miRNA Function Disease References

miR-101 Required for Roquin-mediated degradation of ICOS mRNA Lupus-like autoimmune disease [54]
Specific miRNA not determined T reg cell stability and function Fatal systemic autoimmunity [55,56]
miR-146a Targets TRAF6/IRAK-1, regulate inflammatory response Rheumatoid arthritis [60,61]
miR-155 Targets MMP-3, regulates inflammatory response Rheumatoid arthritis [61,62]
miR-132 Not yet determined Rheumatoid arthritis [61]
miR-16 Function in rheumatoid arthritis not yet determined Rheumatoid arthritis [61]
Numerous miRNAs Differential expression in lupus, specific function not yet determined Systemic lupus erythematosus [65,66]

a Data obtained from animal model and human studies.
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those in osteoarthritis (OA) patients [62]. Furthermore, miR-155
expression was higher in RA synovial tissue compared to OA
synovial tissue [62]. Interestingly, miR-155 expression was higher
in RA synovial fluid monocytes compared to RA peripheral blood
monocytes [62]. Enforced expression of miR-155 in RA synovial
fibroblasts revealed matrix metalloproteinase 3 (MMP-3) as
a potential target of miR-155, suggesting that miR-155 may
modulate downstream tissue damage [62].

Nakasa et al. reported that miR-146a was highly expressed in RA
synovial tissue compared to OA and normal synovial tissue [60]. In
situ hybridization studies revealed that miR-146a expression can be
detected in RA synovial tissue primarily in CD68þ macrophages,
but also in some CD3þ T cell subsets and CD79aþ B cells [60].

Our group implemented a different approach to examine miRNA
expression in RA patients compared to healthy controls [61].
Peripheral blood mononuclear cells (PBMCs) were obtained from
sixteen RA patients, nine healthy donors, and four disease controls,
and total RNA was isolated for miRNA expression analysis [61]. RA
PBMCs displayed between 1.8-fold and 2.6-fold increases in miR-
146a, miR-155, miR-132, and miR-16 expression, whereas miRNA
let-7a expression was not significantly different compared with
healthy controls [61]. Interestingly, increased miR-146a and miR-16
expression correlated with active disease in RA patients; however,
there was no correlation between the observed increased miRNA
expression and patient age, race, or medications [61]. Two known
targets of miR-146a, TRAF6 and IRAK-1, were examined and despite
increased miR-146a expression in RA patients, there was no
significant difference in mRNA or protein levels of TRAF6 or IRAK-1
between RA patients and healthy controls [61]. In vitro studies
revealed that repression of TRAF6 and/or IRAK-1 in THP-1 human
monocytes resulted in up to an 86% reduction in TNF-a production,
implicating that normal miR-146a function could be critical for the
regulation of TNF-a production [61]. Given that prolonged TNF-
a production is known to play a role in RA pathogenesis, our data
suggest a possible mechanism contributing to RA pathogenesis
where miR-146a is upregulated, but unable to properly regulate
TRAF6/IRAK-1 leading to prolonged TNF-a production in RA
patients. Further studies are needed to elucidate this mechanism

and whether or not miRNAs contribute to RA pathogenesis, or if
miRNAs could serve as useful disease markers or therapeutic
targets.

6.2. Systemic lupus erythematosus

SLE is a systemic inflammatory autoimmune disease character-
ized by the presence of autoantibodies against numerous self-
antigens including chromatin, ribonucleoproteins, and phospho-
lipids. Clinical manifestations are diverse and include malar rash,
photosensitivity, arthritis, glomerulonephritis, and neurological
disorders [63,64]. In 2007, Dai et al. used microarray analysis to
examine miRNA expression in PBMCs of 23 SLE patients compared
to 10 healthy controls [65]. In these SLE patients, seven miRNAs
(miR-196a, miR-17-5p, miR-409-3p, miR-141, miR-383, miR-112,
and miR-184) were downregulated and nine miRNAs (miR-189,
miR-61, miR-78, miR-21, miR-142-3p, miR-342, miR-299-3p, miR-
198, and miR-298) were upregulated compared to healthy controls
[65]. In 2008, Dai et al. reported the miRNA profile of kidney
biopsies from lupus nephritis patients and healthy controls and
found 66 differentially expressed miRNAs (36 upregulated and 30
downregulated) in lupus nephritis [66]. These data suggest
a possible role for miRNA as diagnostic markers and as factors
involved in SLE pathogenesis. Further studies examining larger
patient cohorts and different patient populations are needed to
determine if the differential expression of these miRNA in SLE are
reproducible.

Taken together, these human studies demonstrate that miRNA
expression is altered in the autoimmune diseases RA and SLE.
However, the next critical steps are to identify the targets of these
miRNA and determine the mechanisms by which miRNA regula-
tion/dysregulation contribute to the pathogenesis of these diseases.
While some progress has been made, for example it is known that
miR-155 can target MMP-3 which could potentially modulate
tissue damage [62] and miR-146a can target TRAF6/IRAK-1 which
should suppress inflammatory cytokine production [61], more
studies focusing on these miRNA/target relationships and dissect-
ing the pathways involved are clearly needed.
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Fig. 1. Summary of potential consequences of abnormal miRNA regulation in immune functions. See text for detailed explanations.
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6.3. Future of miRNA as therapeutic tools/targets

The detailed roles that miRNA regulation/dysregulation play in
the development or prevention of autoimmunity and autoimmune
diseases are still coming to light. Fig. 1 summarizes the potential
consequences of abnormal miRNA regulation in immune functions.
It is clear that miRNAs are emerging as potential targets or tools for
new therapeutic strategies in the treatment/prevention of auto-
immune disorders. miRNA therapies could involve administration
of a specific miRNA to downregulate specific target genes or the
blocking of certain miRNA to increase expression of target genes.
However, in either case, the immediate priority and challenge lies
in identifying the gene targets of miRNAs, a task complicated by the
fact that a single miRNA can have multiple gene targets and vice
versa. Another challenge is the risk of triggering a cellular immune
response with RNA therapy. However, a recent study by Bauer et al.
has demonstrated that modifying a short hairpin RNA (shRNA)
construct by implementing features of a naturally occurring pre-
miRNA can avoid triggering an immune response in primary cell
cultures [67]. This is an important step for shRNA use in future gene
therapies. To date, no miRNA therapies have been employed in vivo
for the treatment of autoimmune disorders.
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