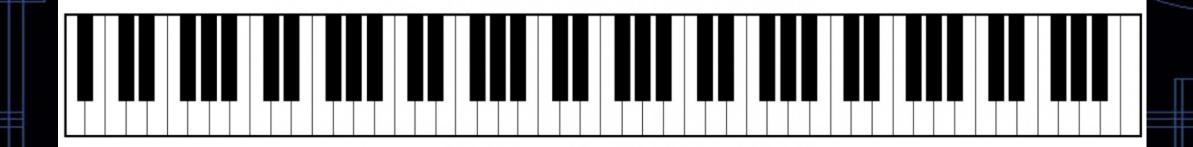
THE BATTLE BETWEEN IMPECCABLE INTONATION AND COMPLETE CHROMATICISM

Thesis


- While equal temperament is now universally hailed as the standard tuning system, it is not perfect.
- Rather, it represents a compromise designed to best accommodate the needs of tonal music since the Baroque Era.

Basic Intervals

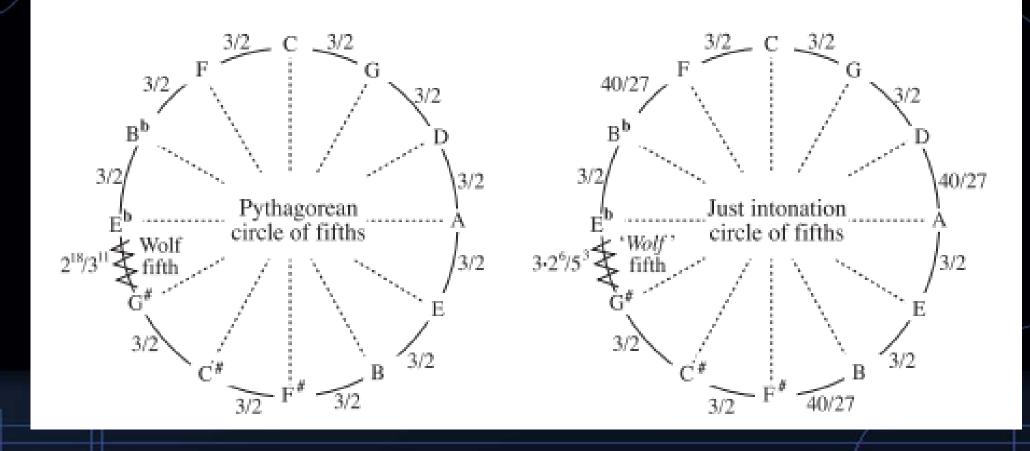
Interval	Freq. Ratio	Decimal	Cents
Perfect Octave	2:1	2.00	1200
Perfect Fifth	3:2	1.50	702
Perfect Fourth	4:3	1.33	498
Major Third	5:4	1.25	386
Minor Third	6:5	1.20	316
Major Sixth	5:3	1.66	884

Cent value = $3986 \times \log$ (frequency ratio)

Closing the Circle

Defined via fifths: Frequency Ratio =
$$\frac{3}{2} \times \frac{3}{2} \times \dots \times \frac{3}{2} \times \frac{3}{2} = \left(\frac{3}{2}\right)^{12}$$

Defined via octaves: Frequency Ratio $\frac{2}{1} \times \frac{2}{1} \times \cdots \times \frac{2}{1} \times \frac{2}{1} = 2^7$


The Problem

- This difference is equivalent to 24 cents
 - Pythagorean Comma
- "In order for the twelve pitches generated through the proportion 3:2 to complete a path from do to do, the circle has somehow to be adjusted, 'rounded off."

Various Solutions

- Intonation
 - Just Intonation
 - Pythagorean Intonation
- Temperament
 - Mean-tone Temperament
 - Equal Temperament

Pythagorean and Just Intonation

Equal Temperament

- Divide up the Pythagorean comma equally
- Define octave to be 2:1
 - Break up octave into 12 equal semitones (100 cents each)
- $2^{\frac{1}{12}} \approx 1.059463$
 - One half step (A 440 to A# 466 Hz)
- $2^{\frac{7}{12}} \approx 1.498$
 - Seven half steps (fifth)

Meantone Temperament

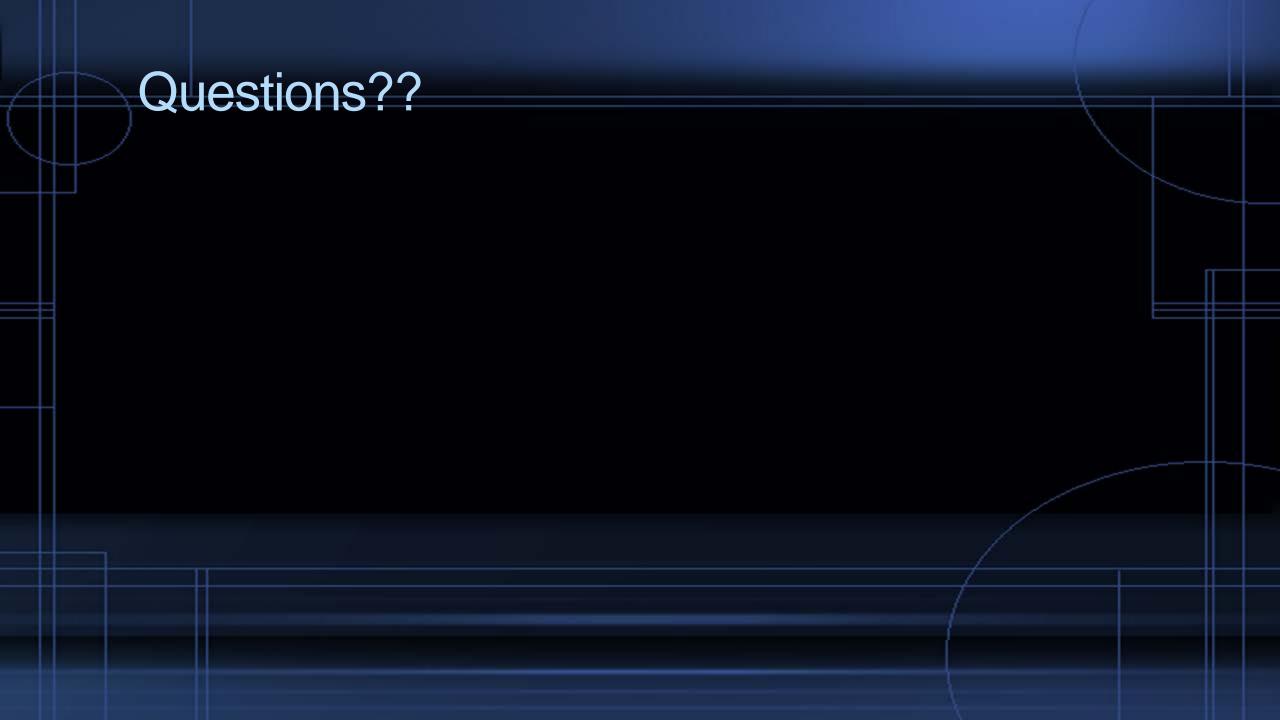
- Flatten the fifth
 - 1/4 comma
 - Works very well in closely related keys
 - Breaks apart in keys that are further off

C ₀	C# - 7/4	D-1/2	Eb ^{-3/4}	E-1	F+1/4	F# ^{-3/2}	G ^{-1/4}	G# ⁻²	A-3/4	Bb ^{+1/2}	B-5/4	C ₀
0	76	193	310	386	503	579	697	773	890	1007	1083	1200

Listening Examples

- Tone Generator
 - Perfect fifth (660 Hz)
 - Wolf-fifth (651 Hz)
 - Meantone fifth (658 Hz)
 - Equal-tempered fifth (659.26 Hz)
 - Equal-tempered third (554 Hz)

History of Temperament


- Pythagoras 550 B.C.
- Francisco Salinas 1513-1590
- Rene Descartes 1596-1650
 - Trade-off between simple ratios and interesting complexities

History of Temperament

- J.S. Bach 1685-1750
 - Complicated
 - Equal or unequal?
 - Different styles for different keys?
 - Scholars remain unsure
 - Regardless of exactly which temperament Bach used, the point of the WTC clearly remains.
 - It is possible to perform in all 24 musical keys on a keyboard instrument, and to sound good doing it.

Thesis

- While equal temperament is now universally hailed as the standard tuning system, it is not perfect.
- Rather, it represents a compromise designed to best accommodate the needs of tonal music since the Baroque Era.

