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ABSTRACT

The Dinosauria pose both interesting and challenging questions for creationist systematists. One question is whether
new dinosaur discoveries are closing morphospatial gaps between dinosaurian groups, revealing continuous
morphological fossil series, such as between coelurosaurians and avialans. Questions such as these underscore the
importance of systematics for resolving correct group memberships, including tools for visualizing morphospatial
relationships. Baraminic distance correlation (BDC), three-dimensional multidimensional scaling (MDS), and a
new method to baraminic studies — principal component analysis (PCA) — were applied to 18 character matrices
from 2004. The data included saurischian and ornithischian dinosaur groups including (1) “basal” Saurischia, (2)
Ceratosauria (including Coelophysidae), (3) “basal” Tetanurae, (4) Tyrannosauroidea, (5) “Prosauropoda”, (6)
Sauropoda, (7) Maniraptoriformes, (8) Therizinosauroidea, and (9) Oviraptorosauria. The ornithischians included (10)
“basal” Thyreophora, (11) Stegosauria, (12) Ankylosauria, (13) “basal” Ornithopoda, (14) “basal” Iguanodontia, (15)
Hadrosauridae, (16) Pachycephalosauria, (17) “basal” Ceratopsia, and (18) Ceratopsidae. BDC and MDS revealed
several potential holobaramins and apobaramins, and PCA identified some divisions not recognized by the traditional
methods, but since the datasets are 14 years old, many important taxa are missing.

As a result, we performed PCA on 19 newer datasets (from 2009 to 2018) and compared the results, which revealed
a substantially clearer picture since only 2004. Dinosaur group ordinations commonly occur within morphospatial
clusters or linear series. Holobaramins were revealed mainly as closely-spaced morphospatial series of taxa. Some series
were additionally stratomorphic. Assuming holobaramins are discontinuity-bounded morphospatial series of taxa, we
estimate 27 potential holobaramins within the newer data. PCA revealed that bird-dinosaur morphospatial relationships
vary by dataset. Paravians likely contain two branching morphoseries, connected at the base by dromaeosaurs and
avialans. The two morphoseries are functional/ecological, rather than evolutionary. Multivariate analysis offers the
potential to improve our understanding of baramins and discontinuity, and provide a new perspective on questions in
creation systematics such as bird-dinosaur relationships.

KEY WORDS
Dinosauria, baraminology, multidimensional scaling, baraminic distance correlation, principal component analysis,
discontinuity

INTRODUCTION

Two important claims concerning dinosaurs and baraminology
are that (1) the morphological space between dinosaurs is being
progressively filled over time, removing discontinuities between
groups, and (2) there is already “morphological continuity” within
the Dinosauria (Senter 2010, 2011). These claims show the need
for a creationist approach to biological character morphospace.

Plant and animal baramins have been examined across an
impressive taxonomic range and provide evidence of discontinuity.
Animal examples include members as diverse as mammals, insects,
and flatworms. Plants groups include the magnolias, monocots,
conifers and bryophytes (Wood 2008a, 2016a). Included in these
surveys are a growing number of examples from the fossil record.
These include equids (Cavanaugh et al.. 2003), archaeocete whales
(Mace and Wood 2005), caseids (Aaron 2014a), Mesozoic avians
(Garner et al. 2013), tyrannosauroids (Aaron 20145), and a growing

literature on fossil hominid baraminology generating debate (e.g.,
Wise 2005; Wood 2010; Wood 2011a; Wood 2013; Wood 2016b).

Starting in 2010 a brief debate raised interesting questions,
premised in part on a misunderstanding of the role of
multidimensional scaling (MDS) in statistical baraminology.
The claim was that common ancestry between coelurosaurians
and birds was supported even by creationist usage of MDS and
baraminic distance correlation (BDC). It was argued, further, that
these methods demonstrated continuity of morphological form
between a wide range of dinosaur groups (e.g., basal Saurischia,
Theropoda, Sauropodomorpha, etc.) (Senter 2010; Senter 2011;
and Wood’s response in Wood 20110). Cavanaugh used ANOPA
to find overlapping clusters of coelurosaurian theropods, including
V-shaped morphospatial relationships (Cavanaugh 2011). A BDC
study on Weishampel (2004) identified discontinuity in 13 of 19
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character sets studied (Wood, et. al/, 2011). A more targeted study
demonstrated discontinuity between Avialae and Deinonychosauria
for most datasets, though some BDC and MDS results indicated
continuity (Garner et al. 2013).

Beyond dinosaurs, statistical baraminology has also been questioned
within creationist circles for other reasons. One concern was that
baraminic distance methods group dissimilar morphospecies,
such as Australopithecus sediba and Homo sapiens, into the same
holobaramin (DeWitt 2010; Habermaehl 2010; Menton 2010).
A more careful critique acknowledged value in the methodology
but called for more attention to genetics and genetic programs
including hybridization and synapomorphies (Wilson 2010).
Though Wilson’s argument has validity, genetic and hybridization
criteria cannot be applied to the fossil record.

Here, we survey the baraminic status of the Dinosauria using the
approaches of statistical baraminology while particularly exploring
Senter’s questions about morphospace. One valid question raised
by the previous work is whether holobaramins identified by
statistical baraminology include hidden discontinuities (e.g., how
much more division are apobaraminic groupings, such as dinosaurs,
capable of?). To address these questions, we offer an additional
approach to visualize morphological space: Principal Component
Analysis (PCA). Examination of character morphospace allows
the visualization of holobaramins, morphological continuity and
discontinuity, and even potential identification of stratomorphic
series of taxa.

As a survey of the Dinosauria this work re-contextualizes previous
creationist questions. Previous work on tyrannosauroids and bird-
dinosaur relationships (e.g., Aaron 2014b; Garner et al. 2013) is
addressed in the context of dinosaurs, as a whole. In other words,
in addition to the multivariate analyses on tyrannosauroids and
maniraptorans we can address whether our patterns were typical
— or unique — in the broadest context. The Dinosauria also provide
an opportunity to examine broad questions regarding issues of
the systematics of a large, terrestrial pre-Flood fauna, and post-
Creation intrabaraminic diversification.

MATERIALS AND METHODS
Analyses included traditional approaches to baraminology,
including  baraminic  distance correlation (BDC) and

multidimensional scaling (MDS). Principal components analysis
(PCA) was employed to further visualize morphological continuity
and discontinuity. The most recent datasets, those compiled after
2004, were mostly analyzed by PCA alone.

1. Baraminic Distance

BDISTMDS version 2.0 was used to carry out BDC calculations
on datasets (Wood 2005; 2008b). Baraminic distance is a measure
of correlation any two organisms share in their character states
(Robinson and Cavanaugh 1998; Wood 2001). BDC obtains a
distance based on linear regression as a measure of similarity. The
goal is to identify groups united by significant, positive correlation
(interpreted as continuity between groups) and those separated
by significant, negative correlation (interpreted as discontinuity
between groups). Characters that do not have a minimum standard
of relevance (i.e., percentage of taxa for which the character state
is known) are removed from analyses. Since a purpose of this

study involved an interest in minimizing missing data, groups that
retained the highest relevance were chosen. Cutoffs ranged from
95% relevance to 75%. A hypothetical outgroup was added to each
data matrix to provide a consistent and easily visualized reference
location. The position labeled OUTGROUP included character
states of “0” and was added for visual reference to all datasets,
but particularly for PCA. This outgroup assignment provided a
common visual reference point for all analyses (i.e., BDIST, MDS,
and PCA).

2. Multidimensional Scaling

As commonly employed in baraminic distance studies, three-
dimensional classical MDS was used for comparison (Wood
2005). MDS converts a matrix of Euclidean distances between
objects into k-dimensional coordinates of the objects. In this study,
k represents three dimensions. Unlike previous baraminic studies,
this study introduces a small difference in the MDS analyses.
Data points were colored and plotted in the software environment
R using a three-dimensional grid rotated to highlight maximum
point separations. The rotational grid is a different way to visualize
data but has identical spatial interpretation as other studies in
baraminology.

Secondly, the classical MDS function utilized here employed
scree plots — rather than stress plots — to visualize the influence
of dimensionality reduction. Scree plots employed graphs showing
the eigenvalues of each component as a ratio of the eigenvalue sum
over all eigenvalues. The relative eigenvalue of each component
then represents the proportion of data variance explained by the
component. The scree plot shows the decrease in eigenvalue with
each component, with the components prior to the “break” in the
plot showing the optimal number of components needed to explain
the data. Explanation of the data is greatest prior to where the
“scree” line levels off (i.e., axes with highest values explain the
most).

An eigenvalue equation describes an eigenvector, v, of a linearly
transformed matrix (7) that does not change the direction of T.
T applied to the eigenvector scales the eigenvector by a scalar
multiple, A, with the following relationship:

T()=iv

A linear transformation of a spatial grid is a type of shear
mapping. Eigenvectors provide direction of shear distortions
while eigenvalues are the measure of distortion generated by a
transformation

Eigenvalues show variances. The scree plot depicts the eigenvalues
plotted in the order they are factored, by component axes, with
the first largest values explaining the majority of the variance and
others showing progressively less. Scree plots display the most
important components as those lying above a scree, or gradually
tapering, line. Plots often depict a sharp drop followed by gradual
decline.

3. Principal component analysis

In addition to BDC and 3D MDS, this study employed PCA as
a second means of visualizing discontinuity. One advantage
of PCA is that each component axis is biologically meaningful.
Since each component axis is a multivariate combination of
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discrete morphological character data, the component axes
provide interpretable information. Regardless of the complexity of
information reflected in some axes, one thing is clear: taxa with
a high degree of morphological similarity ordinate closely while
morphologically disparate taxa ordinate at greater spatial distances.
As a result, the manner in which taxa cluster reveals important
information for baraminology (e.g., large quadrupedal dinosaurs
will cluster in one region while smaller, bipedal dinosaurs cluster
separately at a spatial distance). Differences between dinosaur
groups are revealed by distances in n-dimensional space. PCA is
frequently used in biology to visualize morphological relationships
and developmental patterns (e.g., for use with landmark data see
Zelditch et al.. 2004, p. 15; for phylogenetic applications see Polly
etal., 2013).

Principal component axes (PCs) represent shape variables with the
first principal component axis representing the feature(s) that are
the most responsible for variation within the class of subjects —
here they are character states. Each additional PC is orthogonal to
the previous PC and accounts for the next most important source
of variation in the data. Thus, the second axis accounts for the
second highest source of variation, and so on, until all variation
is explained. Since the axes are orthogonal, it can be assumed that
the data accounting for the variation along each axis is uncorrelated
with the others. The sum of variation accounted for in each axis
is cumulative, with most variation typically occurring within the
first several components; higher component axes, representing a
very small percentage of variation, often amount to little more than
“noise” in the data. The advantage of PCA for baraminic studies
is that it allows an additional visualization of the relationship
between baraminic groups. A simple application of PCA, standard
in R, uses a mean-centered ordination of traits and a covariance
matrix of variables. Correlation between the principal components,
and the original variables, generate component loadings. Loadings
are analogous to correlation coefficients and show to what degree
each variable is explained by the component.

As is true for all statistical analyses, PCA encounters a formidable
problem with even the best dinosaur character matrices: missing
data. Every dinosaur matrix used in this study had missing data.
For example, missing data percentages for the matrices in this
study dated after 2004 ranged from 24.1% up to 62.4% (average
of 48%). To account for this high proportion of missing data we
employed a probabilistic substitution method to replace missing
data in every matrix (Stacklies et al. 2007; Stacklies et al. 2017).
Missing value substitution allowed entire matrices to be analyzed
that would have otherwise been incomplete and provided the most
complete analysis of every matrix. In addition to probabilistic
replacement, a second step to insure more accurate analyses was to
remove species with an unreasonably high proportion of missing
data. Unless otherwise stated, data from the 2004 matrices only
included taxa with 75% or more complete character data. The most
recent matrices included only taxa with 50% or more complete
data.

PCA results were plotted listing taxon names for easy identification
of spatial relationships. When possible, ordinations were presented
as biplots containing both taxon names and variable vectors.
Variable vectors indicate correlation between morphological

features; common vector directions show strong correlation
between morphological variables while opposed vectors indicate
negative correlation. Ordination of taxa are a function of the total
contribution of all positive (and negative) contributions for each
variable. As a result, two or more taxa closely grouped within
component space share similar morphology, and are interpreted
as being biologically continuous. In contrast, spatially-separated
taxa lack similarity, and distantly spaced members are interpreted
as biologically discontinuous.

4. Data

Data from 37 different character matrices were employed for
this study. Data sets from 2004 (Weishampel et al. 2004) were
analyzed with BDC, MDS, and PCA. The 19 more recent matrices
were analyzed by PCA, and two with BDC. Matrices varied in the
number of taxa, variables, and proportions of missing data. For
example, Weishampel’s matrices ranged from six dinosaurs to 70
while character sets ranged from 20 to more than 600 characters.
The highest character relevance cutoffs were used for each BDC
analysis (e.g., 0.9 was preferred to 0.8). Though probabilistic
replacement routines were employed for all PCA analyses, taxa with
greater than 50% missing character data were generally removed.
However, all taxa were analyzed in small datasets. For the 18 BDC
analyses, data from Weishampel included the following:

The matrix for “basal” Saurischia consisted of 10 taxa and 107
characters. After filtering at the 0.9 character relevance cutoff we
used 39 characters to calculate baraminic distances.

The matrix for Ceratosauria consisted of 18 taxa and 70 characters.
After filtering at the 0.75 character relevance cutoff we used 39
characters to calculate baraminic distances.

The matrix for “basal” Tetanurae consisted of 59 taxa and 638
characters. After filtering at the 0.75 character relevance cutoff we
used 199 characters to calculate baraminic distances.

The matrix for Tyrannosauroidea consisted of 24 taxa and 638
characters. After filtering at the 0.75 character relevance cutoff we
used 181 characters to calculate baraminic distances.

The matrix for Maniraptoriformes consisted of 12 taxa and 220
characters. After filtering at the 0.95 character relevance cutoff we
used 72 characters to calculate baraminic distances.

The matrix for Therizinosauroidea consisted of 13 taxa and 40
characters. After filtering at the 0.75 character relevance cutoff we
used 18 characters to calculate baraminic distances.

The matrix for Oviraptorosauria consisted of 13 taxa and 161
characters. After filtering at the 0.8 character relevance cutoff we
used 61 characters to calculate baraminic distances.

The matrix for Prosauropoda consisted of 23 taxa and 137
characters. After filtering at the 0.8 character relevance cutoff we
used 31 characters to calculate baraminic distances.

The matrix for Sauropoda consisted of 12 taxa and 309 characters.
After filtering at the 0.8 character relevance cutoff we used 182
characters to calculate baraminic distances.

The matrix for “basal” Thyreophora consisted of 7 taxa and 32
characters. After filtering at 0.85 character relevance cutoff we
used 24 characters to calculate baraminic distances.
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The matrix for Stegosauria consisted of 10 taxa and 55 characters.
After filtering at 0.80 character relevance cutoff we used 22
characters to calculate baraminic distances.

The matrix for Ankylosauria consisted of 24 taxa and 63 characters.
After filtering at 0.95 character relevance cutoff we used 13
characters to calculate baraminic distances.

The matrix for “basal” Ornithopoda consisted of 12 taxa and 54
characters. After filtering at 0.80 character relevance cutoff we
used 22 characters to calculate baraminic distances.

The matrix for “basal” Iguanodontia consisted of 17 taxa and 67
characters. After filtering at 0.95 character relevance cutoff we
used 14 characters to calculate baraminic distances.

The matrix for Hadrosauridae consisted of 21 taxa and 105
characters. After filtering at 0.75 character relevance cutoff we
used 58 characters to calculate baraminic distances.

The matrix for Pachycephalosauridae consisted of 10 taxa and 35
characters. After filtering at 0.8 character relevance cutoff we used
28 characters to calculate baraminic distances.

The matrix for “basal” Ceratopsia consisted of 12 taxa and 148
characters. After filtering at 0.95 character relevance cutoff we
used 26 characters to calculate baraminic distances.

The matrix for Ceratopsidae consisted of 16 taxa and 73 characters.
After filtering at 0.75 character relevance cutoff we used 59
characters to calculate baraminic distances.

Matrices published since 2004 had greater numbers of taxa and
character variables. These matrices were almost exclusively
analyzed with PCA. Two groups were also analyzed with BDC
(Ceratosauria and Sauropodomorpha) in order to compare with
PCA results. Unless otherwise stated, matrices include culled
datasets where taxa with less than 50% of their characters were
removed; all taxa were analyzed in several small matrices. As with
PCA analyses of the 2004 matrices, missing data was replaced with
a probabilistic replacement routine. Dinosaur groups, and matrices,
included the following:

The Dinosauria matrix consisted of 452 characters for 126 taxa
(Baron 2018). We examined both the complete data set in addition
to only the 36 taxa with at least 50% of their character states known.

The matrix for “basal” Saurischia consisted of 315 characters for
40 taxa (Nesbitt et al. 2009). We examined the 30 taxa with at least
50% of their character states known.

The matrix for Abelisauroidea consisted of 206 characters for 24
taxa (Brisson Egli, F. et al. 2016). We examined all 24 taxa with
PCA. BDC was filtered at the 0.75 character relevance cutoff.

The matrix for basal Tetanurae consisted of 351 characters for 58
taxa (Carrano et al. 2012). We examined the 27 taxa with at least
50% of their character states known.

The matrix for Tyrannosauroidea consisted of 249 characters for
33 taxa (Brusatte and Carr 2016). We examined the 21 taxa with at
least 50% of their character states known.

The matrix for Ornithomimosauria consisted of 568 characters for
98 taxa (Chinzorig et al. 2018). We examined the 37 taxa with at
least 50% of their character states known.

The matrix for Therizinosauria consisted of 348 characters for 76
taxa (Zanno 2010). We examined both the full dataset and the 26
taxa with at least 50% of their character states known.

We analyzed a Maniraptoran matrix in place of Weishampel’s
Oviraptorosauria. The matrix consisted of 560 characters for 132
taxa (Foth and Rauhut 2017). We examined both the complete
dataset and the 46 taxa with at least 50% of their character states
known.

The matrix for “basal” Sauropodomorpha consisted of 375
characters for 58 taxa (Bronzati 2017). We examined the 28 taxa
with at least 50% of their character states known.

Another matrix for “basal” Sauropodomorpha consisted of 370
characters for 55 taxa (Otero et al., 2015). We examined the 32
taxa with at least 50% of their character states known for PCA.
BDC was filtered at the 0.75 character relevance cutoff.

The matrix for basal Thyreophora consisted of 227 characters for
49 taxa (Breeden 2016). We examined the 27 taxa with at least 50%
of their character states known.

The matrix for Stegosauria consisted of 91 characters for 22 taxa
(Raven and Maidment 2017). We examined all 22 taxa.

The matrix for Ankylosauria consisted of 178 characters for 55
taxa (Zheng 2018). We examined the 21 taxa with at least 50% of
their character states known.

The matrix for “basal” Ornithopoda consisted of 135 characters for
69 taxa (Madzia 2017). We examined the 26 taxa with at least 50%
of their character states known.

The matrix for “basal” Iguanodontia consisted of 134 characters
for 67 taxa (McDonald 2012). We examined the 26 taxa with at
least 50% of their character states known.

The matrix for Hadrosauridae consisted of 346 characters for 58
taxa (Cruzado-Caballero 2017). We examined all 58 taxa.

The matrix for Pachycephalosauridae consisted of 48 characters
for 17 taxa (Schott 2011). We examined all 17 taxa.

The matrix for “basal” Ceratopsia consisted of 381 characters for
71 taxa (Han 2017). We examined the 40 taxa with at least 50% of
their character states known.

The matrix for Ceratopsidae 152 characters for 29 taxa (Fry 2015).
We examined all 29 taxa.

RESULTS

Results are described by taxonomic group, first for the saurischians
and then ornithischians. Analyses included BDC, MDS, and PCA
for each group. PCA for the Dinosauria was performed to better
understand the overall relationships of the new Ornithoscelida
(Ornithischia and Theropoda) to Saurischia (Sauropodomorpha and
Herrerasauridae) (Baron et al. 2017) within a creation systematics.
When all data were analyzed, three spatially-identifiable groups
emerged on PC 1 and PC 2: 1) non-dinosaurs with some dinosaurs,
2) Sauropodomorpha, and 3) a combined (though distinct)
Ornithischia/Theropoda association (Fig. 1). For PC 3 nearly all
groups were indistinguishable except Ornithischia (Fig. 2).

The inclusive Dinosauria plots serve as a contrast to the second
culled ordination plot. The second Dinosauria ordinations included
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only taxa with 50% or greater complete character data; taxa with
larger amounts of missing data were removed. Group ordinations
visible within the inclusive dataset became more distinct when
taxa with high percentages of missing data were removed (Figs.
3-4). We present possible explanations for this phenomenon in the
Discussion.

The remainder of the analyses in this study employ a 50% data
cutoff, unless otherwise indicated. Dinosaurs are grouped within
Ornithischia and Saurischia following Weishampel et al. (2004).

1. Saurischia

A. Basal Saurischia

The baraminic distance correlation results for the Langer
(2004) data matrix, in Weishampel et al. (2004), are shown in
Fig. 5. Results suggest separation between the saurischians
and ornithischians plus Pisanosaurus. Positive BDC is present
between Saturnalia, Sauropodomorpha, and Guaibasaurus and
between Staurikosaurus, Herrerasaurus and the outgroup. Limited
negative correlation exists between the ornithischians and some
saurischians. Classical MDS results show little separation between
the saurischians Saturnalia, Sauropodomorpha, Guaibasaurus and
other groups. The outgroup, Eoraptor, Pisanosaurus and remaining
ornithischians reflect no obvious clustering (Fig. 6). PCA results
suggest separation but show no clustering between the few groups
represented (Fig. 7).

PCA results for Nesbitt et al. (2009) provide a more complete picture
but retain the group separations. PC 1 separates dinosaurs from the
non-dinosaurian outgroup taxa (Fig. 8). PC 2 separates theropods
from herrerasaurids, sauropodomorphs, and ornithsichians. PC
3 reveals little distinction between dinosaur taxa, which are all
clustered together, but it does separate out the non-dinosaurian
taxa (Fig. 9). Pseudosuchians cluster at the bottom, whereas the
only pterosaur (Dimorphodon) is at the top, closer to Euparkeria,
Erythrosuchus, and the hypothetical outgroup.

B. Ceratosauria

The BDC results for Tykoski and Rowe’s (2004) data matrix, in
Weishampel et al. (2004), show three blocks of positive correlation
(Fig. 10). There is shared positive correlation among coelophysoid
taxa and Spinosauridae in the upper right block. There are a few
instances of shared positive correlation between the coelophysoid
+ spinosaurid block and the middle block. The abelisauroid taxa
(lower left) all share positive correlation and share negative
correlation or no correlation with any other taxa. Classical MDS
results show separation between Abelisauroidea and all other taxa
(Fig. 11). PCA results show separation between Coelophysidae and
the other taxa, but there is little clustering (Fig. 12) Abelisaurid
taxa are separated out from the others through PC 1.

The BDC results for Brisson Egli et al’s (2016) abelisauroid data
matrix are shown in Fig. 13. BDC separates Abelisauridae from the
non-abelisaurid taxa (including non-abelisaurid abelisauroids, non-
abelisauroid ceratosaurs, and other non-ceratosaur taxa). The only
exception is that the Jurassic, “basal” abelisaurid Eoabelisaurus is
included in the non-abelisaurid block of taxa, correlating positively
with Ceratosaurus, Limusaurus, and Masiakasaurus.

The Abelisauroidea matrix had a high proportion of missing data.
In order to preserve enough taxa for comparison, all taxa were

included regardless of their proportions of missing data. PC 1
separated abelisaurids from the other taxa (Fig. 14). Noasauridae
members (e.g., Limusaurus and Masiakasaurus) are widely spaced
from members of Abelisauridae, although they are not clustered
closely together, nor are they readily distinguished from the
outgroup taxa. Eoabelisaurus, as with the BDC results, does not
cluster with the abelisaurids, but is instead closest to Ceratosaurus
and Genyodectes, a position that matches a recent ceratosaurian
phylogeny (Wang et al., 2017). The Abelisauroidea form a series
along PC 3 with the noasaurids clustered toward the bottom (Fig.
15). Eoabelisaurus is separated from the abelisauroids, once again
closest to Ceratosaurus and Genyodectes.

C. Basal Tetanurae

The BDC results for Holtz et al.’s (2004) data matrix, in Weishampel
et al. (2004), for “basal” Tetanurae and Tyrannosauroidea are
shown in Fig. 16. Because the matrix included several groups above
the family-level, including Tyrannosauridae, the BDC chart is
ambiguous, only really distinguishing between Maniraptoriformes
and other theropods. The BDC is displayed as a contrast to PCA
results (Fig. 17), illustrating a limit in baraminic analysis for some
datasets. BDC failed to distinguish groups with high disparity:
Tyrannosauroidea, Maniraptoriformes, and other Theropoda.
PCA reveals complex ordination patterns in the presence of
large morphospatial disparities. Non-coelurosaur theropods and
Tyrannosauroidea show a discontinuous morphoseries with a
common trajectory. Maniraptoriforms cluster separately.

PCA results for Carrano et al. (2012) showed a similar
morphospatial series among the tetanurans (Fig. 18). Both PC 1
and PC 2 display distance between tetanurans and non-tetanuran
theropods (Fig. 18). Additionally, tetanurans contain a series of
spatially-connected taxa, linked gradationally from Sinosaurus
(formerly “D. sinensis”) to Megalosauridae to Coelurosauria, to
Allosauroidea. The spinosaurids (Suchomimus and Baryonyx) are
clustered together and are slightly removed from the tetanuran
series. For PC 1 and PC 2 the Megalosauridae series may be
stratomorphic, with fossil record first appearance order tracking
the morphoseries (Wise 1995), but recent phylogenies suggest
Monolophosaurus is more basal than Megalosauridae (Carrano
et al. 2012). Additionally, Compsognathus and Ornitholestes,
coelurosaurs, are clustered among the megalosaurids. PC 3 clusters
Sinosaurus (“D. sinensis”) with the coelophysoids, and it separates
out carcharodontosaurids from other tetanurans (Fig. 19).

D. Tyrannosauroidea

The BDC results for Holtz’s (2004) data matrix, in Weishampel et
al. (2004), are shown in Fig. 20. This analysis was a tyrannosauroid-
focused subset of the Holtz et al. (2004) dataset. There is clear
positive BDC between the Tyrannosauroidea and negative BDC
compared to several theropod outgroups. Classical MDS results
confirm separation between Tyrannosauroidea and all other
neotheropods (Fig. 21). Due to the small dataset, PCA was employed
on groups with as little as 30% complete character data. PCA
results likewise support the separation between Tyrannosauroidea
and other groups seen in MDS, although Eotyrannus was distant
from the other tyrannosauroids (Fig. 22).

Tyrannosauridae from Brusatte and Carr (2016) display a similar
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morphospatial series that is separated from outgroup taxa.
Tyrannosaurines form one diagonal series along PC 1 and PC 2
(Fig. 23). A second series, perpendicular to the tyrannosaurine
series, contains albertosaurines, Bistahieversor, and two non-
tyrannosaurid tyrannosauroids (Raptorex and Xiongguanlong).
Eotyrannus is not on either trajectory and is equally spaced
between Xiongguanlong and the non-tyrannosauroid Allosaurus.
Other “basal” tyrannosauroids (e.g., Dilong and Guanlong)
cluster together at a great distance from tyrannosaurids, Raptorex,

Xiongguanlong, and Eotyrannus. Yutyrannus is far from all other
taxa. The plot comparing PC 3 and PC 1 shows tyrannosaurids
spread out along the left side of the plot from top to bottom (Fig.
24). By contrast, non-tyrannosaurid tyrannosauroids form a series
with Raptorex on the left and proceratosaurids on the right. This
series includes all of the non-tyrannosaurid tyrannosauroids, even
Yutyrannus. The outgroup taxa are all clustered in the lower right
corner, far from any tyrannosauroids.
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Figure 1. Biplot of PCA scores (black) and vectors (gray) for Baron et al’s (2018) complete data matrix for the Dinosauria. PC 1 accounts for 32.5%
of the variance and PC 2 accounts for 20.0% of the variance. Sauropodomorpha group toward bottom right while the newly revised Ornithoscelida,

including ornithischians and theropods, group toward the bottom left.
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E. Maniraptoriformes

The BDC results for Makovicky et al.’s (2004) data matrix,
in Weishampel et al. (2004), shows three blocks of positive
correlation and two taxa that are not correlated with any other taxa
(the alvarezsaurid Shuvuuia and the oviraptorid Citipati, Fig. 25).
One block of positive correlation contains the outgroup taxa, one
contains ornithomimids, and the final one contains paravians (two
dromaeosaurids, a troodontid, and Archaeopteryx). The paravian
block is separated from the ornithomimid block by negative

correlation, but no other taxa share any kind of correlation with
the outgroup block. Due to the amount of missing data (i.e., the
majority were missing greater than 70% of the character data) only
12 taxa were analyzed. Classical MDS results also show separation
between three clusters of taxa, although Citipati appears to be
closest to the paravian cluster (Fig. 26). Shuvuuia is positioned far
from all other taxa.

PCAreflected these observations butrevealed additional complexity.
The high proportion of missing data required the inclusion of any
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Figure 2. PCA scores for Baron’s (2018) complete data matrix for the Dinosauria. PC 1 accounts for 32.5% of the variance and PC 3 accounts for
14.6% of the variance. Sauropodomorpha group toward left and Theropods to right. PC 3 separates only ornithischians (bottom cluster).
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genus having 20% or more complete data. Four main clusters
(Fig. 27) are obvious: Ornithomimosauria, Dromaeosauridae,
Troodontidae, and Oviraptorosauria, although there is not much
separation between Dromaeosauridac and Troodontidae. Two
alvarezsaurids grouped together (Patagonykus and Alvarezsaurus),
but they did not cluster with the other alvarezsaurids (Mononykus
and Shuvuuia). Oddly, Utahraptor did not group with the other
dromaeosaurids (it is instead close to tyrannosaurids). Avialans,

especially Archaeopteryx, were closest to the dromaeosaurid
cluster.

Ornithomimosauria for Chinzorig et al. (2018) likewise showed
spatial separation from all other taxa for PC 2 (Fig. 28). A division
within Ornithomimosauria is also visible between Ornithomimidae
(Gallimimus, Struthiomimus,and Ornithomimus)and Deinocheridae
(Garudimimus and Deinocherius), with Harpymimus grouping with
the latter. PC 3 shows similar separation within the group although
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Figure 3. Biplot of PCA scores (black) and vectors (gray) for Baron’s (2018) data matrix for the Dinosauria taxa with the most complete data. PC 1
accounts for 26.5% of the variance and PC 2 accounts for 17.5% of the variance. Theropods (left) show discontinuity with ornithischians (bottom) and

sauropodomorphs (right).
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there is not so pronounced a separation between ornithomimosaurs
and other taxa and the “basal” alvarezsauroid Haplocheirus is
within the ornithomimosaur cluster (Fig. 29).

E Therizinosauria

The BDC results for Clark’s (2004) data matrix, in Weishampel et al.
(2004), for the Therizinosauroidea reveals three blocks of positive
correlation: two therizinosauroid blocks and a block containing
the outgroup (Fig. 30). One therizinosauroid block consists of
only therizinosaurids, while the other contains non-therizinosaurid
therizinosauroids and the therizinosaurid Nothronvchus. There is no

shared positive correlation between the two therizinosauroid blocks,
and neither block shares any positive correlation with the outgroup
taxa. The block containing only therizinosaurids shows extensive
negative correlation with the outgroup taxa. Classical MDS results
reflect the same separation between Therizinosauroidea and the
outgroup taxa, with Nothronychus, Beipiaosaurus, and Alxasaurus
midway between the groups (Fig. 31). For PCA, only taxa with
about 50% of character data were analyzed. PCA results likewise
show a great distance between Therizinosauroidea (Beipiaosaurus,
Alxasaurus. Erlikosaurus. and Seenosaurus) and the outeroun taxa
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Figure 4. Biplot of PCA scores (black) and vectors (gray) for Baron’s (2018) data matrix for the Dinosauria. PC 1 accounts for 26.5% of the variance
and PC 3 accounts for 15.0% of the variance. Theropods and ornithischians are separated (left, top respectively) with sauropods grouped to the right.
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(Fig. 32).

Zanno (2010) included a larger dataset though few Therizinosauria
members included more than 50% of their characters. Because
of this, all taxa were analyzed in order to retain a large enough
number of therizinosaurs for analysis. Both PC 1 and PC 2
separated Therizinosauridae from the outgroups while locating
them most closely to Oviraptorosauria. The non-therizinosaurid
therizinosaurs (Falcarius, Beipiaosaurus, and Alxasaurus) are
placed in between the therizinosaurids and the alvarezsaurids. In

Remaining Ornithischia

O
O

o0

Pisanosaurus
Neotheropoda
Saturnalia
Sauropodomorpha
Guaibasaurus
Qutgroup
Staurikosaurus
Herrerasaurus
Eoraptor

Figure 5. BDC results for Langer’s (2004) data matrix of basal Saurischia,
as calculated by BDISTMDS (relevance cutoff 0.9). Closed squares
indicate significant, positive BDC; open circles indicate significant,
negative BDC.

c2

Figure 6. Three-dimensional classical MDS applied to Langer’s (2004)
data matrix for “basal” Saurischia. Members of Sauropodomorpha are
shown in gray, Eoraptor in orange, Herrerasaurus, Staurikosaurus, and the
outgroup are dark orange, and Pisanosaurus and remaining Ornithischia
are red. Scree plot suggests the first three dimensions represent most of
the variance.

contrast, dromaeosaurids and troodontids ordinate more distantly,
and ornithomimosaurs form a series that is even farther away
along PC 2 (Fig. 33). PC 3 separated therizinosaurs from the non-
maniraptoran theropods and troodontids (Fig. 34). At the same
time PC 3 does not distinguish dromaeosaurids, oviraptorosaurs,
and therizinosaurs; all exhibit a broad range of spatial overlap.
Maniraptoran  groups show spatial intergradation though
morphospatial distinctions are present.

G. Maniraptora

The BDC results for the Osmolska et al. (2004), Makovicky
and Norell (2004), Norell and Makovicky (2004), and Padian
(2004) combined data, found in Weishampel et al. (2004) for
Oviraptorosauria, show two main blocks of positively correlated
taxa separated by negative correlation: Oviraptorosauria and the
outgroup taxa (Archaeopteryx, Velociraptor, Herrerasaurus, and
the hypothetical outgroup, Fig. 35). The oviraptorosaur Avimimus,
however, does not correlate positively or negatively with any of the
other taxa in the analysis. Classical MDS results show separation
between Oviraptorosauria and the outgroup taxa (Fig. 36). For
PCA, only taxa with at least 55% of character data were analyzed.
PCA results likewise show space between Oviraptorosauria and the
outgroup taxa. The only difference is that Caudipteryx is distant
from all other groups (Fig. 37).

The maniraptoran matrix of Foth and Rauhut (2017) contained
both more taxa and more characters than the earlier oviraptorosaur
dataset. The first analysis (Fig. 38) includes all maniraptorans,
without respect to missing data, and again shows spatial
distinction with overlapping group ranges reminiscent of the
Zanno (2010) therizinosaurian analysis (Fig. 34). Four groups of
taxa can be identified: 1) Dromacosauridae, “basal” Avialae, and
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Figure 7. Biplot of PCA scores (black) and vectors (gray) for Langer’s
(2004) data matrix for basal Saurischia. PC 1 accounts for 37.9% of the
variance and PC 2 accounts for 24.7% of the variance. Saurischians align
toward the positive side of PC 1 but no other clustering is evident.
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Troodontidae; 2) non-coelurosaur theropods, Tyrannosauroidea,
“basal” Coelurosauria, Alvarezsauroidea, Ornithomimosauria,
Oviraptorosauria, Therizinosauria, and a scansoriopterygid
(Epidexipteryx); 3) non-avian Pygostylia; and 4) Aves + Limenavis
+ laceornis. Dromacosaurid and “basal” avialan ranges ordinate
closely, although they are still mainly distinct, for PC 1 (2a and
2b, respectively, in Fig. 38). Troodontids (2c, Fig. 38) mainly
ordinate closely between dromaeosaurids and “basal” avialans,
but some troodontids (Byronosaurus and Zanabazar) overlap

with the “basal” avialan cluster, and anchiornithids (Pedopenna
and Yixianosaurus), which are probably “basal” avialans,
are indistinguishable from dromaeosaurids for PC 1. These
paravian taxa are spatially separated from alvarezsauroideans
(2d), oviraptorosaurs (4), ornithomimosaurs (3), and ‘“basal”
coelurosaurs (1) by PC 2. Non-avian Pygostylia (5) and Aves +
Limenavis + laceornis (6) are separate from non-avialan dinosaurs
and “basal” avialans for PC 1, and they are separated from each
other by PC 2. PC 3 distinguishes ornithomimosaurs (bottom) from
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Figure 8. Biplot of PCA scores (black) and vectors (gray) for Nesbitt’s (2009) data matrix for basal Saurischia. PC 1 accounts for 37.4% of the variance
and PC 2 accounts for 17.1% of the variance. Discontinuity exists between theropods (left), sauropodomorphs, Herrerasaurus, and ornithischians (top)

and outgroup taxa (right).
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Figure 9. PCA scores for Nesbitt’s (2009) data matrix for basal Saurischia.
PC 1 accounts for 37.4% of the variance and PC 3 accounts for 9.1% of
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ornithischians; only ingroups and outgroups are separated.
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Figure 10. BDC results for Tykoski and Rowe’s (2004) data matrix of
Ceratosauria, as calculated by BDISTMDS (relevance cutoff 0.75).
Closed squares indicate significant, positive BDC; open circles indicate
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Figure 11. Three-dimensional classical MDS applied to Tykowski and
Rowe’s (2004) data matrix for Ceratosauria. Members of Abelisauroidea
are shown in gray, outgroups (e.g., tetanurans) are in light red, distant
outgroup is dark red, and all other taxa are orange (e.g., Coelophysoidea).
The outgroup clusters near Herrerasaurus, Prosauropoda, and Ornithischia.
Scree plot suggests variance is distributed across many axes.
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Figure 12. Biplot of PCA scores (black) and vectors (gray) for Tykowski
and Rowe’s (2004) data matrix for Ceratosauria. PC 1 accounts for 38.4%
of'the variance and PC 2 accounts for 23.3% of'the variance. Coelophysidae
members are in bottom right.
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Figure 13. BDC results for Brisson Egli et al.’s (2016) data matrix for Figure 14. Biplot of PCA scores (black) and vectors (gray) for Brisson
Abelisauroidea, as calculated by BDISTMDS (relevance cutoff 0.75). Eglietal.’s (2016) complete data matrix for Abelisauroidea. PC 1 accounts
Closed squares indicate significant, positive BDC; open circles indicate for 49.7% of the variance and PC 2 accounts for 24.7% of the variance.
significant, negative BDC. Abelisauridae ordinate along the left side of the plot, Ceratosauridae
bottom central, and Noasauridae toward the center.
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Figure 15. Biplot of PCA scores (black) and vectors (gray) for Brisson Egli et al.’s (2016) complete data matrix for Abelisauroidea. PC 1 accounts for
49.7% of the variance and PC 3 accounts for 13.8% of the variance. Abelisauridae ordinate toward the left, “basal” Ceratosauria near the center and
right, and Noasauridae toward bottom.
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alvarezsauroids, which are distinguished from “basal coelurosaurs”
+ tyrannosauroids + outgroup taxa (Fig. 39). Similarly, PC 3 draws
out oviraptorosaurs and therizinosaurs (top) from the rest of the
taxa, but PC 3 does not seem to distinguish between non-avialan
paravians, non-avian avialans, and avians.

Analysis of the same dataset using only the taxa with more
complete data yields a different spatial geometry. PCA on taxa
with 50% or more complete character data resulted in a Y-shaped
ordination, with two distinct morphospatial series (Fig. 40).
“Basal” avialans, dromaeosaurids, and troodontids are located
at the root of the bifurcation and share some spatial overlap on
PC 1 and PC 3 (Fig. 41). Dromaeosaurids are distinct from
“basal” avialans and troodontids on PC 2, but “basal” avialans
and troodontids are not. One series above the junction included
a sequential series from oviraptorosaurs, “basal” coelurosaurs
+ tyrannosauroids + outgroup taxa, alvarezsauroideans, and
ending with ornithomimosaurs. The other series includes non-
avian ornithuromophs and culminates with avians. Time of first
appearance of members in each group show that the morphoseries

reveals a similar branching pattern though provides less distinction
between “basal” avialans, alvarezsauroideans, dromaeosaurids,
oviraptorosaurs, and ornithomimosaurs (Fig. 41).

H. “Prosauropoda”

The BDC results for Galton and Upchurch’s (2004a) data matrix,
in Weishampel et al. (2004), reveal two main blocks of positive
correlation separated by negative correlation: a large “prosauropod”
block and a small sauropod block (Fig. 42). However, the sauropod
Kotasaurus does not share any positive or negative correlation with
any other taxon in the analysis. Similarly, both classical MDS and
PCA results separate the prosauropods from all outgroups (Figs. 43
and 44). Removal of the four sauropod taxa from the BDC analysis
shows evidence for discontinuity within “prosauropoda” (see Fig.
98 in the Appendix).

PCA for Bronzati (2017) likewise shows separation, but in terms
of three clustered groups: 1) traditional “prosauropods” + “basal”
sauropods + Dicraeosaurus, 2) Sauropoda, 3) Thecodontosaurus
+ Pantydraco + Guaibasauridae + outgroup taxa. Although some
sauropods seem to group with “prosauropods” in Figs. 45 and 46,

sequence is not a chronological first-appearance order. PC 3 “prosauropods” and these sauropods are distinct by PC 1 (Fig. 45).
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Figure 16. BDC results for Holtz et al.’s (2004) data matrix of basal Tetanurae, as calculated by BDISTMDS (relevance cutoff 0.75). Closed squares
indicate significant, positive BDC; open circles indicate significant, negative BDC.
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Figure 17. Biplot of PCA scores for Holtz et al.’s (2004) data matrix for basal Tetanurae. PC 1 accounts for 25.2% of the variance and PC 2 accounts
for 18.8% of the variance. Four main clusters are evident: Tyrannosauroidea (blue circle), non-tyrannosauroid Coelurosauria (yellow), non-coelurosaur
Tetanurae (red), and non-tetanurans (black). PCA revealed several large morphological divisions, not visible to BDIST, including: (1) a Tyrannosauroidea
series; Maniraptoriformes grouped together with smaller clusters of Dromaeosauridae (2), Ornithomimosauria (3), a combined Troodontidae and
Oviraptorosauria group (4), and scattered Avialae (black triangles). Non-coelurosaur tetanurans ordinate as a morphoseries toward the right.
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Figure 18. PCA scores for Carrano et al.’s (2012) data matrix for
Tetanurae. PC 1 accounts for 29.5% of the variance and PC 2 accounts
for 19.3% of the variance. Tetanurans include an almost continuous
morphoseries consisting of Allosauroidea members (top), Coelurosauria
(middle), and Megalosauroidea (last). Tetanurans are separate from non-
tetanurans (including Ceratosauria and Coelophysoidea). Two spinosaurids
(Baryonyx and Suchomimus) are distant from the other tetanurans.

<+ |
o
—C T
o~ —
o Dlshowmrss o roap
_—
et oyt
e,
Sierptor_dongl
o 24
o
g Mowrn P—
ez
—
Suchomerus b
h" Acccarhoumas
? - N et Uy Herreremeras
Ggerctmena
= |
?
o B
? T T T T T T
-06 -04 -02 00 02 04
PC1

Figure 19. PCA scores for Carrano et al.’s (2012) data matrix for
Tetanurae. PC 1 accounts for 29.5% of the variance and PC 3 accounts for
15.6% of the variance. PC 3 separates Allosauroidea members (left) while
also distinguishing Megalosauroidea and Coelurosauria clusters.

g_
Eg
@
o o
o o
o o
o o
o o
o o
o o
o o
o
o
n L}
L}
-
| |
| |
-
-
-
-
.
L

oooooo
-

E EEEEEREDR

E EEEEEER

" E EEEEER

E 1
b E
=] o
o o
oCoooooooo
=} =}
oo =}
=}
o
X n
E EEEEEER
" E B EEEESR
E EEEEENEEEEESR
" B B EEEEEEETS®R
" B N EEREER

=}
=}
=}

=

Tabosasus

i
i
]
" B EEEEEENESR
" B EEEEEENEN
EEEEEEEEETSR
" E B EEEEENREDR
IIII.IIIIII
" B EEEEEENEEDR
" B EEEEEENEEDN
" E B EEEEENRES®
" B B EEEEENESN
" E EEEEEENEEDR
ocooocoooo
o oooo
=]
o cooo
o ocooo
= oooo
=)
ocooooooo
=
cCooocooooo
oCooocoooo

Figure 20. BDC results for Holtz’s (2004) data matrix of the
Tyrannosauroidea subset of basal Tetanurae, as calculated by BDISTMDS
(relevance cutoft 0.75). Closed squares indicate significant, positive BDC;
open circles indicate significant, negative BDC.
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Figure 21. Three-dimensional classical MDS applied to Holtz’s (2004)
data matrix for Tyrannosauroidea within basal Tetanurae. Members of
Tyrannosauroidea are shown in gray, other tetanurans in orange, and
outgroup dark red. Tetanuran outgroups and Tyrannosauroidea form
nearly orthogonal ordinations. Scree plot indicates the first axis represents
most of the variance.
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Figure 22. Biplot of PCA scores (black) and vectors (gray) for Holtz’s
(2004) data matrix for Tyrannosauroidea within basal Tetanurae. PC 1
accounts for 33.2% of the variance and PC 2 accounts for 23.9% of the
variance. Tyrannosauroidea are tightly clustered, toward right, except
for Eotyrannus, which is closer to the center. Outlying groups ordinate
distantly from Tyrannosauroidea at nearly right angles.

Gorgosmras
frsmid
[—

o~ Pupoone
g

Nergpamiong [

Ontbaninin
PR ComBRnoue
——

[Fe——
- R
S

PO
bam
o~
&
o~ Dberg.
S
I o a—
Tyrenecmmans
ool

<
?

Matyranrus

T T T T
-04 -02 0.0 02
PC1

Figure 23. PCA scores for Brusatte and Carr’s (2016) data matrix for
Tyrannosauroidea. PC 1 accounts for 58.1% of the variance and PC 2
accounts for 12.5% of the variance. Tyrannosauridae forms a morphoseries
on the left. PC 2 reveals distance between Tyrannosaurinae members
including separation from Albertosaurinae (top).
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Figure 24. PCA scores for Brussate and Carr’s (2016) data matrix for
Tyrannosauroidea. PC 1 accounts for 58.1% of the variance and PC 3
accounts for 8.1% of the variance. PC 3 includes Albertosaurinae within
the Tyrannosaurinae series. All non-tyrannosaurid tyrannosauroid taxa are
distributed along the top, grouped together by PC 3. Tyrannosauroids are
very distant from the outgroup taxa (bottom right).
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Figure 25. BDC results for Makovicky et al.’s (2004) data matrix of
Maniraptoriformes, as calculated by BDISTMDS (relevance cutoff 0.95).
Closed squares indicate significant, positive BDC; open circles indicate
significant, negative BDC.
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Figure 26. Three-dimensional classical MDS applied to Makovicky
et al.’s (2004) data matrix for Maniraptoriformes. Members of Paraves
(Velociraptor, Deinonychus, Sinovenator, and Archaeopteryx) are shown
in gray, Ornithomimidae in orange, and outgroups in dark red. Citipati
(light red) ordinates close to the dromaeosaurs with Shuuvuia (also light
red) distantly separated from all. Scree plot indicates more variance within
the first axis.
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Figure 28. Biplot of PCA scores (black) and vectors (gray) for Chinzorig
et al.’s (2018) data matrix for Ornithomimosauria. PC 1 accounts for
24.8% of the variance and PC 2 accounts for 16.2% of the variance. PC 2
reveals a large separation between ornithomimosaurians, maniraptorans,
and outgroups. Ornithomimosaurs are divided between Deinocheiridae +
Harpymimus and Ornithomimidae.
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Figure 27. Biplot of PCA scores (black) and vectors (gray) for Makovicky
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PC1

et al.’s (2004) data matrix for Maniraptoriformes. PC 1 accounts for 29.3%

of the variance and PC 2 accounts for 23.9% of the variance. Ordination distinguishes Dromaeosauridae (1), Troodontidae (2), Oviraptorosauria (3),

and Ornithomimosauria (4). Alvarezsauridae is noted with black triangles,

and Rahonavis with a black square.

Archaeopteryx with a black circle, Confuciusornis with a black diamond,
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Figure 29. PCA scores for Chinzorig et al.’s (2018) data matrix for Figure 31. Three-dimensional classical MDS applied to Clark’s (2004)
Ornithomimosauria. PC 1 accounts for 24.8% of the variance and PC data matrix for Therizinosauroidea. Therizinosauridae members are gray
3 accounts for 11.7% of the variance. PC 3 suggests overlap between (Therizinosaurus, Segnosaurus, Neimongosaurus, Erlikosaurus), non-

ornithomimosaurs and maniraptorans.
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Figure 30. BDC

therizinosaurid Therizinosauroidea and Nothronychus in orange, non-
therizinosauroid maniraptoriforms are light red, and outgroup red. Scree
plot shows the first axis represents a majority of the variance.
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results for Clark’s (2004) data matrix of Figure 32. Biplot of PCA scores (black) and vectors (gray) for Clark’s

Therizinosauroidea, as calculated by BDISTMDS (relevance cutoff 0.75). (2004) data matrix for Therizinosauroidea. PC 1 accounts for 57.8% of
Closed squares indicate significant, positive BDC; open circles indicate the variance and PC 2 accounts for 17.8% of the variance. Two members

significant, negative BDC.

of Therizinosauroidea (Beipiaosaurus and Alxasaurus, top) are separated
along PC 2 from two Therizinosauridae (Erlikosaurus and Segnosaurus,
toward right).
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Figure 33. PCA scores for Zanno’s (2010) complete data matrix for
Therizinosauria. PC 1 accounts for 39.6% of the variance and PC 2
accounts for 19.4% of the variance. Therizinosaurids are separated from
other maniraptorans along PC 1, towards the right, although the non-
therizinosaurid therizinosaurs (blue arrows) and Erlikosaurus overlap
with non-therizinosaur taxa. There is overlap between therizinosaurs and
other taxa along PC 2.
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Figure 34. PCA scores for Zanno’s (2010) complete data matrix for
Therizinosauria. PC 1 accounts for 39.6% of the variance and PC 3
accounts for 12.9% of the variance. Most therizinosaurs are separated
from other maniraptorans along PC 1, towards the right, though with little
distinction along PC 3.
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Figure 35. BDC results for Weishampel et al.’s (2004) data matrix of
Oviraptorosauria, as calculated by BDISTMDS (relevance cutoff 0.8).
Closed squares indicate significant, positive BDC; open circles indicate
significant, negative BDC.
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Figure 36. Three-dimensional classical MDS applied to Weishampel et
al.’s (2004) data matrix for Oviraptorosauria. Members of Oviraptorosauria
are shown in gray, Velociraptor and Archaeopteryx are in orange,
and outgroup and Herrerasaurus are red. Scree plot indicates the first
coordinate accounts for the vast majority of variance.
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Figure 37. Biplot of PCA scores (black) and vectors (gray) for Weishampel
etal.’s (2004) data matrix for Oviraptorosauria. PC 1 accounts for 59.2% of
the variance and PC 2 accounts for 19.0% of the variance. Oviraptorosauria
show clustering while Caudipteryx shows a distant ordination not visible
to BDC or MDS results.
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Figure 39. PCA scores for Foth and Rauhut’s (2017) data matrix for
maniraptorans with the most complete data. PC 1 accounts for 32.5% of
the variance and PC 3 accounts for 16.5% of the variance.

0.2

Figure 38 (right). PCA scores for Foth and
Rauhut’s (2017) complete data matrix for
maniraptorans. PC 1 accounts for 32.5% of
the variance and PC 2 accounts for 18.0% of
the variance. Numbered groups: 1) “Basal”
Coeclurosauria; 2a) Dromacosauridae; 2b)
“basal” Avialae; 2c) Troodontidae; 2d)
Alvarezsauroidea; 3) Ornithomimosauria; 4)
Oviraptorosauria + Therizinosauria; 5) Non-
avian Pygostylia; and 6) Aves + Limenavis
+ laceornis. Dromaeosaurids and ‘“basal”
avialans ordinate closely, with troodontids
between. Numbers provide relative order
of first appearance in fossil record. Initial
members of groups labelled “2” appeared
have nearly equal first appearances.
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Figure 40. PCA scores for Foth and Rauhut’s (2017)
data matrix for maniraptorans with the most complete
data. PC 1 accounts for 34.2% of the variance and PC 2
accounts for 17.6% of the variance. The more complete
dataset reveals a bifurcation with two morphoseries.
Dromaeosaurids, at the base of the bifurcation, ordinate
separately from avialans for PC 2. Avialans connect
two morphoseries. Numbered groups: 1) “basal”
coelurosaurs; 2a) dromacosaurids; 2b) “basal” avialans;
2¢) troodontids; 2d) alvarezsaurids; 3) ornithomimids;
4) oviraptorosaurs; 5) ornithuromorphs; and 6) avians
+ Lithornis. Numbers provide relative order of first
appearance in fossil record with initial members of the
second group appearing nearly simultaneously.
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Figure 41. PCA scores for Foth and Rauhut’s (2017) complete data matrix
for maniraptorans with the most complete data. PC 1 accounts for 34.2%
of the variance and PC 3 accounts for 14.5% of the variance. PC 1 and
PC 3 reveals a similar morphospatial bifurcation though with overlap
between dromaeosaurids, avialans, and oviraptorosaurs at the base of two

morphoseries.
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Figure 42. BDC results for Galton and Upchurch’s (2004a) data matrix
of “Prosauropoda”, as calculated by BDISTMDS (relevance cutoff 0.8).
Closed squares indicate significant, positive BDC; open circles indicate
significant, negative BDC.

425



Doran et al. <@ Dinosaur baraminology »»2018 ICC

PC 3 likewise separates non-massopod sauropodomorphs (e.g.,
Plateosaurus, Pantydraco, etc.) from non-sauropod massopods
(e.g., Riojasaurus, Anchisaurus, Massospondylus, etc.) (Fig. 46).
Thecodontosaurus and Pantydraco, two “basal” “prosauropods”,
group together and are somewhat separated from the other taxa in
Fig. 45, but in Fig. 46 they overlap with other “prosauropods”. The
guaiabasaurids (including Panphagia) and Eoraptor, which have
all been controversially considered “basal” sauropodomorphs,
also form a cluster distinct from other outgroup taxa except the
herrerasaurid Chindesaurus in Fig. 45.

The BDC results for Otero et al. 5 (2015) data matrix show two
blocks of positive correlation separated from each other by
negative correlation: a sauropod block and a block containing
“basal”  sauropods (Antetonitrus and  Gongxianosaurus),
“basal”’sauropodomorphs, and some outgroup taxa (non-
dinosaurian dinosauromorphs, herrerasaurids, etc.) (Fig. 47).
There is one taxon pairing that links the two blocks with positive
correlation: Antetonitrus and Vulcanodon. Removal of the sauropod
and non-sauropodomorph taxa does not reveal obvious evidence
for discontinuities within the larger block of positive correlation.

PCAresults for Sauropodomorpha from Otero etal. (2015) paralleled
BDC but again revealed complicated spatial relationships. PCA
results agreed with BDC by clustering “basal” sauropodomorph
taxa far from the sauropod taxa (Fig. 48). PC 1 and PC 2 reveal
a trajectory of taxa stretching from the non-sauropodomorph
outgroups up to the non-sauropod Plateosauria. Although the
trajectory is a continuum, it is punctuated by gaps with no taxa.
One gap occurs between non-dinosaurs and dinosaurs, the next (a
small gap) between non-sauropodomorphs and the questionably
“basalmost” sauropodomorphs (Eoraptor and Saturnalia), the
next between Saturnalia and Pantydraco + Thecodontosaurus, and
then the final between Thecodontosaurus and the non-sauropod
plateosaurians. Though clustered, PC 1 and PC 2 groups most
non-sauropod plateosaurian taxa near their closest taxonomic
relatives (e.g., plateosaurids, non-sauropod sauropodiforms,
etc.). PC 3 further separated non-massopodan sauropodomorphs
from non-sauropod massopodans (Fig. 49). Among the non-
sauropod massopodans, the family Massospondylidae is
recognizable, although Aardonyx and Anchisaurus are clustered
with the massospondylid taxa. Additionally, Yunnanosaurus and
Lufengosaurus cluster with the non-sauropod sauropodiform taxa.
Interestingly, Eoraptor and Saturnalia are not aligned with the
non-sauropod sauropodomorph trajectory and are instead aligned
in the subparallel outgroup trajectory, which forms a stratomorphic
morphoseries (Euparkeria to Marasuchus to Silesaurus to the
dinosaur taxa with Ornithischia first, then Sauropodomorpha and
Herrerasauridae, and then Neotheropoda; Fig. 49).

1. Sauropoda

The BDC results for Upchurch et al.’s (2004) data matrix, in
Weishampel et al. (2004), demonstrate separation between the
Sauropoda and all other groups (Fig. 50). Sauropoda show positive
BDC while having negative BDC against outgroups. Classical
MBDS reflects separation between sauropods and all outgroups, with
Shunosaurus and Omeisaurus ordinating separately (Fig. 51). PCA
results likewise suggest some discontinuity between sauropods and
other groups yet suggests a separation within sauropods between

Diplodocoidea (Dicraeosaurus, Apatosaurus, and Diplodocus)
and other Sauropoda; this separation is not visible to either BDIST
or MDS (Fig. 52). As interesting as these results are, they contain
very few sauropod taxa, and whole, large sauropod groups (e.g.,
Titanosauria) are completely unrepresented.

2. Ornithischia

A. Basal Thyreophora

The BDC results for Norman, Witmer et al.’s (2004) data matrix,
in Weishampel et al. (2004), are shown in Fig. 53. Positive BDC
is present between Cerapoda, Lesothosaurus, Scutellosaurus,
and the hypothetical outgroup. These four taxa all share negative
correlation with Eurypoda (Stegosauria + Ankylosauria).
Emausaurus and Scelidosaurus do not correlate with any other
taxa in the analysis. Classical MDS results show the three “basal”
thyreophorans widely separate from each other and from every
other taxon (Fig. 54). PCA results show no clustering between
the few groups represented, though Lesothosaurus and Cerapoda
group the most closely (Fig. 55).

PCA for Breeden’s (2016) matrix shows Pachycephalosauria far
away from the other taxa and Ankylosauria and Stegosauria also
relatively far removed (Fig. 56). The remaining taxa (ornithopods,
ceratopsians, and “basal” thyreophorans) all cluster near each
other for PC 1. Similar to the clusters within Sauropodomorpha
(Figs. 48 and 49), PC 1 did not clearly separate ornithopods
from “basal” thyreophorans. Only PC 2 separated the Eurypoda
and other thyreophorans. Pachycephalosauria share overlapping
ranges with Eurypoda on PC 2, though both are distantly divided
by PC 1. Ornithopod groups connect to thyreophorans through
Heterodontosaurus (a “basal” ornithischian), Lesothosaurus
(either a “basal” ornithischian or a “basal” thyreophoran), and
Agilisaurus (a “basal” neornithischian). PC 3 unites most groups,
but it separates out Heterodontosaurus and the ceratopsians from
the other taxa and from each other (Fig. 57). PC 3 also separates
Psittacosauridae from the neoceratopsian taxa.

B. Stegosauria

The BDC results for Galton and Upchurch’s (2004b) data matrix,
in Weishampel et al. (2004), show a large block of positively
correlated stegosaurid taxa that share negative correlation with the
hypothetical ancestor (Fig. 58). Huayangosaurus, the most “basal”
stegosaur, does not share positive or negative correlation with
any other taxon in the analysis. Classical MDS results reflect the
BDC results with the majority of Stegosauria spatially grouped.
Huayangosaurus is the most distantly ordinated (Fig. 59). For PCA,
only groups with at least 60% of character data were analyzed. PCA
results likewise show Stegosauria separated from the outgroup
with Huayangosaurus spaced halfway between Kentrosaurus (a
stegosaur) and the hypothetical outgroup (Fig. 60). Dacentrurus is
the farthest removed stegosaur on the plot.

All 22 taxa in Raven and Maidment’s (2017) matrix were analyzed.
Since removing taxa with less than 50% complete character data
would remove more than half the taxa, all taxa were retained. PC
1 reveals separation between Eurypoda and all outgroups for PC
1 (Fig. 61). PC 2 separates stegosaurs from ankylosaurs except
for Tuojiangosaurus (73% missing data) and Paranthodon (92%
missing data), which group with the ankylosaur taxa. Interestingly,
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Figure 43. Three-dimensional classical MDS applied to Galton and
Upchurch’s (2004a) data matrix for “Prosauropoda”. Members of
“Prosauropoda” are shown in gray, Shunosaurus in orange, and two
generic outgroups in red. Scree plot indicates the first two coordinates
account for a majority of the variance.
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Figure 44. Biplot of PCA scores (black) and vectors (gray) for Galton
and Upchurch’s (2004a) data matrix for “Prosauropoda”. PC 1 accounts
for 35.8% of the variance and PC 2 accounts for 24.1% of the variance.
Outgroups show similar separation as MDS results.
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Figure 45. PCA scores for Bronzati’s (2017) data matrix for
“Prosauropoda”. PC 1 accounts for 37.9% of the variance and PC 2
accounts for 22.9% of the variance. PC 1 separates sauropods (left) from
other sauropodomorphs and the outgroup taxa. Outgroup taxa cluster in
the upper right, Thecodontosauridae cluster between the outgroup taxa and
the “prosauropods”.
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Figure 46. PCA scores for Bronzati’s (2017) data matrix for Prosauropoda.
PC 1 accounts for 37.9% of the variance and PC 3 accounts for 6.2% of
the variance. PC 3 distinguishes non-massopod sauropodomorphs (above)
from non-sauropod massopods (below).
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Gigantspinosaurus  groups closely with Huayangosaurus.
The “basal” thyreophoran taxa, including Lesothosaurus, all
cluster with each other in Fig. 61 and Fig. 62. PC 2 groups the
“basal” thyreophorans with the outgroup, but PC 3 shows a large
separation between the two. Once again, PC 3 was unable to
separate Tuojiangosaurus and Paranthodon from an ankylosaur
(Euoplocephalus). PC 3 also separated several stegosaurid genera
from the rest: Kentrosaurus, Huayangosaurus, Chungkingosaurus,
and Gigantspinosaurus (Fig. 62).

C. Ankylosauria

The BDC results for Vickaryous et al.’s (2004) data matrix, in
Weishampel et al. (2004), show three major clusters of positive
correlation: 1) Ankylosauridae, 2) Nodosauridae, and 3) outgroup
taxa (Fig. 63). All of the nodosaurids share positive correlation
except Gastonia, which is only positively correlated with
Gargoyleosaurus, and Gargoyleosaurus, which is only correlated
positively with Gastonia and Pawpawsaurus, which links it to the
main block of nodosaurids. The ankylosaurid block appears to be
made out of two blocks that share positive correlation between
them. Almost all of the ankylosaurids share negative correlation
with the main nodosaurid block and the outgroup taxa. Classical
MDS results show separation between Ankylosauridae and

Nodosauridae as two groups with Gastonia and Gargoyleosaurus
positioned midway between them (Fig. 64). PCA results present a
different image with groups distributed along an arc; the same two
genera are positioned midway along the continuum (Fig. 65).

PCA results for Zheng et al.’s (2018) dataset provided a different
topology for the Ankylosauria. Instead of an arc-shaped distribution
of taxa, Zheng’s larger dataset reveals a separation between the
Ankylosauridae and Nodosauridae along PC 1 in two morphoseries
(Fig. 66). PC 2 further shows a clustered series of ankylosaurids
while the nodosaurid series displayed wider spatial separation.
Nodosaurids Gargoyleosaurus, Gastonia, and Hungarosaurus
alone overlap with ankylosaurs on PC 2. Comparing PC 3 with
PC 1 separates ankylosaurids and nodosaurids in a similar fashion,
clustering only the ankylosaurs (Fig. 67). One ankylosaurid
(Crichtonpelta) and two nodosaurids (Gargoyleosaurus and
Gastonia) are distinguished by PC 3.

D. Basal Ornithopoda

The BDC results for Norman, Sues et al.’s (2004) data matrix,
in Weishampel et al. (2004), show two main clusters of positive
correlation separated by negative correlation in some cases (Fig.
68). One cluster corresponds to Heterodontosaurus and the outgroup
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Figure 47. BDC results for Otero et al.’s (2015) data matrix for Sauropodomorpha, as calculated by BDISTMDS (relevance cutoft 0.75). Closed
squares indicate significant, positive BDC; open circles indicate significant, negative BDC.
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Figure 48. PCA scores for Otero et al.’s (2015) data matrix for
Sauropodomorpha. PC 1 accounts for 33.9% of the variance and PC 2
accounts for 24.1% of the variance. The non-sauropodomorph outgroups
(right) form a nearly complete stratomorphic morphoseries leading to the
“prosauropods” (top). Sauropods form a discontinuous group (bottom
left).
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Figure 49. PCA scores for Otero et al.’s (2015) data matrix for
Sauropodomorpha. PC 1 accounts for 33.9% of the variance and PC 3
accounts for 7.0% of the variance. PC 3 separates non-massopodan
sauropodomorphs (top) from non-sauropod massopodans (bottom).
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Figure 50. BDC results for Upchurch et al.’s (2004) data matrix of
Sauropoda, as calculated by BDISTMDS (relevance cutoff 0.95).
Closed squares indicate significant, positive BDC; open circles indicate
significant, negative BDC.

c3

Figure 51. Three-dimensional classical MDS applied to Upchurch et al.’s
(2004) data matrix for Sauropoda. Members of Neosauropoda (Diplodocus,
Apatosaurus, Brachiosaurus, Dicraeosaurus, Camarasaurus) are in gray.
Shunosaurus (orange) and Omeisaurus (gray) ordinate toward foreground
with all other groups (light red) clustering with outgroup (dark red). Scree
plot indicates the first coordinate accounts for a majority of the variance.
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Figure 52. Biplot of PCA scores (black) and vectors (gray) for Upchurch
et al.’s (2004) data matrix for Sauropoda. PC 1 accounts for 61.8% of
the variance and PC 2 accounts for 16.6% of the variance. In contrast to
the BDC or MDS results PCA ordinations suggest additional discontinuity
between Diplodocoidea (specifically Flagellicaudata) members (top left)
and other sauropods.
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Figure 53. BDC results for Norman, Witmer et al.’s (2004) data matrix
of “basal” Thyreophora, as calculated by BDISTMDS (relevance cutoff
0.85). Closed squares indicate significant, positive BDC; open circles
indicate significant, negative BDC.
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Figure 54. Three-dimensional classical MDS applied to Norman, Witmer
et al.’s (2004) data matrix for “basal” Thyreophora. Scelidosaurus,
Scutellosaurus, and Emausaurus are shown in gray (center), Lesothosaurus
(orange) and Cerapoda (light orange) and the outgroup (red) are toward
the right, while Eurypoda ordinates toward the far left (dark orange). The
scree plot shows the first axis explains the majority of the variation.
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Figure 55. Biplot of PCA scores (black) and vectors (gray) for Norman,
Witmer et al.’s (2004) data matrix for “basal” Thyreophora. PC 1 accounts
for 76.9% of the variance and PC 2 accounts for 21.1% of the variance.
Eurypoda is isolated the top left.
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Figure 56. PCA scores for Breeden’s (2016) data matrix for Thyreophora.
PC 1 accounts for 23.4% of the variance and PC 2 accounts for 20.6% of
the variance. A nearly stratomorphic morphoseries of ornithopods connects
Thyreophora (middle right) to ornithopods and “basal” ornithischians from
lower layers (center). PC 2 reveals a discontinuity between Stegosauria
and Ankylosauria and other thyreophorans.
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Figure 57. Biplot of PCA scores (black) and vectors (gray) Breeden’s

(2016) data matrix for Thyreophora. PC 1 accounts for 23.4% of the

variance and PC 3 accounts for 16.6% of the variance. PC 3 groups

ornithopods and thyreophorans while separating members of Ceratopsia

(bottom).
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Figure 58. BDC results for Galton and Upchurch’s (2004b) data matrix
of Stegosauria, as calculated by BDISTMDS (relevance cutoff 0.80).
Closed squares indicate significant, positive BDC; open circles indicate
significant, negative BDC.

Figure 59. Three-dimensional classical MDS applied to Galton and
Upchurch’s (2004b) data matrix for Stegosauria. Members of Stegosauria
are shown in gray with only Huayangosaurus in orange. The outgroup
is located separately (red). The scree plot shows the first coordinate
represents a majority of the variation.
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of the variance and PC 2 accounts for 26.1% of the variance.
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Figure 61. Biplot of PCA scores (black) and vectors (gray) Raven and
Maidment’s (2017) complete data matrix for Stegosauria. PC 1 accounts
for 40.0% of the variance and PC 2 accounts for 26.6% of the variance.
PC 1 separates Stegosauria from outgroups (except ankylosaurs). PC 2
suggests a division within the Stegosauria (taxa ordinating on left vs.

center/bottom).
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Figure 63. BDC results for Vickaryous et al.’s (2004) data matrix of
Ankylosauria, as calculated by BDISTMDS (relevance cutoff 0.95).
Closed squares indicate significant, positive BDC; open circles indicate

significant, negative BDC.
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Figure 64. Three-dimensional classical MDS applied to Vickaryous et
al.’s (2004) data matrix for Ankylosauria. Members of Ankylosauria are
shown in gray, Nodosauridae in orange, and outgroups (in addition to
Gastonia and Gargoyleosaurus) in red. Hypothetical outgroup in dark red.
Scree plot suggests the first two axes represent most of the variation.
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Figure 65. Biplot of PCA scores (black) and vectors (gray) for Vickaryous
et al.’s (2004) data matrix for Ankylosauria. PC 1 accounts for 44.2% of
the variance and PC 2 accounts for 20.8% of the variance. Members of
Ankylosauria are tightly grouped to the left while Nodosauridae are more
diffusely spaced on the right. Gastonia and Gargoyleosaurus again display
central positions.

0.0

PC2

-0.4

-0.4 0.2

PC1

Figure 66. PCA scores for Zheng et al.’s (2018) data matrix for
Ankylosauria. PC 1 accounts for 42.9% of the variance and PC 2 accounts
for 24.3% of the variance. PC 1 distinguishes Ankylosauridae (left) from
Nodosauridae (right). PC 2 distinguishes Gargoyleosaurus, Gastonia, and
Hungarosaurus from other nodosaurids.
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Figure 67. Biplot of PCA scores (black) and vectors (gray) for Zheng et
al.’s (2018) data matrix for Ankylosauria. PC 1 accounts for 42.9% of
the variance and PC 3 accounts for 12.4% of the variance. PC 3 groups
the Ankylosauridae morphoseries (right) distinguishing Pinacosaurus and
Crichtonpelta. Gargoyleosaurus and Gastonia are likewise distinguished
within nodosaurids.
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taxa (Marginocephalia and the hypothetical outgroup), whereas
the other contains all of the “hypsolophodont”-grade ornithopods,
including parksosaurids (thescelosaurids), which have recently
been suggested to actually be outside Ornithopoda (Boyd 2015).
Classical MDS results show separation between Ornithopoda
and Marginocephalia, as well as between Ornithopoda and
Heterodontosaurus tucki (Fig. 69). PCA results likewise suggest
a general grouping of Ornithopoda separate from Marginocephalia
and Heterodontosaurus (Fig. 70).

E. Basal Iguanodontia

The BDC results for Norman’s (2004) data matrix, in Weishampel
et al. (2004), show two blocks of positive correlation separated by
negative correlation in most instances: 1) Hadrosauriformes and
2) non-hadrosauriform ornithopods + outgroup taxa (Fig. 71).
Classical MDS results (Fig. 72) show two main clusters separated
from each other by morphological space, which correspond to the
blocks of positive correlation in the BDC results. PCA results show
rhabdodontids and Tenontosaurus clustered with the outgroup
taxa, but Dryosaurus and Camptosaurus are clustered together
at a distance away (Fig. 73). There is a trajectory beginning with
non-hadrosauroid iguanodonts and moving up to non-hadrosaurid
hadrosauroids, and finally a hadrosaurid at the very top left corner.

The PCA results of the Madiza (2017) dataset reveal separation
between Hadrosauriformes and non-hadrosauriform iguanodonts
for PC 1 (Fig. 74). For PC 2, non-hadrosauromorph hadrosauriforms
(e.g., Iguanodon, Ouranosaurus, etc.) are separated from non-
hadrosaurid hadrosauromorphs, which are also separated from
hadrosaurids. Although the outgroup overlaps with Tenontosaurus
in Fig. 74, PC 3 separates the outgroup from these ‘“basal”
iguanodonts (Fig. 75). Additionally, PC 3 separates rhabdodontids
(Zalmoxes) from other “basal” iguanodonts.

PCA separated Hadrosauriformes and non-hadrosauriform
Iguanodontia along PC 1 for McDonald’s (2012) data matrix
(Fig. 76). PC 2 divided a series of Hadrosauroidea from non-
hadrosauroid Hadrosauriformes and the “basal” hadrosauroid
Altirhinus. Additionally, PC 2 separates non-hadrosauriform
dryomorphs from non-dryomorphs (including Zenontosaurus and
Zalmoxes). PC 3 separated several Hadrosauromorpha from the
rest of the Iguanodontia and outgroups (Fig. 77).

FE Hadrosauridae

The BDC results for Horner et al.’s (2004) data matrix, in
Weishampel et al. (2004), show two main blocks of positive
correlation separated by negative correlation: 1) Hadrosauridae
(the larger block) and 2) non-hadrosaurid taxa (Fig. 78). Within
the hadrosaurid block, there are two separate blocks of positive
correlation, which correspond to the two traditional hadrosaurid
subfamilies: the crested lambeosaurines and the crestless
hadrosaurines (now called saurolophines, to the exclusion
of Hadrosaurus). Loose connections of positive correlation
exist between the two subfamily blocks (mainly involving
Nipponosaurus and Parasaurolophus). Classical MDS show
separation of Hadrosauridae and outgroups and possibly suggests
a small separation between the two hadrosaurid subfamilies (Fig.
79). PCA results likewise suggest separation of Hadrosauridae
from outgroups by PC 1 and separation between the subfamilies

by PC 2 (Fig. 80).

PCA for the Cruzado-Caballero and Powell (2017) matrix
reveals three clear clusters for PC 1 and PC 2: Saurolophinae,
Lambeosaurinae, and non-hadrosaurid Hadrosauriformes + the
hypothetical outgroup (Fig. 81). Lambeosaurinae taxa form a
tightly-spaced series (except for Jaxartosaurus and Tsintaosaurus,
which are at a distance away) while the Saurolophinae taxa are
more widely spaced. Additionally, the saurolophine morphoseries
includes a gap. The morphoseries above (“Saurolophinae 17)
is stratomorphic while the second is not. Saurolophinae 1
and Saurolophinae 2 are separated again by PC 3 (Fig. 82).
Saurolophinae 1 corresponds to Kritosaurini + Brachylophosaurini
+ Aralosaurus, and Saurolophinae 2 corresponds to Edmontosaurini
+ Saurolophini + Lophorhothon. Hadrosaurus does not cluster
with the hadrosaurids. PC 3 also separates the non-hadrosaurid
hadrosauriforms into two groups: non-hadrosaurosauromorph
hadrosauriforms (below) and non-hadrosaurid hadrosauromorphs
(above).

G. Pachycephalosauria

The BDC results for Maryanska et al.’s (2004) data matrix,
in Weishampel et al. (2004), show three blocks of positive
correlation: traditional Pachycephalosauridae (domed), traditional
Homalocephalidae (flat-headed), and the outgroup taxa (Fig. 83).
None of the blocks share positive correlation between them, but
the traditional pachycephalosaurids all share negative correlation
with the outgroup taxa. Classical MDS results show separation
between Pachycephalosauridae, the outgroups, and the two
“homalocephalids”. (Fig. 84). For PCA analysis, only groups with
at least 75% of character data were analyzed. PCA results likewise
suggest separation of Pachycephalosauridae from Homalocephale,
Goyocephale, and Ceratopsia (Fig. 85).

Pachycephalosauridae ~ for  Schott  (2011)  demonstrated
separation from outgroups along PC 1. PC 1 shows separation
between Pachycephalosauridae, the “basal” pachycephalosaur
Wannanosaurus, and the outgroup taxa (Fig. 86). The widely-
space members of the morphoseries along PC 2 may indicate
additional divisions exist among pachycephalosaurs. For example,
PC 3 separates all of the flat-headed pachycephalosaurs (Dracorex,
Goyocephale, Homalocephale, and Wannanosaurus) from the
dome-headed pachycephalosaurs (Fig. 87). Additionally, the
closest dome-headed pachycephalosaur to the flat-headed forms is
Stygimoloch, which has a small, narrow dome, which is unlike the
condition in most pachycephalosaurs. It has been suggested that
Dracorex and Stygimoloch are not separate species, but a part of a
single growth series that ends in Pachycephalosaurus (Horner and
Goodwin 2009).

H. “Basal” Ceratopsia

The BDC results for Hailu and Dodson’s (2004) data matrix, in
Weishampel et al. (2004), show three blocks of positive correlation:
1) the non-neoceratopsian ceratopsians (Psittacosaurus and
Chaoyangsaurus) and outgroup taxa, 2) the non-ceratopsid
neoceratopsians, and 3) the two ceratopsid taxa (7riceratops and
Centrosaurus) (Fig. 88). All of the neoceratopsians share negative
correlation with the non-neoceratopsian + outgroup block except
for Archaeoceratops. There is no correlation of any kind between
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Figure 68. BDC results for Norman, Witmer et al.’s (2004) data matrix
of “basal” Ornithopoda, as calculated by BDISTMDS (relevance cutoff
0.80). Closed squares indicate significant, positive BDC; open circles
indicate significant, negative BDC.
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Figure 69. Three-dimensional classical MDS applied to Norman, Witmer
et al.’s (2004) data matrix for “basal” Ornithopoda. Marginocephalia is
shown in gray, members of Ornithopoda are shown in light red, and the
outgroup is in dark red. H. tucki is closest to the outgroup. Scree plot
suggests the first axis represents most of the variation.

-2 -1 0 1 2
< .. Margnocephalia
Py g
o~ G_cncosaltensis
S
8 < H_tuck
0. o | Outgroup
o
N‘ — A_multdens
o
’ O_npkale
< ] Z schaft A_louderbacki
o' | | I I |
-0.4 -0.2 0.0 0.2 0.4
PC1

Figure 70. Biplot of PCA scores (black) and vectors (gray) for Norman,
Witmer et al.’s (2004) data matrix for Ornithopoda. PC 1 accounts for
38.6% of the variance and PC 2 accounts for 20.8% of the variance. All are

members of Ornithopoda, except for Marginocephalia (top right).
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Figure 71. BDC results for Norman’s (2004) data matrix of “basal”
Iguanodontia, as calculated by BDISTMDS (relevance cutoff 0.95).
Closed squares indicate significant, positive BDC; open circles indicate

significant, negative BDC.
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Figure 72. Three-dimensional classical MDS applied to Norman’s (2004)
data matrix for “basal” Iguanodontia. Non-hadrosauriform ornithischians
are shown in gray. Hadrosauriformes is in orange. The imaginary outgroup
is dark red, clustered near L. diagnosticus and H. foxii. Scree plot suggests
the first axis represents most of the variation.
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Figure 73. Biplot of PCA scores (black) and vectors (gray) for Norman’s
(2004) data matrix for Igunodontia. PC 1 accounts for 60.4% of the
variance and PC 2 accounts for 10.6% of the variance. Hadrosauriform
taxa are toward the left, whereas the non-hadrosauriform iguanodonts and
outgroup are toward the middle.
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Figure 74. Biplot of PCA scores (black) and vectors (gray) for Madzia et
al.’s (2017) data matrix for Ornithopoda. PC 1 accounts for 57.7% of the
variance and PC 2 accounts for 11.8% of the variance. PC 1 separates non-
hadrosauriform iguanodonts and outgroup taxa from Hadrosauriformes.
PC 2 distinguishes non-hadrosauromorph hadrosauriforms (top) from
hadrosauromorphs (bottom). The lower morphoseries is stratomorphic.
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Figure 75. Biplot of PCA scores (black) and vectors (gray) for Madzia
et al.’s (2017) data matrix for Ornithopoda. PC 1 accounts for 57.7% of
the variance and PC 3 accounts for 7.3% of the variance. PC 3 separates
rhabododontids (top) from other iguanodont taxa.
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Figure 76. Biplot of PCA scores (blaclP<C)1and vectors (gray) for McDonald’s
(2012) data matrix for Iguanodontia. PC 1 accounts for 62.8% of the
variance and PC 2 accounts for 9.2% of the variance. PC 1 separates non-
hadrosauriform Iguanodontia (left) from Hadrosauriformes (right). PC
2 separates the non-dryomorph iguanodonts (top) from the dryomorphs
(bottom) among the series on the left, and it separates three groups on
the right: 1) non-hadrosauroid Hadrosauriformes + Altirhinus (bottom),
2) non-hadrosaurid Hadrosauroidea (middle), and 3) Hadrosauridae (top).

-10 -5 0 5
Prabactosaurus gobienss.
frr—
Equibus normani
o~ Eclmbia carfonesa ©
© Protohadros byrdi
Lesothosaurus diagnosicus
OQUTGROUP Dakotadon lakotaensis
Hypsilophodon faxi Jnzhousaurus yang  TORSSEMENSHNGS
Oryosaurus atus
TentrsaiorasL SRt
o _| o
© S 5 173001
Dysalctosaurus letowrorbecs
«
O
a
Camplosaurus dispar Mantellsaurus atherfieldensis
]
CI) | w
Zaimoxes robustus Iguanodon bernissartensis. Conghosaurys casua] !
Edmonosaurus am|
Ouanosaurus i
<
7 o
I
Zaimoves shaiperorum
T T T T
-0.4 -0.2 0.0 0.2

PC1
Figure 77. Biplot of PCA scores (black) and vectors (gray) for McDonald’s
(2012) data matrix for Iguanodontia. PC 1 accounts for 62.8% of the
variance and PC 3 accounts for 6.8% of the variance. PC 3 separated
“basal” Hadrosauriformes (traditional Iguanodontidae) from the other
taxa.
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Figure 78. BDC results for Horner et al.’s (2004) data matrix of
Hadrosauridae, as calculated by BDISTMDS (relevance cutoff 0.75).
Closed squares indicate significant, positive BDC; open circles indicate
significant, negative BDC.
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Figure 79. Three-dimensional classical MDS applied to Horner et al.’s
(2004) data matrix for Hadrosauridae. Members of Hadrosauridae are
shown in gray, with outgroups Iguanodon, Probactrosaurus, Protohadros,
Eolambia, Telmatosaurus, and Lophorhothon (bottom center) shown
in orange. Composite outgroup is dark red. Deeper separation within
Hadrosauridae (gray) is suggested, though not conclusive. Scree plot
suggests the first two axes represent most of the variation.
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Figure 80. Biplot of PCA scores (black) and vectors (gray) for Horner
et al.’s (2004) data matrix for Hadrosauridae. PC 1 accounts for 49.4%
of the variance and PC 2 accounts for 31.5% of the variance. Members
of Hadrosauridae are grouped in a series on the left. PC 2 separates
lambeosaurine hadrosaurids (bottom) from saurolophine hadrosaurids

(top).
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Figure 81. PCA scores for Cruzado-CZCl;allero and Powell’s (2017) data
matrix for Hadrosauroidea. PC 1 accounts for 47.3% of the variance and PC
2 accounts for 20.2% of the variance. PC 1 and PC 2 reveal discontinuity
between the Lambeosaurinae and Saurolophinae subfamilies. PC 2 further
suggests additional division within the Saurolophinae morphoseries:
1) Kritosaurini + Brachylophosaurini (top) and 2) Edmontosaurini +
Saurolophini. The lambeosaurine Aralosaurus clusters with Saurolophinae
morphoseries 1.
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Figure 82. PCA scores for Cruzado-Caballero and Powell’s (2017) data
matrix for Hadrosauroidea. PC 1 accounts for 47.3% of the variance
and PC 3 accounts for 15.6% of the variance. PC 3 separates the
Lambeosaurinae from the Saurolophinae on the left, and it also separates
the non-hadrosauromorph Hadrosauriformes from the non-hadrosaurid
Hadrosauromorpha (right).
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Figure 83. BDC results for Maryanska et al.’s (2004) data matrix of
Pachycephalosauria, as calculated by BDISTMDS (relevance cutoft 0.80).
Closed squares indicate significant, positive BDC; open circles indicate
significant, negative BDC.
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Figure 84. Three-dimensional classical MDS applied to Maryanska
et al.’s (2004) data matrix for Pachycephalosauria. Members of
Pachycephalosauridae are shown in gray, whereas all other members
including Homalocephale, Goyocephale, and the outgroup are shown in
dark red. The outgroup clusters near Ceratopsia, Homalocephale, and
Goyocephale. Scree plot suggests the first axis represents most of the
variation.
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Figure 85. Biplot of PCA scores (black) and vectors (gray) for Maryanska
et al.’s (2004) data matrix for Pachycephalosauria. PC 1 accounts for
70.2% of the variance and PC 2 accounts for 17.1% of the variance.
Members of dome-headed Pachycephalosauridae are in the top-left.
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Figure 86. Biplot of PCA scores (black) and vectors (gray) for
Schott’s (2011) data matrix for Pachycephalosauria. PC 1 accounts
for 50.0% of the variance and PC 2 accounts for 21.9% of the
variance. PC 1 separates pachycephalosaurs (left) from the outgroup
taxa (right), although Wannanosarus a “basal” pachycephalosaur,
is closer to the outgroup taxa.
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Figure 87. Biplot of PCA scores (black) and vectors (gray) for Schott’s
(2011) data matrix for Pachycephalosauria. PC 1 accounts for 50.0% of
the variance and PC 3 accounts for 8.4% of the variance. PC 3 separates
the flat-headed taxa Goyocephale, Homalocephale, and Dracorex from the
majority of Pachycephalosauridae.
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the ceratopsids and the non-ceratopsid neoceratopsians. Classical
MDS results show a similar division, including placement of
Psittacosaurus and Chaoyangsaurus with the outgroup taxa (Fig.
89). In agreement with the other methods, PCA suggests separation
between Ceratopsidae and other ceratopsians and between
neoceratopsians and the outgroup + Psittacosaurus (Fig. 90).

“Basal” Ceratopsia for Han et al.’s (2017) data matrix reveals
separation between Ceratopsia and all outgroups, including
pachycephalosaurs, for PC 1 (Fig. 91). Both PC 2 and PC 3
separate basal Ceratopsia (e.g., Psittacosaurus and Yinlong) and
Neoceratopsia (Fig. 92). In PC 2, The ceratopsian taxa are also
aligned stratigraphically with the Upper Jurassic “basalmost”
ceratopsian, Yinlong, on the bottom and the more “derived” forms
(Protoceratops and Leptoceratops) found in Upper Cretaceous
rocks at the top. However, Leptoceratops, a Maastrichtian form, is
found below Protoceratops, a Campanian form, in the series.

1. Ceratopsidae

The BDC results for Dodson et al.’s (2004) data matrix, in
Weishampel et al. (2004), show three blocks of positive
correlation: 1) non-ceratopsid outgroup, 2) Chasmosaurinae, and
3) Centrosaurinae (Fig. 93). Almost all of the ceratopsid taxa
(Chasmosaurinae and Centrosaurinae together) share negative
correlation with the non-ceratopsid outgroup taxa. There is only one
instance of shared positive correlation between the two ceratopsid
blocks (Triceratops and Avaceratops) and no instances of shared
negative correlation. Classical MDS results show separation
between Ceratopsidae and the outgroup taxa, as well as separation
between the two ceratopsid subfamilies (Fig. 94). PCA results
likewise show separation between the three groups, however it is
also revealed that Zuniceratops is separated from Protoceratops
and the hypothetical outgroup by PC 2 (Fig. 95).

PCA for Fry (2015) separates the Chasmosaurinae from the
non-chasmosaurine taxa (centrosaurines and non-ceratopsids),
with a suggestion of two parallel morphoseries. Triceratopsini
forms a series within Chasmosaurinae with Arrhinoceratops
and Bravoceratops clustering more closely with Triceratopsini
members (Fig. 96). A parallel series is revealed in non-triceratopsin
chasmosaurines. PC 3 groups taxa from all groups but reveals a
separation for the three included centrosaurine species (Fig. 97).

DISCUSSION

These results answer a number of interesting questions regarding
not only dinosaurs and the relationships of birds to dinosaurs, but
also for methodologies aiding baraminology. Close analysis of
the PCA results further suggest details for Flood-related burial of
dinosaur assemblages.

We have inferred continuity between dinosaur taxa based on shared
positive correlation (BDC) and close clustering/trajectories (MDS
and PCA), whereas discontinuity was inferred for shared negative
correlation (BDC) and distant spacing in MDS and PCA. Because
of these patterns discussed in our Results section, we arrived at
various conclusions on the baraminic status of various dinosaur
taxa (Table 1, Appendix Table 2).

PCA analyses yielded unexpected insights. BDC analyses identified
dinosaur holobaramins, often near the family level, as groups of
taxa with significant similarity and dissimilarity. PCA revealed

morphospatial relationships of dinosaurs across wider taxonomic
ranges than BDC was designed for. Component plots provided
additional details on the nature of holobaramins. For PCA,
holobaramins are taxa confined to spatial clusters or, more often,
linear series. Dinosaur holobaramins visualized in multivariate
space could be defined as discontinuity-bounded morphospatial
series of related taxa. That is, dinosaur holobaramins were
frequently ordered in short series of taxa that were spatially-isolated
from other series. The series of closely-spaced taxa in multivariate
space represent trajectories through limited morphological space.

Morphospatial series yielded additional potential insights. Using
conventional radiometric ages as relative chronometers, series
can sometimes be identified as stratomorphic. Stratomorphic
morphospatial series are defined as sequential morphospatial series
whose morphological sequence appearance matches its fossil
record first appearance order (Wise 1995). Of the 42 lineages,
seven had strong suggestive stratomorphic overprints (“Yes” and
“Nearly” in Table 1).

These results suggest that dinosaurs, like many other taxonomic
groups examined through baraminology, frequently show
discontinuity at or near the family level. Of 27 lineages examined
in the most recent matrices which suggest holobaramins or near-
holobaramins, six are at the family level, four are subfamilies, and
fourteen are at suborder or between suborder or family (Table 1).

A further inference drawn from these observations raised
questions about how dinosaur baramins were distributed within
the Mesozoic. For example, all four of the proposed subfamily-
level holobaramins were found in the Upper Cretaceous. Four of
the seven stratomorphic holobaramins were entirely confined to the
Cretaceous, and the remaining three included Cretaceous taxa.

The results also address a number of questions regarding dinosaur
biosystematics and bird-dinosaur relationships.

1. Baraminology

A. Dinosaur Groups

The Dinosauria contain three large, morphologically-disparate
groups. Baron’s (2018) Dinosauria matrix provided the most diverse
set of taxa for comparison. Analysis of the complete data with the
ordination-based systematics employed here leads to a conclusion
similar to Baron’s phylogenetic analysis. That is, the complete data
matrix suggests an association of ornithischians and theropods
within an Ornithoscelida group (Figs. 1 and 2). From the standpoint
of a creation model approach to systematics, the existence of an
Ornithoscelida cluster is a neutral question; biological creation
includes hierarchies of higher-order associations. However,
after removing taxa with the highest proportions of missing data
(i.e., taxa with 50% or more missing data) a different ordination
emerged: theropods, ornithischians, and sauropodomorphs formed
three equally distant spatial associations (Figs. 3 and 4). This was
consistent with ordinations of basal Saurischia (Fig. 8) that likewise
divided sauropods and theropods. We propose that the ordination
resulting in an Ornithoscelida cluster (i.e., Fig. 1) was generated,
in part, as a result of missing data. Taxa with large amounts of
missing data likely function as “noise” that obscures underlying
group spatial relationships; removal of problematic taxa results in
different spatial geometries. Alternatively, another possibility is
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Table 1. Dinosaur baramins and group characteristics estimated through PCA. Holobaramin (H), Apobaramin (A), and Monobaramin (M) are assigned
approximate taxonomic levels. Taxa within baramins ordinate as clusters or series. Stratomorphic baraminic groups occur where morphological series
(PC 1 and PC 2) reflect taxon order of first appearance in the fossil record. Series ranges are shown by conventional first appearance datum (FAD) and

last appearance datum (LAD).

Series Characteristics Range
. . Taxonomic .. .

Higher Taxonomy Baraminology Equivalent n Ordination Stratomorphic | FAD | LAD
Saurichia Herrerasauridae (H?) Family Cluster No 233.23 | 225
Saurischia: Theropoda Coelophysoidea (M) Superfamily Cluster No 220 183
Saurischia: Theropoda Noasauridae (H?) Family Cluster No 161 70

S Abelisauridae (minus . .

Saurischia: Theropoda Eoabelisaurus) (H) Family 10 Series No 110 66

— " " Unranked (above .

Saurischia: Theropoda Basal" Tetanurae (??) . 15? Series Nearly 201 91
Family)
Saurischia: Theropoda Spinosauridae (M) Family 2 Cluster No 148 85

S Tyrannosauroidea (minus . .

Saurischia: Theropoda some "basal" forms) (H) Superfamily 13 Series Nearly 130 66
Saurischia: Theropoda Ornithomimosauria (H) Unranked (below 8 Series Yes 140 66
Suborder)
Saurischia: Theropoda Therizinosauridae (H) Family 10 Cluster Unclear 94 66
Saurischia: Theropoda Oviraptorosauria (H) Unranked (below 8 Series No 130 66
Suborder)
Saurischia: Theropoda Deinonychosauria (H) Superfamily ~30 Cluster No 130 66
Saurischia: Thecodontosauridae (M) Family 2 Cluster No 203 199
Sauropodomorpha
Saurischia: Non-sauropod Massopoda Unranked (below
Sauropodomorpha M) Suborder) 1 Cluster No 228 189
Saurischia: . .
?
Sauropodomorpha Flagellicaudata (A?) Superfamily 3 Cluster No 170 122
Ornithischia: Thyreophora Stegosauria (H) Suborder 14 Series No 169 125
Ornithischia: Thyreophora | Ankylosauria (H?) Suborder 21 Series No 168 66
e . Non-hadrosauriform Unranked (below
Ornithischia: Ornithopoda Iguanodontia (A?) Suborder) 10+ Cluster No 163 66
e . Non-hadrosaurid Unranked (above .
Ornithischia: Ornithopoda Hadrosauriformes (H?) Family) 14 Series Yes 140 66
Ornithischia: Ornithopoda Saurolophinae (H) Subfamily 19 2 Series 1 No; 1 Yes 79 66
Ornithischia: Ornithopoda Lambeosaurinae (H) Subfamily 18 Cluster No 85.8 66
Ornithischia: . .
Marginocephalia Pachycephalosauria (H) Suborder 14 Series No 86 66
Ornithischia: Non-neoceratopsian Unranked (above Cluster/
Marginocephalia Ceratopsia (H?) Family) 4 Series No/Yes 158 101
Ornithischia: Non-ceratopsid Neoceratopsia | Unranked (above .
Marginocephalia (H?) Family) 6 Series Nearly 126 66
Ormtl_nschla: . Chasmosaurinae (H?) Subfamily 25 Series No 78 66
Marginocephalia
Ormtl_nschla: . Centrosaurinae (H?) Subfamily ~6 Cluster No 80.8 66
Marginocephalia
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Figure 88. BDC results for Hailu and Dodson’s (2004) data matrix of
“basal” Ceratopsia, as calculated by BDISTMDS (relevance cutoff 0.95).
Closed squares indicate significant, positive BDC; open circles indicate
significant, negative BDC.
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Figure 89. Three-dimensional classical MDS applied to Hailu and
Dodson’s (2004) data matrix for “basal” Ceratopsia. Outgroup members
are light gray, Ceratopsia is light red, and the generic outgroup is dark
red. The outgroup is clustered closest to Psittacosaurus mongoliensis and
Chaoyangsaurus youngi. Scree plot suggests the first axis represents most
of the variation.
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Figure 90. Biplot of PCA scores (black) and vectors (gray) for Hailu and
Dodson’s (2004) data matrix for Ceratopsia. PC 1 accounts for 58.6%
of the variance and PC 2 accounts for 19.2% of the variance. Members
of Psittacosauridae split into bottom and top-right. Triceratops and
Centrosaurus show clear separation (top left).
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Figure 91. PCA scores for Han et al.’s (2017) data matrix for Ceratopsia.
PC 1 accounts for 29.9% of the variance and PC 2 accounts for 19.5%
of the variance. PC 1 separates ceratopsians (right) from the other taxa.
PC 1 and PC 2 reveal a nearly stratomorphic morphoseries for Ceratopsia
(right). Basal taxa also suggest a stratomorphic series (left).
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Figure 92. PCA scores for Han et al.’s (2017) data matrix for Ceratopsia.

PC 1 accounts for 29.9% of the variance and PC 3 accounts for 17.0%

of the variance. PC 3 separates Neoceratopsia from “basal” Ceratopsia
(right).
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Figure 93. BDC results for Dodson et al.’s (2004) data matrix of
Ceratopsidae, as calculated by BDISTMDS (relevance cutoff 0.75).
Closed squares indicate significant, positive BDC; open circles indicate
significant, negative BDC.

Figure 94. Three-dimensional classical MDS applied to Dodson et al.’s
(2004) data matrix for Ceratopsidae. Members of Ceratopsidae are shown
in light red, Zuniceratops and Protoceratops are shown in gray, the
outgroup is dark red. The outgroup is clustered near Protoceratops and
Zuniceratops. Scree plot suggests the first two axes represent most of the
variation.
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Figure 95. Biplot of PCA scores (black) and vectors (gray) for Dodson
et al.’s (2004) data matrix. PC 1 accounts for 45.5% of the variance and
PC 2 accounts for 38.1% of the variance. Members of Ceratopsidae are
shown to the left. The outgroup, Zuniceratops, and Protoceratops show
clear separation (far right).
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that some of the taxa with less than 50% of available character data
are transitional in morphology between the other groups so they
fall in between them, creating a spatially-scattered ordination for
the plot. This may be occurring in some situations, but removal
of taxa with less than 50% of characters across the board should
not preferentially remove taxa with transitional morphologies.
As a result, we predict that future datasets with more complete
data will continue to reveal these three major dinosaur divisions
as discontinuity-bounded, morphospatially separate associations
(apobaramins).

B. PCA-defined Holobaramins

Many dinosaur holobaramins could be clearly distinguished. Often,
the additional material of newer datasets clarified uncertainty from
earlier, less complete matrices (i.e., 2004 matrices). One example
was “Prosauropoda.” The 2004 BDC results (Fig. 42) showed
positive BDC between all non-sauropod sauropodomorphs (except
for Camelotia, which was only correlated with a few others). Both
MDS and PCA suggested there may be discontinuities within this
group, but it was not very clear. However, the Bronzati (2017)
PCA results show various clusters and series of “prosauropods”,
which probably correspond to different holobaramins such
as Thecodontosauridae and non-sauropod Massopoda (listed
as monobaramins (but possibly holobaramins) in Table 1 and
Appendix Table 2.

Another group that benefited from better data was the Ankylosauria.
Ankylosauria BDC results for the 2004 matrix separated taxa into
two groups. One group contained traditional nodosaurids and two
polacanthines (a group of ankylosaurs that have been taxonomically

difficult to place as either ankylsoaurids or nodosaurids). The non-
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Figure 96. Biplot of PCA scores (black) and vectors (gray) for Fry’s (2015)
data matrix for Ceratopsidae. PC 1 accounts for 45.6% of the variance and
PC 2 accounts for 19.2% of the variance. PC 1 separates Chasmosaurinae
from non-chasmosaurine taxa. PC 2 reveals a separation between
Triceratopsini (top) and non-triceratopsin chasmosaurines (below).

polacanthine nodosaurid block was separated from the ankylosaurid
block by negative correlation, but the polacanthines shared no
correlation with the ankylosaurids at all. This pattern was explained
well by the MDS plot and especially the PCA plot, which both
show the polacanthines in a gap directly between the ankylosaurids
and nodosaurids. These patterns suggest that all of Ankylosauria
might be a holobaramin. Interestingly, the results from the Zheng
et al. (2018) analysis show two different patterns. Comparing PC 1
and PC 2 results in a series of nodosaurids and a separate cluster of
ankylosaurids. Polacanthine taxa fall in between. Comparing PC 1
and PC 3, however, shows the polacanthines at the base of a series
of nodosaurids, far away from the ankylosaurids by PC 3, but still
near them in PC 1. Surprisingly, the ankylosaurid Crichtonpelta
clusters near the polacanthines and not the other ankylosaurids.
These PCA results for Zheng et al. (2018) help to show why it
is so difficult to classify polacanthines: some of their features are
more ankylosaurid-like and some are more nodosaurid-like. It is
likely, given these results, that ankylosaurs as a whole are a single
holobaramin. Indeed, recent research into the evolution of the tail
club in ankylosaurids (Arbour and Currie 2015) is consistent with
the idea that nodosaurids and ankylosaurids share a single common
ancestor. Some of the taxa that are considered transitional in tail
morphology between the two groups have not been included in this
analysis (Liaoningosaurus and Gobisaurus).

Hadrosauridae provided an example of group with potentially
hidden morphological divisions. PCA supported the groupings
of BDC and MDS (compare Figs. 78-80) yet PCA revealed a
potentially deeper subfamily-level division. Hadrosauridaec had
positive BDC between group members, although two blocks of

positive correlation within the hadrosaurid block were evident,
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Figure 97. Biplot of PCA scores (black) and vectors (gray) for Fry’s (2015)
data matrix for Ceratopsidae. PC 1 accounts for 45.6% of the variance and
PC 3 accounts for 14.0% of the variance. PC 3 divides centrosaurine taxa
(top) from Chasmosaurinae (below).
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with negative BDC against outgroups. MDS also separated all
Hadrosauridae members from its outgroups, and the hadrosaurids
did appear to be two clusters of taxa. The first two MDS axes
explain nearly all the variance. PCA affirmed the separation of
Hadrosauridae from its outgroups yet strongly suggested two
morphological groups within Hadrosauridae: Saurolophinae and
Lambeosaurinae. Analysis of Cruzado-Cabellero and Powell’s
(2017) more complete matrix made the subfamily division clear
(Fig. 81). Additionally, a morphological gap in the Saurolophinae
subfamily  (Kritosaurini +  Brachylophosaurini  versus
Edmontosaurini + Saurolophini) suggests deeper division may
exist. The disjunct morphoseries appears to be series of taxa in two
ends of a common spatial trajectory, as if linking taxa are missing.
These groups may ultimately be connected or they could be two
holobaramins whose similar ordinations reflect deeper biological
similarities (e.g., similar trophic or ecological functions).

C. Implications of morphospatial patterns

An even more interesting, and structurally deeper, disjunct
morphoseries appears to be present between basal tetanurans
and tyrannosauroids. The baraminic distance relationships were
too complex to represent with BDC (Fig. 16). The BDC plot
was poorly defined due to the inclusion of taxa from multiple
taxonomic families. The same data plotted with PCA revealed
several morphological clusters, with smaller groups nested within
(Fig. 17). The divisions reflected distinct structural designs within
Tetanurae: a Tyrannosauroidea series (top, numbered “1”); non-
tyrannosauroid coelurosaurs (with numbered subgroups, left); and
a non-coelurosaur tetanuran series (unnumbered, right). PCA was
a better alternative for analyzing complex, multi-family matrices
since morphological disparity is easily accommodated and clearly
visible in multivariate space. Of interest here is the gap between
the tyrannosauroids and tetanurans. The disjunct morphoseries
within the Saurolophinae reflected smaller-scale differences
within a subfamily. The tyrannosauroids and non-coelurosaur
tetanurans have the appearance of a spatial connection across
deeper morphological character space (i.e., at least family-level
discontinuity). This may suggest some intrabaraminic morphologies
unfolded across common biological character-space trajectories.
The closest biological analogy would be an ontogenetic-like
unfolding of species. It is as if each successive species “step” was
nearly identical but differed in key characteristics along a linear
series with recognized end points (Wise 2014). If so, the aligned
morphospatial ordination between tyrannosauroids and non-
coelurosaur tetanurans may be due to similar ecological, functional,
or biomechanical requirements shared by each group. This
suggests tyrannosauroids and non-coelurosaur tetanurans possibly
share deep common biological similarities (e.g., developmental).
Indeed, tyrannosaurids were originally classified as “carnosaurs”
(essentially, the big meat-eating dinosaurs) alongside animals
like Allosaurus and Megalosaurus. However, Matthew and
Brown (1922) noted that “although paralleling megalosaurs in
their huge size, massive proportions, short neck and large head,
differ from them and resemble the coelurids and ornithomimids
in the construction of the pelvis and elongate quadrate” (p. 375).
Despite such observations tyrannosaurids were often classified as
“carnosaurs” even into the late 20" century by some researchers
(e.g., Molnar et al. 1990). It is very likely that tyrannosaurids are

convergent with “carnosaur” tetanurans in acquiring their large
size independently in the pre-Flood world (Aaron 2014b).

Tyrannosauroidea is also important since it was the first dinosaur
assigned to a holobaramin (Aaron 20145). Aaron applied BDC and
MDS to four data matrices to make the determination (Brusatte
et al. 2010; Carr and Williamson 2010; Xu et al. 2012; Lii et al.
2014). We report findings similar to Aaron: the Tyrannosauroidea
(to the exclusion of Yutyrannus, Dilong, and the Proceratosauridae)
show both positive BDC within their group and negative BDC
outside. MDS results displayed linear arrangements of outgroup
and Tyrannosauroidea taxa positioned at nearly right angles.
The ordination of Tyrannosauroidea in PCA (not performed by
Aaron but reported here) showed a complimentary but slightly
different arrangement than MDS. PC 2 separated morphologies
along an axis with coelurosaur morphologies on one end —
ornithomimosaurs Harpymimus and Pelecanimimus, alongside
Archaeopteryx — up through dromaeosaurids toward the middle of
the axis, and Allosauroidea near the distant end. Tyrannosauroidea
is clustered toward one end of PC 1 with member genera aligned
nearly perpendicular to the theropod-maniraptoriform continuum
on PC 1. Tyrannosauroid morphologies clustered in a smaller,
separated portion of PCA morphospace. Close spatial clustering of
Tyrannosauroidea is a function of nearly identical morphologies,
suggestive of a holobaramin. The only outlier was Eotyrannus;
Aaron (2014b) likewise pondered the relationship of Eotyrannus.
A partial solution suggested by PCA is that incomplete Eotyrannus
data hindered the analysis (only 30% of the 638 characters for
Eotyrannus were present in the 2004 data matrix). The large
proportion of missing data resulted in an Eotyrannus ordination
near the middle of the PCA axes (or, near 0 values for both PCs
1 and 2 as seen in Fig. 22). The results here were consistent with
Aaron’s findings of the Tyrannosauroidea holobaramin.

Brusatte and Carr’s (2016) matrix provided greater detail but
with similar results. PCA confined the tyrannosauroid series to a
narrow range of PC 1 while distributing them along PC 2 with the
larger Tyrannosaurinae and smaller Albertosaurinae on opposite
ends of the series. The ordinations of Bistahieversor, Raptorex,
Xiongguanlong, and Eotyrannus were orthogonal, or outside of, the
Tyrannosaurinae but closer to Albertosaurinae (Fig. 23). While PC
3 arranged most of the tyrannosaurs in the same series as PC 2, PC 3
grouped the other tyrannosaurid members separately (Fig. 24). The
most recent data therefore suggests Tarbosaurus, Tyrannosaurus,
Daspletosaurus, Teratophoneus, Qianzhousaurus, and Alioramus
form a series. Gorgosaurus and Albertosaurus are part of the
series but are distinct within it. The remaining tyrannosauroids
ordinate outside the others and their relationship is uncertain. If
holobaramins are always linear series, then these other members
fall outside. At the same time, tyrannosauroids may be an example
of a holobaramin with complex spatial relationships. Indeed,
we might not expect series to always be linear, but for various
branching patterns to be possible (e.g., equids in Cavanaugh et al.
2003).

An unexpected finding was the identification of stratomorphic
outgroup series. Sauropod, thyreophoran, and ceratopsian
ordinations included series of taxa connecting the outgroups to
the ingroups. BDC results for Otero et al. (2015) revealed little
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distinction among sauropodomorphs and outgroups — including
outgroup taxa as diverse as Herrerasaurus, Silesaurus, or
Marasuchus (Fig. 50). The reason was a close morphological
gradation for all members along PC 1 (Fig. 51); only PC 2 and PC 3
suggested a separation between sauropodomorphs and outgroups.
The combined PC 1 and PC 2 ordination revealed the outgroup
taxa ordination was stratomorphic: the morphological series
leading from the outgroup strongly aligned with the fossil record
first-appearance order of its members.

Thyreophorans and neornithischians also followed a general,
though not perfect, stratomorphic morphoseries from the Jurassic
through Cretaceous. Lower Jurassic thyreophorans Scelidosaurus
and Scutellosaurus merged with ornithischians and neornithischians
(e.g., Agilisaurus, Heterodontosaurus, Hexinlusaurus) and
followed a series leading to Thescelosaurus and Parksosaurus in
the Upper Cretaceous. However, the very end of the series was
Tenontosaurus, a “basal” iguanodont from the Lower Cretaceous.
The series aligned along both PC 1 and PC 2 (Fig. 56).

The stratomorphic outgroups used for ceratopsians began with
Triassic “basal” dinosaurs and silesaurids, moved into Lower
Jurassic ornithischians, and then branched along PC 1 into
marginocephalians on the right and thyreophorans + ornithopods
on the left (Fig. 91). PC 1 also revealed a discontinuity between the
outgroups and ceratopsians. Interestingly, the ceratopsian series was
also stratomorphic; the ceratopsian series ranges from the Middle
Jurassic to Upper Cretaceous. Yinlong and two Psittacosaurus
species formed the base of the series and were separated from
neoceratopsians by a gap. The ceratopsian stratomorphic series had
an additional element: phylogeography. The conventional scenario
is that an Asian Protoceratops-like ancestor crossed the Bering
Straits and gave rise to later North American neoceratopsians in
the Cretaceous. All the non-ceratopsid ceratopsians in the studied
series, including neoceratopsians, were found in Asia; only
Leptoceratops was from North America. However, the scenario has
become more complicated with the discovery of Asian ceratopsoids
Turanoceratops and Sinoceratops (a centrosaurine ceratopsid), both
of which may suggest migration back to Asia in the conventional
model (e.g., Sues and Averianov 2009), and with the discovery of
a North American “basal” neoceratopsian (Aquilops), suggesting
an earlier dispersion from Asia to North America. Indeed, Figs.
96 and 97 do not show a biogeographic pattern for non-ceratopsid
neoceratopsians, but they do show a phylogenetic pattern. In
other words, the Asian forms (7uranoceratops and Protoceratops)
do not cluster together apart from the North American forms
(Leptoceratops and Zuniceratops). Rather, Protoceratops and
Leptoceratops, non-ceratopsoids, cluster together and Zuniceratops
is farther from the ceratopsids than Turanoceratops, which is the
case in multiple recent ceratopsian phylogenies (Farke et al. 2014;
Fry 2015). The increasing complexity of dinosaur biogeography
presents an interesting opportunity for future creationist work.

For the datasets here all stratomorphic outgroup series began in the
Lower to Middle Mesozoic. It is suggested here that morphological
series reflected the functional considerations of the skeletal
anatomy of the species. Functional similarity was likely a reflection
of ecological requirements. These results imply that some early
Mesozoic communities included ecological gradient overprints. It

is possible some gradients at the beginning of the Mesozoic are
traceable into the mid-Mesozoic. Other researchers have noted
convergence between Triassic communities and later Mesozoic
communities,  especially  between  pseudosuchians/“basal”
archosauromorphs and dinosaurs (Stocker et al. 2016).

2. Bird-dinosaur relationships

Among all the morphospatial patterns examined for the Dinosauria,
the bird-dinosaur relationships were both the most unique and
interesting. There are at least two different lessons derived from
comparing the 2004 with the later 2017 datasets. One clear
conclusion is that bird-dinosaur interpretations change substantially
based on the quality of the data — all analyses warrant caution.

Bird-dinosaur data through 2004 was sparse. The most relevant
data matrix for bird-like theropods (e.g., Maniraptoriformes) was
limited due to the amount of missing data. Standard baraminological
techniques yielded two groups. One group included dromaeosaurids,
a troodontid, and an avialan representative (Archaeopteryx). The
positive BDC between members, and negative BDC with some
outlying groups, implied a holobaramin. Yet caution is warranted
since BDC with disparate baramins can produce spurious correlation
(e.g., tetanurans plus tyrannosauroids, Fig. 16) and few taxa were
included. Additionally, this broad dromacosaurid-affiliated group
showed no negative correlation to outgroup taxa (7yrannosaurus,
Allosaurus, and a generic composite outgroup). The second group
was an ornithomimid-association that also lacked negative BDC
against the outgroups. MDS results separated both groups but was
tentative since the first coordinate axis explained only 35% of the
variance, leaving 65% to be explained across the remaining axes.

PCA was more instructive, though incomplete data hindered
the analysis. In order to have a sufficient number of taxa in the
analysis, all genera — including those missing up to 80% of their
character data — were included (Fig. 27). In spite of the high
proportion of missing data, group distinctions still emerged with
several relationships evident. Oviraptorosaurs, dromaeosaurids,
troodontids and ornithomimosaurs showed distinct clusters. We
interpret the complex spatial relationships as an indication that
bird-like theropod assemblages were distinct while simultaneously
exhibiting complex mosaic relationships. In spite of the limited
data, enough of a pattern may be evident to apply Hartwig-Scherer’s
description of hominids as, “schmetztiegal unterschiedlicher
morphologiemosaic” — or, “melting pot of morphological mosaics”
— to bird-like theropod groups (Hartwig-Scherer 2002). Only two
avialan taxa were included in the analysis (4rchaeopteryx and
Confuciusornis). As a result, very little can be said about bird-
dinosaur relationships from the 2004 data.

Matrices with bird-dinosaur data have improved since 2004 and
have offered a consistent picture. Garner et al. (2013) employed six
matrices, ranging from 2001 to 2011, with a general improvement
in BDC distinctions over time. It is clear that modern birds
and dinosaurs group separately, but also that some Jurassic
and Cretaceous avians grouped with dinosaurs. In particular,
Archaeopteryx and Wellnhoferia grouped with Deinonychosauria
suggesting an affinity between some avialans and dromaeosaurs.

PCA applied to Foth and Rauhut’s (2017) larger maniraptoran
dataset revealed several helpful insights to the dromaeosaurid-
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avialan question. As with other dinosaur groups, missing data was
still an issue. To account for this, two ordinations were performed
— one employing the entire dataset (regardless of the amount of
missing data) and a second ordination that retained only taxa with a
minimum of 50% of their character data. Both ordinations yielded
instructive observations.

PCA divided the complete maniraptoran dataset into four groups
(Fig. 38). PC 1 divided non-avian Pygostylia and Aves + Limenavis
+ laceornis from all non-pygostylian maniraptorans, supporting
Garner et al.’s (2013) conclusion that modern birds and dinosaurs
were distinct. Although many avialans do not cluster with non-
avialan maniraptorans, some do. Group 2b contains ‘“basal”
avialans, but they are mixed with troodontids (Zanabazar and
Byronosaurus) and a dromacosaurid (Hesperonychus). Instead
of the break being between avialans and non-avialans, the
obvious break along PC 1 occurs between pygostylians and non-
pygostylians.

Additional division was revealed along PC 2. PC 2 grouped
dromaeosaurs, “basal” avialans, and troodontids while
separating them from “basal” coelurosaurs, alvarezsauroids,
ornithomimosaurs, oviraptorosaurs, therizinosaurians,
tyrannosauroids, a scansoriopterygid, and the non-coelurosaur
outgroup. Most groups retained internal morphospatial
distinctions among their members, although therizinosaurians and
oviraptorosaurs overlap significantly. One possibility was that each
group retains ecological affinities among members yet differences
between groups. In addition to these divisions, the timing of the
appearances of member subgroups was notable. The fossil record
first-appearance order of each subgroup reflects the approximate
Flood burial order. “Basal” coelurosaurs (Fig. 38, “1”) appeared
first stratigraphically while the dromaeosaurid, avialan, troodontid,
and alvarezsaurid morphologies appeared at essentially the same
time (groups 2a, 2b, 2¢, and 2d, respectively). This was followed by
ornithomimosaurs (3), oviraptorosaurs (4), non-avian Pygostylia
(5) and Aves (6). Though some dinosaur baramins occur within
stratomorphic morphoseries, the morphology and appearance order
of maniraptoran groups appear to reflect no relationship between
morphology and stratigraphic position.

One potential problem of these ordinations is the possibility that
missing data could have created spurious patterns. To account for
this a second ordination using more complete data was generated
(Fig. 40). This more selective ordination resulted in a notable
Y-shaped ordination. The ordination included two morphoseries that
corresponded to the groups in the more inclusive ordination (Fig.
40). Dromacosaurids, “basal” avialans, and troodontids formed
the connecting point for both morphoseries. One morphoseries
included oviraptorosaurs, the outgroup taxa, tyrannosauroids,
“basal” coelurosaurs, alvarezsaurids, and ornithomimosaurs. The
other included the “derived” avialans and avians. The somewhat
random stratigraphic appearance of group members shows that the
morphoseries are functional, ecological, or morphological series
— not stratomorphic series. Both ordinations agree in displaying
a close, but distinct, relationship between “basal” avialans and
dromaeosaurids. Neither ordination shows a discernible first-
appearance pattern among the subgroups beyond the observation
that all feather-bearing groups appear at essentially the same

time and that modern bird species ordinate distinctly and appear
stratigraphically higher.

3. Does baraminology work for dinosaurs?

The findings here are consistent with over a decade of research in
baraminology on extant groups: dinosaurs show discontinuity at or
near the family level. This study provides an instructive comparison
to previous studies on extant groups since the dinosaur fossil
record is both incomplete and wholly reliant on hard-part anatomy.
For those skeptical of the methods of statistical baraminology the
findings here reinforce the case that holistic analysis of biological
character traits, for both plant and animal groups, tend to identify
discontinuity near the family level — whether for neontological or
paleontological subjects.

One skeptical critique was Senter’s (2011) report that taxon
correlation analysis found a “continuous morphological spectrum”
within the Dinosauria that united groups as diverse as basal
Saurischia, Sauropodomorpha, Ornithischia, and other members.
While acknowledging that sauropodomorphs and thyreophorans
had some evidence for stratomorphic morphoseries, we did not find
a continuous morphological spectrum. Senter’s conclusion was
that the “creationist camp will have to acknowledge the genetic
relatedness of a very broad morphological spectrum of dinosaurian
species” (Senter, 2011). Here Senter (understandably) equated
morphological similarity with genetic relatedness. A creationist
approach, however, acknowledges both genetic and structural
realties. Creationist structuralism should recognize the nuances
of Aristotelian distinctions (Thompson 1942). That is, genetics
may be the instrumental cause of dinosaurian relationships but
all analyses — whether BDC or phylogenetic — are founded upon
only the material causes (i.e., the skeletal elements themselves).
Skeletal anatomies, in turn, reflect the mechanical, architectural,
or functional requirements of their possessors. In other words,
whether or not Apatosaurus neck and tail architecture functioned as
a cantilever bridge, there is no question the functional requirements
of a sauropod skeleton necessarily differ, at almost every point,
from the requirements imposed by a bird-like theropod existence.
This may be why nearly every dinosaur cited within Senter’s
morphological continuum were (1) relatively large, (2) bipedal
dinosaurs with (3) short forearms, and (4) long counterbalancing
tails. Given the functional requirements of this architecture it
would likely be difficult to distinguish ancestry from structure,
particularly when datasets are often incomplete. Re-stating
Senter in structuralist terms, it appears that creationists should
acknowledge the functional and/or ecological relatedness of a very
broad spectrum of dinosaurian species.

Wilson (2010) tried to address a similar problem of the holobaramin
grouping members at too broad a level. One solution was to
encourage emphasis on genetics and the genetic programsunderlying
regulatory changes. In order to do this, baraminologists were
advised to pursue things such as hybridization, synapomorphies,
and other measures of genomic equivalence. Wilson’s proposal is
sound (particularly for neonatologists). Unfortunately, these criteria
rule out the fossil record. Yet the question is still valid; it is possible
statistical baraminology misses some discontinuities. The analyses
here may have captured some distinctions that would otherwise
have been missed with other methods and deserve consideration
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for future fossil record studies.

One reason we introduced PCA alongside other statistical
baraminology approaches was to examine its utility in elucidating
the structure of dinosaurian morphospace and discerning
holobaramins. In fact, while agreeing with other methods, PCA
additionally revealed complex morphospatial patterns in a
number of groups. For example, PCA revealed a division within
Ceratopsidae at the subfamily level (Fig. 95-96). The lack of
negative BDC, and spatial gap in MDS, suggested — though did
not require — the same division. Sauropods provided an even
clearer example. Both BDC and MDS united two sauropod
groups (Diplodocoidea and Macronaria) without revealing
much distinction (Fig. 47 and 48). In contrast, PCA identified a
clear separation between Diplodocoidea and Macronaria (Fig.
49). Other divisions visible within the 2004 data were found
for Ornithomimosauria, Therizinosauroidea, Oviraptorosauria,
Stegosauria, Hadrosauridae, as well as deep separation between
members of various basal groups (e.g., Saurischia, Tetanurae, etc.).
Though the fossil record cannot yield the biological information
Wilson called for, the results here suggest that new statistical tools
may aid our ability to capture discontinuities between natural
groups (holobaramins) in the context of multivariate space.

Senter (2010) posed an interesting challenge concerning MDS,
namely that time will fill in all morphological gaps. After comparing
the 2004 data to later matrices it is entirely possible that the reverse
is true: improved Dinosauria datasets may provide better definition
of discontinuities and groupings in the morphospace of these
intriguing organisms. Our analyses here may only be scratching
the surface.
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APPENDIX

Table 2. Baraminic status of the various taxa analyzed in this paper with a focus on the evidences for continuity, discontinuity, or both.

Members cluster together
(PCA).

Group Basr :; Itnul;“c Discontinuity Evidence Continuity Evidence Other Analyses Notes
Dinosauria Apobaramin Nesbitt et al. (2009) -
No clustering with non-
dinosaurs (PCA: PC 1/PC 2).
Evidence of discontinuity
among members in other
analyses.
Saurischia Apobaramin? Langer (2004) - Very weakly supported: few taxa
Negative correlation with other included.
taxa (BDC).
No clustering with other taxa
(MDS/PCA).
Not all members share
continuity.
Herrerasauridae Holobaramin? Langer (2004) Langer (2004) Weakly supported: 1) few taxa, 2) no
Negative correlation with other | Members are positively non-dinosaur taxa represented.
taxa (BDC). correlated (BDC).
No clustering with other taxa Members cluster together
(MDS/PCA). (MDS).
Theropoda Apobaramin Nesbitt et al. (2009) -
No clustering with other taxa
(PCA: PC 1/PC2).
Other analyses demonstrate
discontinuity among members.
Coelophysoidea Monobaramin - Carrano et al. (2012) Coelophysoidea is here defined as
Members cluster together Coelophysidae + Dilophosaurus.
(PCA).
Ceratosauridae Monobaramin - Brisson Egli et al. (2016) Ceratosauridae is here defined
Members cluster together as including Ceratosaurus,
(PCA). Eoabelisaurus, and Genyodectes.
Abelisauroidea Apobaramin Tykoski and Rowe (2004) - Weakly supported: few taxa included.
Negative correlation or
no correlation with non-
abelisauroids (BDC).
No clustering with non-
abelisauroids (MDS/PCA).
Other studies demonstrate
discontinuity within
Abelisauroidea.
Noasauridae Holobaramin? Brisson Egli et al. (2016) Brisson Egli et al. (2016) Weakly supported: most analyses did
Distant from all other taxa in Positive correlation unites not show discontinuity.
PC 3/PC 1 (PCA). members (BDC).
Members cluster together
(PCA).
Abelisauridae Holobaramin Brisson Egli et al. (2016) Brisson Egli et al. (2016)
Negative correlation with non- | Positive correlation unites
abelisaurids (BDC). members (BDC).
Clear separation from non- Abelisaurids ordinate
abelisaurid taxa (PCA). along a single trajectory
(PCA).
"Basal" Tetanurae Inconclusive - Caranno et al. (2012) At first these taxa appear to be
Members make a series in a stratomorphic series, but
along PC 2/PC 1 (PCA). Monolophosaurusshould be lower
than it is. Additionally, there are
"basal" coelurosaurs (Compsognathus
and Ornitholestes) mixed in with this
non-coelurosaur group.
Spinosauridae Monobaramin - Carrano et al. (2012) Very weakly supported: 1) few taxa

included, 2) cluster near a non-
spinosaur in PC 3/PC 1 (PCA)
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Tyrannosauroidea Holobaramin Holtz et al. (2004) [2 Holtz et al. (2004) [2 Aaron (2014) Excludes proceratosaurids,
Analyses]; Brusatte and Carr | Analyses] McLain et al. Yutyrannus, and Dilong. Most "basal"
(2016) Positive correlation unites | (2018) tyrannosauroids were unknown in
Negative correlation with other | members (BDC). 2004. Eotyrannus doesn't cluster
taxa (BDC). Members ordinate along closely with the other tyrannosauroids
Clear separation from other taxa | a single trajectory (MDS/ in PCA of Weishampel et al.
(MDS/PCA). PCA). (2004). PC 3/PC 1 plot may
Brusatte and Carr (2016) show that Dilong, Guanlong, and
Members cluster together Yutyrannus are continuous with other
(PCA) tyrannosauroids, although this is not
shown in other analyses.
Ornithomimosauria | Holobaramin Makovicky et al. (2004) Makovicky et al. (2004) McLain et al.
No positive correlation or Members share positive (2018)
negative correlation with other | correlation (BDC).
taxa (BDC). Members cluster together
Clear separation from other taxa | (MDS/PCA).
(MDS/PCA). Chinzorig et al. (2018)
Chinzorig et al. (2018) Members cluster together
Clear separation from other taxa | (PCA).
(PCA). Foth and Rauhut (2017)
Foth and Rauhut (2017) Members cluster together
Clear separation from other taxa | (PCA).
in PC 3 (PCA).
Non-therizinosaurid | Inconclusive Clark (2004) Clark (2004) Part of
Therizinosauroidea No positive correlation or Members share positive therizinosauroidea
negative correlation with other | correlation (BDC). holobaramin
taxa (BDC). Members cluster together | according to
Clear separation from other taxa | (MDS/PCA). McLain et al.
(MDS/PCA). Zanno (2010) (2018).
Zanno (2010) Members don't clearly
Not separated from other taxa cluster together (PCA).
(PCA).
Therizinosauridae Holobaramin Clark (2004) Clark (2004) Disagrees with Nothronychus is excluded from
No positive correlation or Members share positive McLain et al. holobaramin in Weishampel et al.
negative correlation with other | correlation (BDC). (2018) where (2004) analyses, but it is included in
taxa (BDC). Members cluster together | Therizinosauroidea | Zanno (2010).
Clear separation from other taxa | (MDS/PCA). is the holobaramin.
(MDS/PCA). Zanno (2010)
Zanno (2010) Members cluster together
Clear separation from other taxa | (PCA).
(PCA).
Oviraptorosauria Holobaramin Osmolska et al. (2004) Osmolska et al. (2004) McLain et al. Avimimus does not correlate
No positive correlation or Members share positive (2018) positively with other oviraptorosaurs
negative correlation with other | correlation (BDC). in the oviraptorosaur Weishampel et
taxa (BDC). Members cluster together al. (2004) BDC. Caudipteryx does
Clear separation from other taxa | (MDS/PCA). not cluster with other oviraptorosaurs
(MDS/PCA). Foth and Rauhut (2017) in the oviraptorosaur Weishampel et
Members cluster together al. (2004) PCA.
(PCA)
Dromacosauridae Monobaramin - Makovicky et al. (2004) | McLain et al. May include Archaeopteryx.
Members cluster together | (2018) Utahraptor is not clustered with
(PCA). other dromaeosaurids in PC 2/PC
Foth and Rauhut (2017) 1, but this is probably an artifact
Members cluster together of missing data. Deinonychosauria
(PCA). (Troodontidae + Dromaeosauridae)
seems to be a holobaramin, although
the placement of Archaeopteryx and
anchiornithids in relation to this
group is uncertain.
Troodontidae Monobaramin - Makovicky et al. (2004) McLain et al. EK troodontid is more distant in

Members cluster together
(PCA).
Foth and Rauhut (2017)
Members cluster together
(PCA).

(2018)

PC 2/PC 1. Probably an artifact of
missing data. Deinonychosauria
(Troodontidae + Dromacosauridae)

seems to be a holobaramin, although
the placement of Archaeopteryx and

anchiornithids in relation to this
group is uncertain.
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Non-avian Apobaramin? Foth and Rauhut (2017) Foth and Rauhut (2017) | Garner et al. No analyses specifically focused on
Pygostylia Do not cluster with any other Although members are in | (2013) avialans, so it's hard to say anything
taxa (PCA). the same region of space, other than that pygostylians are
the clustering pattern is not distinct from non-avialan dinosaurs.
tight (PCA).
Aves + Limenavis + | Apobaramin Foth and Rauhut (2017) - Garner et al. No analyses specifically focused
laceornis Do not cluster with any other (2013) on avians, so we can't say anything
taxa (PCA). about relationships within Aves.
However, there are several studies
from other researchers looking at
avians.
Sauropodomorpha Apobaramin? Langer (2004) - Very weakly supported: few taxa
Negative correlation with other included.
taxa (BDC).
No clustering with other taxa
(MDS/PCA).

Other analyses demonstrate
discontinuity among members.

Non-sauropod

Inconclusive

All analyses including non-

Usually non-sauropod

FEoraptor and Guaibasauridae often

Sauropodomorpha sauropod sauropodomorphs sauropodomorphs were seem to be discontinuous with other
showed some kind of link to on a similar trajectory in non-sauropod sauropodomorphs.
non-sauropodomorph outgroup. | PCA and shared positive Analyses probably biased by the fact

correlation in BDC, but that characters focus on more derived

not in every case. members of clades. If Otero et al.
(2016) were broken up by family
with outgroups, discontinuity might
become obvious.

Thecodontosauridae | Monobaramin Otero et al. (2016) Otero et al. (2016) Thecodontosauridae is here defined

(or possibly One PCA plot shows Positive correlation among as Thecodontosaurus + Pantydraco.
Holobaramin) discontinuity surrounding group | members (BDC). Strong evidence for continuity, weak
but other does not. Members cluster together evidence for discontinuity.
Bronzati (2017) (PCA).
One PCA plot shows Bronzati (2017)
discontinuity surrounding group | Members cluster together
but other does not. (PCA).
Non-sauropod Monobaramin Otero et al. (2016) Otero et al. (2016) Strong evidence for continuity,
Massopoda (or possibly One PCA plot shows Positive correlation among weak evidence for discontinuity
Holobaramin) discontinuity surrounding group | members (BDC). surrounding the group. Sarahsaurus
but other does not. Members cluster together does not cluster with the others in PC
Bronzati (2017) (PCA). 1/PC 3 of Otero et al. (2015) PCA.
One PCA plot shows Bronzati (2017)
discontinuity surrounding group | Members cluster together
but other does not. (PCA).

Sauropoda Apobaramin? Upchurch et al. (2004) and - Very weakly supported: few taxa
Galton and Upchurch (2004a) included. Otero et al. (2015) BDC
Negative correlation with other results include several "basal"
taxa (BDC). sauropods (e.g., Gongxianosaurus
Bronzati (2017) and Antetonitrus), which
No clustering with other taxa show positive correlation with
(PCA). "prosauropods". However, it is
Other analyses demonstrate probably because of the large number
discontinuity among members. of taxa from different baramins that

these correlations appear.

Gravisauria Apobaramin Otero et al (2015) -

Negative correlation with other
taxa (BDC).

No clustering with other taxa
(PCA).

Bronzati (2017)

Separated from other taxa along
PC 1 (PCA).
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Flagellicaudata Apobaramin? Upchurch et al. (2004) - Very weakly supported: few taxa
No clustering with other taxa included. No rebbachisaurids or
(PCA). Haplocanthosaurus present so unable

to say anything about Diplodocoidea
or Diplodocimorpha

Ornithischia Apobaramin Baron (2018) -

No clustering with other taxa in
PC 3/PC 1 (PCA).

Other analyses show evidence
for internal discontinuity.

Non-eurypodan Inconclusive - - Analyses show them as discontinuous

Thyreophora from Eurypodans, but nothing can be

said about their relationships to each
other or "basal" ornithischians.

Stegosauria Holobaramin Raven and Maidment (2017) | Galton and Upchurch Huayangosaurus doesn't positively
No clustering with other taxa (2004a) correlate with other stegosaurs in
(PCA) except some probably Members positively BDC of Weishampel et al. (2004), but
flukes (see notes). correlate (BDC). all other analyses show it clustering
Other analyses show stegosaurs | Members cluster together with stegosaurs. Oddly, in Raven
as not clustering with "basal" (MDS). and Maidment (2017) PCA results,
thyreophorans or ankylosaurs. Raven and Maidment Tuojiangosaurus and Paranthodon

(2017) both overlap with ankylosaur

Members cluster along outgroup taxa. We believe this is a

similar trajectory (PCA). fluke due to missing data. BDC and
MDS results (Appendix) do not show
the same pattern.

Ankylosauria Holobaramin? Vickaryous et al. (2004) Vickaryous et al. (2004) Alternatively, Ankylosauria may be
Negative correlation or no Positive correlation within split into two or three holobaramins.
correlation with other taxa Ankylosauridae and within Some results showed evidence
(BDC). Nodosauridae (but not in favor of discontinuity between
No clustering with outgroup between them) (BDC). Nodosauridae and Ankylosauridae.
taxa (MDS/PCA). Continuous series of taxa However, polacanthines sometimes
Zheng et al. (2018) (MDS/PCA). were closer to ankylosaurids,

No clustering with other taxa. Zheng et al. (2018) sometimes to nodosaurids, but were
Evidence for continuity very often right in between them
is not strong between in MDS and PCA. This makes
Ankylosauridae and us suspect that Nodosauridae
Nodosauridae, however, and Ankylosauridae are two
Polacanthinae jumps from monobaramins within a single
being closer to one and holobaramin of Ankylosauria.
then closer to the other
between the two PCA
plots.

Ornithopoda Apobaramin Norman, Sues et al. (2004) - Heterodontosaurus, as expected, does
Negative correlation or no not cluster with ornithopods.
correlation with outgroup taxa
(BDQ).

No clustering with outgroup
taxa (MDS/PCA).
Non-hadrosauriform | Inconclusive Always separated from Norman et al. (2004) and Almost certainly multiple

Iguanodontia

hadrosauriforms, but most
analyses also included
Lesothosaurus with evidence of
positive correlation.

Norman (2004)
Members positively
correlate (BDC).
Members cluster together
(MDS/PCA).

Madgzia et al. (2017)
Members positively
correlate (BDC).
Members cluster together
(MDS/PCA).

holobaramins present. Datasets
were focused on higher taxa, which
means that all "basal" taxa appeared
more similar to each other than they
probably are.
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Non-hadrosaurid
Hadrosauriformes

Holobaramin?

Horner et al. (2004)
Negative correlation or no
correlation with other taxa
(BDQO).

No clustering with other taxa
(MDS/PCA).
Cruzado-Caballero and
Powell (2017)

No clustering with other taxa
(PCA).

McDonald (2012)

No clustering with non-
hadrosauriform taxa (PCA).
Madzia et al. (2017)

No clustering with non-
hadrosauriform taxa (PCA).
Norman (2004)

No clustering with other taxa
(MDS/PCA).

Horner et al. (2004)
Members share positive
correlation (BDC).
Members cluster together
(MDS/PCA).
Cruzado-Caballero and
Powell (2017)

Members cluster/make a
series (PCA).
McDonald (2012)
Members cluster/make a
series (PCA).

Madzia et al. (2017)
Members cluster/make a
series (PCA).

Norman (2004)
Members cluster/make a
series (MDS/PCA).

This group shows some evidence
for internal discontinuity, but at the
same time it also shows evidence
for continuity with hadrosaurids.
Most analyses that show evidence
for continuity with hadrosaurids
are analyses containing a larger
iguanodont outgroup. As expected,
such analyses would highlight
differences between "derived" and
"basal" iguanodonts more than

the differences between various
"derived" iguanodonts. On the
other hand, several PCA plots show
hadrosauriforms in a series with
the "basal" members on one end
and hadrosaurids on the other. This
might mean that they are a single
baramin, and that this trajectory
indicates diversification within that
group. Alternatively, they might
just be different baramins along a
similar morphological trajectory.
More studies will be needed to
determine how many holobaramins
are represented.

Saurolophinae

Holobaramin

Horner et al. (2004)

No clustering with other taxa
(PCA).

Cruzado-Caballero and
Powell (2017)

No clustering with other taxa
(PCA).

Horner et al. (2004)
Members share positive
correlation (BDC).
Members cluster together
(MDS/PCA).
Cruzado-Caballero and
Powell (2017)

Members cluster together
(PCA).

Alternatively, Hadrosauridae

may be a holobaramin containing
Saurolophinae and Lambeosaurinae
as monobaramins. PC 1/PC 2 of
Cruzado-Caballero and Powell
(2017) separate out two groups

of saurolophines: 1) Kritosaurini

+ Brachysaurolophini and 2)
Edmontosaurini + Saurolophini +
Lophorhothon. The aralosaurinin
lambeosaurine Aralosaurus

clusters with saurolophine group 1.
Hadrosaurus is not clustered with the
saurolophines at all.

Lambeosaurinae Holobaramin Horner et al. (2004) Horner et al. (2004) Alternatively, Hadrosauridae
No clustering with other taxa Members share positive may be a holobaramin containing
(PCA). correlation (BDC). Saurolophinae and Lambeosaurinae
Cruzado-Caballero and Members cluster together as monobaramins. Aralosaurus,
Powell (2017) (MDS/PCA). a lambeosaurine, clusters with
No clustering with other taxa Cruzado-Caballero and saurolophines in the PCA of Cruzado-
(PCA). Powell (2017) Caballero and Powell (2017).
Members cluster together
(PCA).
Pachycephalosauria | Holobaramin Maryanska et al. (2004) Schott (2011) Although the Maryanska et al. (2004)

Negative correlation or no
correlation with outgroup taxa
(BDC).

No clustering with outgroup
taxa (MDS/PCA).

Schott (2011)

No clustering with other taxa
(PCA).

Members form a series
(PCA).

results seem to show separation
between pachycephalosaurids and
"homalocephalids", the Schott

(2011) show that this separation is
unfounded. Many paleontologists
suspect that pachycephalosaurs with
flat skulls are probably juveniles (as
evidenced by the proposed Dracorex-
Stygimoloch-Pachycephalosaurus
ontogenetic series).
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Non-neoceratopsian
Ceratopsia

Holobaramin?

Hailu and Dodson (2004)
Negative correlation with
neoceratopsian taxa (BDC).
No clustering with
neoceratopsian taxa (MDS/
PCA).

Madzia et al. (2017)

No clustering with other taxa
(PCA).

Breeden (2016)

No clustering with other taxa in
PC 3/PC 1 (PCA).

Hailu and Dodson (2004)
Positive correlation among
members (BDC).
Members cluster together
(MDS/PCA).

Madgzia et al. (2017)
Members cluster together
(PCA).

Very weakly supported: too few

taxa are included. Nevertheless,
Psittacosaurus, Chaoyangsaurus, and
Yinlong consistently do not cluster

or show positive correlation with
neoceratopsians.

Non-ceratopsoidean | Holobaramin? Hailu and Dodson (2004) Hailu and Dodson (2004) These animals consistently cluster

Neoceratopsia Negative correlation or no Members positively together and are separate from
correlation with other taxa correlate (BDC). ceratopsoids and Psittacosaurus-like
(BDC). Members cluster together animals. This is relatively strong
No clustering with other taxa (MDS/PCA). evidence for a holobaramin, but
(PCA). Madzia et al. (2017) unfortunately there are few taxa
Madzia et al. (2017) Members cluster together included in most analyses, and
No clustering with other taxa (PCA). "basal" ceratopsoid animals like
(PCA). Breeden (2016) Turanoceratops and Zuniceratops are
Breeden (2016) Members cluster together not included.

No clustering with other taxa in | (PCA).
PC 3/PC 1 (PCA).

Chasmosaurinae Holobaramin? Dodson et al. (2004) Dodson et al. (2004) It is unlikely that chasmosaurines
Negative correlation with Chasmosaurines and centrosaurines are in different
outgroup taxa and almost no positively correlate and baramins. At first glance, it
correlation of any kind with centrosaurines positively might seem like Centrosaurinae
centrosaurines (BDC). correlate, but only one and Chasmosaurinae should be
No clustering with other taxa positive correlation links treated as separate holobaramins.
(MDS/PCA). them (BDC). However, the Dodson et al. (2004)
Fry (2015) Chasmosaurines and analysis is lacking many new taxa
No clustering with other taxa centrosaurines cluster which seem to link centrosaurines
(PCA). separately, but members and chasmosaurines (e.g.,

of the subfamilies cluster Albertaceratops and Regaliceratops).
together (MDS/PCA). The Fry (2015) analysis does show
Fry (2015) clustering of all of the taxa or a
Members cluster/make a series connecting the centrosaurine
series together (PCA). taxa to the chasmosaurines.
However, the analysis is focused
on chasmosaurines and is using
centrosaurines as an outgroup.
Firmer conclusions must await
an analysis including many more
centrosaurine taxa. Additional
evidence for holobaraminic status
for all of Ceratopsidae comes in
the form of an incredibly restricted
stratigraphic range (only Campanian-
Maastrichtian) and geographic
range (all North American except
Sinoceratops, which is from China).

Centrosaurinae Holobaramin? Dodson et al. (2004) Dodson et al. (2004) See Chasmosaurinae for notes.

Negative correlation with Chasmosaurines

outgroup taxa and almost no
correlation of any kind with
chasmosaurines (BDC).

positively correlate and
centrosaurines positively
correlate, but only one
positive correlation links
them (BDC).
Chasmosaurines and
centrosaurines cluster
separately, but members
of the subfamilies cluster
together (MDS/PCA).
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Figure 98: BDC results for Galton and Upchurch’s (2004) data matrix
of “Prosauropoda”, as calculated by BDISTMDS (relevance cutoff 0.75).
Sauropod taxa were excluded to show evidence for discontinuity within
“Prosauropoda”. Closed squares indicate significant, positive BDC; open
circles indicate significant, negative BDC.

457



	The Proceedings of the International Conference on Creationism
	2018

	The Dinosauria: Baraminological and multivariate patterns
	DOI: https://doi.org/10.15385/jpicc.2018.8.1.35
	Neal A. Doran
	Matthew McLain
	Natalie Young
	Adam Sanderson
	Browse the contents of this volume of The Proceedings of the International Conference on Creationism.
	Recommended Citation


	tmp.1532099614.pdf.rNlFf

