

#### Cedarville University DigitalCommons@Cedarville

Science and Mathematics Faculty Presentations

Department of Science and Mathematics

10-9-2012

# How Often Are Two Permutations Comparable?

Adam J. Hammett *Cedarville University*, ahammett@cedarville.edu

Boris Pittel The Ohio State University

Follow this and additional works at: http://digitalcommons.cedarville.edu/ science\_and\_mathematics\_presentations

Part of the <u>Mathematics Commons</u>

#### **Recommended** Citation

Hammett, Adam J. and Pittel, Boris, "How Often Are Two Permutations Comparable?" (2012). Science and Mathematics Faculty Presentations. 230. http://digitalcommons.cedarville.edu/science\_and\_mathematics\_presentations/230

This Local Presentation is brought to you for free and open access by DigitalCommons@Cedarville, a service of the Centennial Library. It has been accepted for inclusion in Science and Mathematics Faculty Presentations by an authorized administrator of DigitalCommons@Cedarville. For more information, please contact digitalcommons@cedarville.edu.



#### How often are two permutations comparable?

#### Adam Hammett<sup>1</sup> (joint work with Boris Pittel<sup>2</sup>)

<sup>1</sup>Department of Mathematical Sciences Bethel College

> <sup>2</sup>Department of Mathematics The Ohio State University

> > October 9, 2012

H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 1 / 38

**BAR 4 BA** 

#### Talk Outline



Preliminaries

- Basic Concepts
  - Bruhat Order
  - Weak Order
- Problems Studied



#### Results

- Main Results
- Sketch of Proofs



3 → 4 3

•  $\mathfrak{S}_n$ , the set of permutations of  $[n] := \{1, 2, \dots, n\}$ .

H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 3 / 38

- $\mathfrak{S}_n$ , the set of permutations of  $[n] := \{1, 2, \dots, n\}$ .
- Write  $\pi = \pi(1)\pi(2)\cdots\pi(n) \in \mathfrak{S}_n$  in one-line array notation.

- $\mathfrak{S}_n$ , the set of permutations of  $[n] := \{1, 2, \dots, n\}$ .
- Write  $\pi = \pi(1)\pi(2)\cdots\pi(n) \in \mathfrak{S}_n$  in one-line array notation.
- An inversion of  $\pi$  is an ordered pair (i, j) with i > j and  $\pi^{-1}(i) < \pi^{-1}(j)$ .

- $\mathfrak{S}_n$ , the set of permutations of  $[n] := \{1, 2, \dots, n\}$ .
- Write  $\pi = \pi(1)\pi(2)\cdots\pi(n) \in \mathfrak{S}_n$  in one-line array notation.
- An inversion of  $\pi$  is an ordered pair (i, j) with i > j and  $\pi^{-1}(i) < \pi^{-1}(j)$ . **Example.** (3, 1) and (5, 4) are inversions of 35412.

- $\mathfrak{S}_n$ , the set of permutations of  $[n] := \{1, 2, \dots, n\}$ .
- Write  $\pi = \pi(1)\pi(2)\cdots\pi(n) \in \mathfrak{S}_n$  in one-line array notation.
- An inversion of  $\pi$  is an ordered pair (i, j) with i > j and  $\pi^{-1}(i) < \pi^{-1}(j)$ . **Example.** (3, 1) and (5, 4) are inversions of 35412.

- $\mathfrak{S}_n$ , the set of permutations of  $[n] := \{1, 2, \dots, n\}$ .
- Write  $\pi = \pi(1)\pi(2)\cdots\pi(n) \in \mathfrak{S}_n$  in one-line array notation.
- An inversion of  $\pi$  is an ordered pair (i, j) with i > j and  $\pi^{-1}(i) < \pi^{-1}(j)$ . **Example.** (3, 1) and (5, 4) are inversions of 35412.

- $\mathfrak{S}_n$ , the set of permutations of  $[n] := \{1, 2, \dots, n\}$ .
- Write  $\pi = \pi(1)\pi(2)\cdots\pi(n) \in \mathfrak{S}_n$  in one-line array notation.
- An inversion of  $\pi$  is an ordered pair (i, j) with i > j and  $\pi^{-1}(i) < \pi^{-1}(j)$ . **Example.** (3, 1) and (5, 4) are inversions of 35412.
- We say  $\pi \leq \sigma$  in Bruhat order iff  $\pi$  can be obtained from  $\sigma$  by "undoing" some inversions of  $\sigma$ .

- $\mathfrak{S}_n$ , the set of permutations of  $[n] := \{1, 2, \dots, n\}$ .
- Write  $\pi = \pi(1)\pi(2)\cdots\pi(n) \in \mathfrak{S}_n$  in one-line array notation.
- An inversion of  $\pi$  is an ordered pair (i, j) with i > j and  $\pi^{-1}(i) < \pi^{-1}(j)$ . **Example.** (3, 1) and (5, 4) are inversions of 35412.
- We say  $\pi \leq \sigma$  in Bruhat order iff  $\pi$  can be obtained from  $\sigma$  by "undoing" some inversions of  $\sigma$ .
- Intuitively,  $\pi \leq \sigma$  means  $\pi$  is more orderly (closer to 12...n) than  $\sigma$ .

- $\mathfrak{S}_n$ , the set of permutations of  $[n] := \{1, 2, \dots, n\}$ .
- Write  $\pi = \pi(1)\pi(2)\cdots\pi(n) \in \mathfrak{S}_n$  in one-line array notation.
- An inversion of  $\pi$  is an ordered pair (i, j) with i > j and  $\pi^{-1}(i) < \pi^{-1}(j)$ . **Example.** (3, 1) and (5, 4) are inversions of 35412.
- We say  $\pi \leq \sigma$  in Bruhat order iff  $\pi$  can be obtained from  $\sigma$  by "undoing" some inversions of  $\sigma$ .
- Intuitively,  $\pi \leq \sigma$  means  $\pi$  is more orderly (closer to 12 · · · *n*) than  $\sigma$ .
- (𝔅<sub>n</sub>, ≤) is only a *partially*-ordered set (poset), i.e. it may happen that given π, σ are incomparable.

- $\mathfrak{S}_n$ , the set of permutations of  $[n] := \{1, 2, \dots, n\}$ .
- Write  $\pi = \pi(1)\pi(2)\cdots\pi(n) \in \mathfrak{S}_n$  in one-line array notation.
- An inversion of  $\pi$  is an ordered pair (i, j) with i > j and  $\pi^{-1}(i) < \pi^{-1}(j)$ . **Example.** (3, 1) and (5, 4) are inversions of 35412.
- We say  $\pi \leq \sigma$  in Bruhat order iff  $\pi$  can be obtained from  $\sigma$  by "undoing" some inversions of  $\sigma$ .
- Intuitively,  $\pi \leq \sigma$  means  $\pi$  is more orderly (closer to 12...n) than  $\sigma$ .
- (𝔅<sub>n</sub>, ≤) is only a *partially*-ordered set (poset), i.e. it may happen that given π, σ are incomparable.
- Bruhat ordering can be extended to general Coxeter groups, but we studied G<sub>n</sub> only.

**Example.** 3412 > 1324:

**Example.** 3412 > 1324: 3412

**Example.** 3412 > 1324: 3412 >

**Example.** 3412 > 1324: 3412 > 3142

**Example.** 3412 > 1324: 3412 > 3142

**Example.** 3412 > 1324: 3412 > 3142 >

**Example.** 3412 > 1324: 3412 > 3142 > 3124

**Example.** 3412 > 1324: 3412 > 3142 > 3124

**Example.** 3412 > 1324: 3412 > 3142 > 3124 >

**Example.** 3412 > 1324: 3412 > 3142 > 3124 > 1324

**Example.** 3412 > 1324: 3412 > 3142 > 3124 > 1324

**Example.** 3412 > 1324: 3412 > 3142 > 3124 > 1324

 There's no need to restrict to undoing adjacent inversions as we have here (such a restriction gives rise to another partial-ordering: weak ordering).

**Example.** 3412 > 1324: 3412 > 3142 > 3124 > 1324

- There's no need to restrict to undoing adjacent inversions as we have here (such a restriction gives rise to another partial-ordering: weak ordering).
- Despite no restrictions on which inversions we destroy, the total number of inversions strictly decreases each time we destroy one.

#### **Example.** 3412 > 1324: 3412 > 3142 > 3124 > 1324

- There's no need to restrict to undoing adjacent inversions as we have here (such a restriction gives rise to another partial-ordering: weak ordering).
- Despite no restrictions on which inversions we destroy, the total number of inversions strictly decreases each time we destroy one.
- **Problem:** From the definition alone, checking Bruhat comparability is far from algorithmic.

#### **Example.** 3412 > 1324: 3412 > 3142 > 3124 > 1324

- There's no need to restrict to undoing adjacent inversions as we have here (such a restriction gives rise to another partial-ordering: weak ordering).
- Despite no restrictions on which inversions we destroy, the total number of inversions strictly decreases each time we destroy one.
- **Problem:** From the definition alone, checking Bruhat comparability is far from algorithmic.
- To get around this, we used two comparability criteria that are algorithmic in nature: the Ehresmann Tableaux and {0, 1}-matrix criteria.

• Discovered by C. Ehresmann in 1934.

H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 5 / 38

글 이 이 글 이 글 글 글

- Discovered by C. Ehresmann in 1934.
- Let  $\pi = 21534$ ,  $\sigma = 45312$ . We build a pair of staircase tableaux from these permutations.

물 문 제 물 문 물 물 물

- Discovered by C. Ehresmann in 1934.
- Let  $\pi = 21534$ ,  $\sigma = 45312$ . We build a pair of staircase tableaux from these permutations.

2

4

- Discovered by C. Ehresmann in 1934.
- Let  $\pi = 21534$ ,  $\sigma = 45312$ . We build a pair of staircase tableaux from these permutations.

1 2 4 5 2 4

물 문 제 물 문 물 물 물

- Discovered by C. Ehresmann in 1934.
- Let  $\pi = 21534$ ,  $\sigma = 45312$ . We build a pair of staircase tableaux from these permutations.

물 문 제 물 문 물 물 물

- Discovered by C. Ehresmann in 1934.
- Let  $\pi = 21534$ ,  $\sigma = 45312$ . We build a pair of staircase tableaux from these permutations.

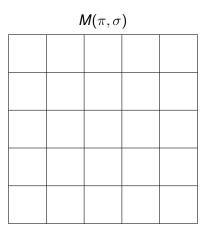
물 문 제 물 문 물 물 물

- Discovered by C. Ehresmann in 1934.
- Let  $\pi = 21534$ ,  $\sigma = 45312$ . We build a pair of staircase tableaux from these permutations.

- Discovered by C. Ehresmann in 1934.
- Let  $\pi = 21534$ ,  $\sigma = 45312$ . We build a pair of staircase tableaux from these permutations.
- Then  $\pi \leq \sigma$  iff the tableau for  $\pi$  is dominated entry-wise by that for  $\sigma$ .

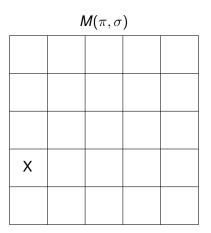
**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .

#### **Example.** Let $\pi = 21354$ , $\sigma = 45312$ .



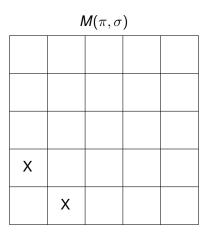
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



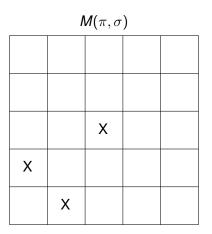
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



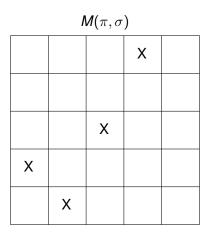
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



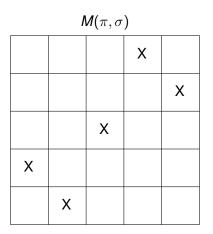
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



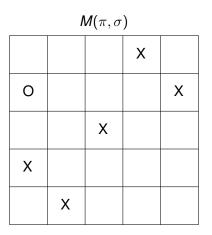
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .

| $M(\pi,\sigma)$ |   |   |   |   |  |  |  |
|-----------------|---|---|---|---|--|--|--|
|                 | 0 |   | х |   |  |  |  |
| 0               |   |   |   | х |  |  |  |
|                 |   | х |   |   |  |  |  |
| Х               |   |   |   |   |  |  |  |
|                 | Х |   |   |   |  |  |  |

H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .

| $M(\pi,\sigma)$ |   |   |   |   |  |  |  |
|-----------------|---|---|---|---|--|--|--|
|                 | 0 |   | Х |   |  |  |  |
| 0               |   |   |   | х |  |  |  |
|                 |   | Ø |   |   |  |  |  |
| Х               |   |   |   |   |  |  |  |
|                 | Х |   |   |   |  |  |  |

H. and Pittel (BC, OSU)

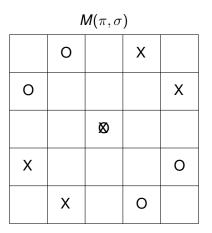
**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .

| $M(\pi,\sigma)$ |   |   |   |   |  |  |  |
|-----------------|---|---|---|---|--|--|--|
|                 | 0 |   | х |   |  |  |  |
| 0               |   |   |   | х |  |  |  |
|                 |   | Ø |   |   |  |  |  |
| Х               |   |   |   |   |  |  |  |
|                 | Х |   | 0 |   |  |  |  |

H. and Pittel (BC, OSU)

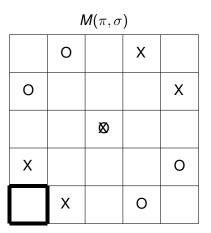
October 9, 2012 6 / 38

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



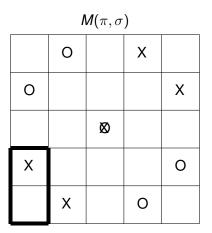
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



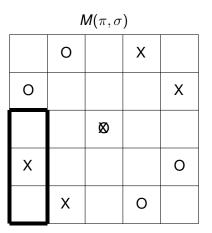
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



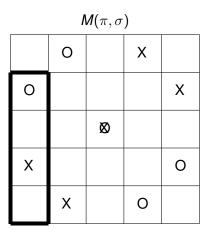
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



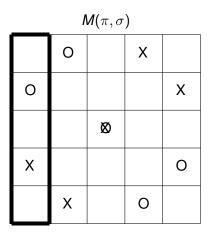
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



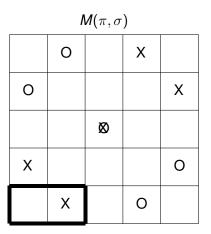
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



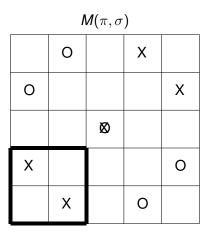
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



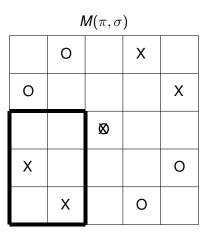
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



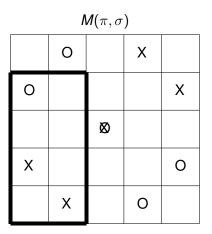
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



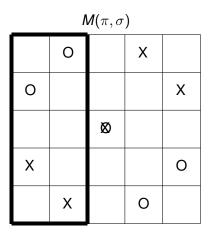
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



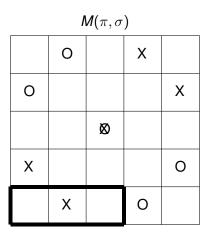
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



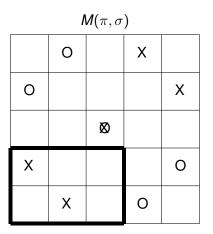
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



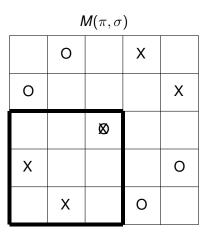
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



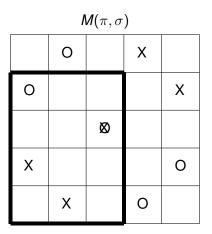
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



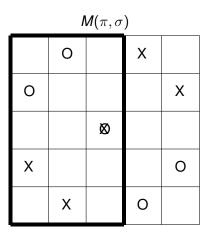
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



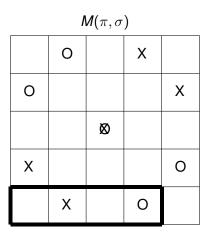
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



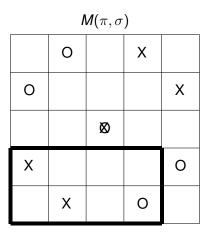
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



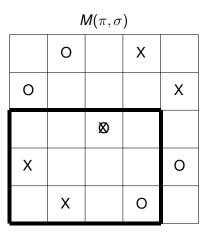
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



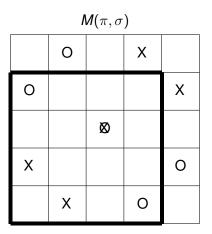
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



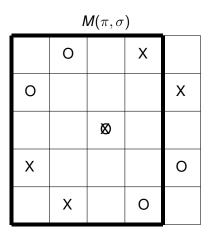
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



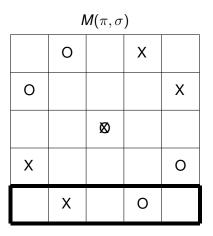
H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



H. and Pittel (BC, OSU)

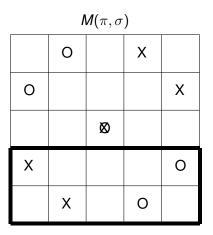
**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



H. and Pittel (BC, OSU)

October 9, 2012 6 / 38

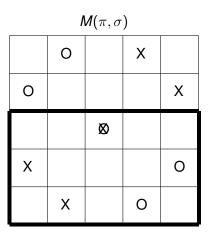
**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



H. and Pittel (BC, OSU)

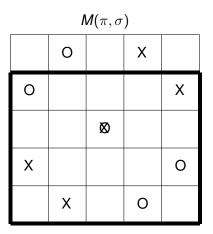
October 9, 2012 6 / 38

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



H. and Pittel (BC, OSU)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .



H. and Pittel (BC, OSU)

October 9, 2012 6 / 38

# The $\{0, 1\}$ -criterion (our primary focus)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ .

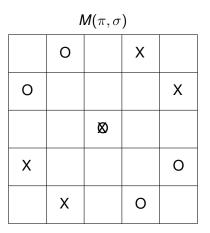
| $M(\pi,\sigma)$ |   |   |   |   |  |  |  |
|-----------------|---|---|---|---|--|--|--|
|                 | 0 |   | х |   |  |  |  |
| 0               |   |   |   | х |  |  |  |
|                 |   | Ø |   |   |  |  |  |
| х               |   |   |   | 0 |  |  |  |
|                 | Х |   | 0 |   |  |  |  |

H. and Pittel (BC, OSU)

October 9, 2012 6 / 38

# The $\{0, 1\}$ -criterion (our primary focus)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ . Get that  $\pi < \sigma$ .



H. and Pittel (BC, OSU)

# The $\{0, 1\}$ -criterion (our primary focus)

**Example.** Let  $\pi = 21354$ ,  $\sigma = 45312$ . Get that  $\pi < \sigma$ . **Advantage:** Algorithmic way to check comparability.

| $M(\pi,\sigma)$ |   |   |   |   |  |  |
|-----------------|---|---|---|---|--|--|
|                 | 0 |   | Х |   |  |  |
| 0               |   |   |   | х |  |  |
|                 |   | Ø |   |   |  |  |
| х               |   |   |   | 0 |  |  |
|                 | Х |   | 0 |   |  |  |

H. and Pittel (BC, OSU)

Given π, σ ∈ 𝔅<sub>n</sub>, we have π ≤ σ in weak order (written π ≤ σ) if π can be obtained from σ by undoing adjacent inversions.

Given π, σ ∈ G<sub>n</sub>, we have π ≤ σ in weak order (written π ≤ σ) if π can be obtained from σ by undoing adjacent inversions.
 Example. We have 132 < 231 in Bruhat order, but 132 ⊀ 231.</li>

Given π, σ ∈ G<sub>n</sub>, we have π ≤ σ in weak order (written π ≤ σ) if π can be obtained from σ by undoing adjacent inversions.
 Example. We have 132 < 231 in Bruhat order, but 132 ⊀ 231. Indeed, 132</li>

Given π, σ ∈ G<sub>n</sub>, we have π ≤ σ in weak order (written π ≤ σ) if π can be obtained from σ by undoing adjacent inversions.
 Example. We have 132 < 231 in Bruhat order, but 132 ⊀ 231. Indeed, 132 ≺</li>

Given π, σ ∈ G<sub>n</sub>, we have π ≤ σ in weak order (written π ≤ σ) if π can be obtained from σ by undoing adjacent inversions.
 Example. We have 132 < 231 in Bruhat order, but 132 ⊀ 231. Indeed, 132 ≺ 312</li>

Given π, σ ∈ G<sub>n</sub>, we have π ≤ σ in weak order (written π ≤ σ) if π can be obtained from σ by undoing adjacent inversions.
 Example. We have 132 < 231 in Bruhat order, but 132 ⊀ 231. Indeed, 132 ≺ 312</li>

Given π, σ ∈ G<sub>n</sub>, we have π ≤ σ in weak order (written π ≤ σ) if π can be obtained from σ by undoing adjacent inversions.
 Example. We have 132 < 231 in Bruhat order, but 132 ⊀ 231. Indeed, 132 ≺ 312 ≺</li>

Given π, σ ∈ G<sub>n</sub>, we have π ≤ σ in weak order (written π ≤ σ) if π can be obtained from σ by undoing adjacent inversions.
 Example. We have 132 < 231 in Bruhat order, but 132 ⊀ 231. Indeed, 132 ≺ 312 ≺ 321,</li>

Given π, σ ∈ S<sub>n</sub>, we have π ≤ σ in weak order (written π ≤ σ) if π can be obtained from σ by undoing adjacent inversions.
 Example. We have 132 < 231 in Bruhat order, but 132 ⊀ 231. Indeed, 132 ≺ 312 ≺ 321,</li>

Given π, σ ∈ G<sub>n</sub>, we have π ≤ σ in weak order (written π ≤ σ) if π can be obtained from σ by undoing adjacent inversions.
 Example. We have 132 < 231 in Bruhat order, but 132 ≠ 231. Indeed, 132 ≺ 312 ≺ 321, and there are no other chains in weak order starting with the permutation 132.</li>

Given π, σ ∈ G<sub>n</sub>, we have π ≤ σ in weak order (written π ≤ σ) if π can be obtained from σ by undoing adjacent inversions.
 Example. We have 132 < 231 in Bruhat order, but 132 ≠ 231. Indeed, 132 ≺ 312 ≺ 321, and there are no other chains in weak order starting with the permutation 132. However, 132</li>

Given π, σ ∈ G<sub>n</sub>, we have π ≤ σ in weak order (written π ≤ σ) if π can be obtained from σ by undoing adjacent inversions.
 Example. We have 132 < 231 in Bruhat order, but 132 ≠ 231. Indeed, 132 ≺ 312 ≺ 321, and there are no other chains in weak order starting with the permutation 132. However, 132 <</li>

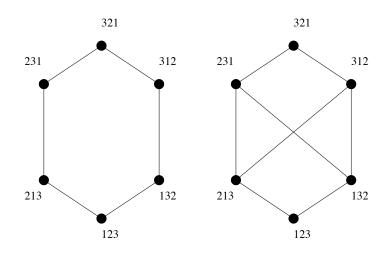
Given π, σ ∈ G<sub>n</sub>, we have π ≤ σ in weak order (written π ≤ σ) if π can be obtained from σ by undoing adjacent inversions.
 Example. We have 132 < 231 in Bruhat order, but 132 ≠ 231. Indeed, 132 ≺ 312 ≺ 321, and there are no other chains in weak order starting with the permutation 132. However, 132 < 231.</li>

Given π, σ ∈ G<sub>n</sub>, we have π ≤ σ in weak order (written π ≤ σ) if π can be obtained from σ by undoing adjacent inversions.
 Example. We have 132 < 231 in Bruhat order, but 132 ≠ 231. Indeed, 132 ≺ 312 ≺ 321, and there are no other chains in weak order starting with the permutation 132. However, 132 < 231.</li>

- Given π, σ ∈ G<sub>n</sub>, we have π ≤ σ in weak order (written π ≤ σ) if π can be obtained from σ by undoing adjacent inversions.
   Example. We have 132 < 231 in Bruhat order, but 132 ≠ 231. Indeed, 132 ≺ 312 ≺ 321, and there are no other chains in weak order starting with the permutation 132. However, 132 < 231.</li>
- The weak order poset (𝔅<sub>n</sub>, ≤) is a lattice (C. Berge, "Principles of Combinatorics"), i.e. infimums and supremums exist.

- Given π, σ ∈ G<sub>n</sub>, we have π ≤ σ in weak order (written π ≤ σ) if π can be obtained from σ by undoing adjacent inversions.
   Example. We have 132 < 231 in Bruhat order, but 132 ≠ 231. Indeed, 132 ≺ 312 ≺ 321, and there are no other chains in weak order starting with the permutation 132. However, 132 < 231.</li>
- The weak order poset (𝔅<sub>n</sub>, ≤) is a lattice (C. Berge, "Principles of Combinatorics"), i.e. infimums and supremums exist. This is *not* so for Bruhat order.

# The Posets $(\mathfrak{S}_3, \preceq)$ and $(\mathfrak{S}_3, \leq)$



# Equivalent Definition of Weak Order

• Again, checking  $\pi \preceq \sigma$  is clumsy from the definition alone. Is there an *algorithmic* way?

# Equivalent Definition of Weak Order

- Again, checking π ≤ σ is clumsy from the definition alone. Is there an *algorithmic* way?
- Yes! For each  $i \in [n]$ , introduce

$$E_i(\pi) = \{j < i : \pi^{-1}(j) < \pi^{-1}(i)\}.$$

H. and Pittel (BC, OSU)

# Equivalent Definition of Weak Order

- Again, checking π ≤ σ is clumsy from the definition alone. Is there an *algorithmic* way?
- Yes! For each  $i \in [n]$ , introduce

$$E_i(\pi) = \{j < i : \pi^{-1}(j) < \pi^{-1}(i)\}.$$

Then  $\bigcup_{i \in [n]} \{(j, i) : j \in E_i(\pi)\}$  is the set of non-inversions of  $\pi$ . We have  $\pi \leq \sigma$  iff  $E_i(\pi) \supseteq E_i(\sigma)$  for each  $i \in [n]$ .

H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 10 / 38

(1)  $(\mathfrak{S}_n, \leq)$  is only *partially*-ordered. So how likely is it that for independent, uniformly random  $\pi, \sigma \in \mathfrak{S}_n$  we have  $\pi \leq \sigma$ ? That is, what are bounds for  $P(\pi \leq \sigma)$ ? (Skandera, MIT, 2004.)

- (1)  $(\mathfrak{S}_n, \leq)$  is only *partially*-ordered. So how likely is it that for independent, uniformly random  $\pi, \sigma \in \mathfrak{S}_n$  we have  $\pi \leq \sigma$ ? That is, what are bounds for  $P(\pi \leq \sigma)$ ? (Skandera, MIT, 2004.)
- (2) More generally, for independent, uniformly random  $\pi_1, \ldots, \pi_r \in \mathfrak{S}_n$ , what are bounds for  $P(\pi_1 \leq \cdots \leq \pi_r)$ ?

- (1)  $(\mathfrak{S}_n, \leq)$  is only *partially*-ordered. So how likely is it that for independent, uniformly random  $\pi, \sigma \in \mathfrak{S}_n$  we have  $\pi \leq \sigma$ ? That is, what are bounds for  $P(\pi \leq \sigma)$ ? (Skandera, MIT, 2004.)
- (2) More generally, for independent, uniformly random  $\pi_1, \ldots, \pi_r \in \mathfrak{S}_n$ , what are bounds for  $P(\pi_1 \leq \cdots \leq \pi_r)$ ?
- (3) Same questions for the weak order.

- (1)  $(\mathfrak{S}_n, \leq)$  is only *partially*-ordered. So how likely is it that for independent, uniformly random  $\pi, \sigma \in \mathfrak{S}_n$  we have  $\pi \leq \sigma$ ? That is, what are bounds for  $P(\pi \leq \sigma)$ ? (Skandera, MIT, 2004.)
- (2) More generally, for independent, uniformly random  $\pi_1, \ldots, \pi_r \in \mathfrak{S}_n$ , what are bounds for  $P(\pi_1 \leq \cdots \leq \pi_r)$ ?
- (3) Same questions for the weak order.
- (4) As  $(\mathfrak{S}_n, \preceq)$  is a lattice, how likely is it that independent, uniformly random  $\pi_1, \ldots, \pi_r \in \mathfrak{S}_n$  have minimal infimum,  $12 \cdots n$ ?

- (1)  $(\mathfrak{S}_n, \leq)$  is only *partially*-ordered. So how likely is it that for independent, uniformly random  $\pi, \sigma \in \mathfrak{S}_n$  we have  $\pi \leq \sigma$ ? That is, what are bounds for  $P(\pi \leq \sigma)$ ? (Skandera, MIT, 2004.)
- (2) More generally, for independent, uniformly random  $\pi_1, \ldots, \pi_r \in \mathfrak{S}_n$ , what are bounds for  $P(\pi_1 \leq \cdots \leq \pi_r)$ ?
- (3) Same questions for the weak order.
- (4) As  $(\mathfrak{S}_n, \preceq)$  is a lattice, how likely is it that independent, uniformly random  $\pi_1, \ldots, \pi_r \in \mathfrak{S}_n$  have minimal infimum,  $12 \cdots n$ ?
  - Pittel studied the analogous problems for the poset of integer partitions under dominance order, and for the poset of set partitions ordered by refinement.

### Main Results

# **Bruhat Order Results**

### Theorem

Let  $\pi_1, \ldots, \pi_r \in \mathfrak{S}_n$  be independent and uniformly random. Then there are uniform constants  $c_1 = c_1(\epsilon), c_2 > 0$  such that

$$c_1\left(\frac{1}{r!}-\epsilon\right)^n \leq P(\pi_1 \leq \cdots \leq \pi_r) \leq c_2 n^{-r(r-1)}, \quad \forall \epsilon > 0.$$

Equivalently, there are at least  $(n!)^r c_1(1/r! - \epsilon)^n$  and at most  $(n!)^r c_2 n^{-r(r-1)}$  length *r* chains in Bruhat order. In the case r = 2, there is a uniform constant c > 0 such that

$$P(\pi_1 \leq \pi_2) \geq c(0.708)^n.$$

H. and Pittel (BC, OSU)

### Main Results

# **Bruhat Order Results**

### Theorem

Let  $\pi_1, \ldots, \pi_r \in \mathfrak{S}_n$  be independent and uniformly random. Then there are uniform constants  $c_1 = c_1(\epsilon), c_2 > 0$  such that

$$c_1\left(\frac{1}{r!}-\epsilon\right)^n \leq P(\pi_1 \leq \cdots \leq \pi_r) \leq c_2 n^{-r(r-1)}, \quad \forall \epsilon > 0.$$

Equivalently, there are at least  $(n!)^r c_1(1/r! - \epsilon)^n$  and at most  $(n!)^r c_2 n^{-r(r-1)}$  length *r* chains in Bruhat order. In the case r = 2, there is a uniform constant c > 0 such that

$$P(\pi_1 \leq \pi_2) \geq c(0.708)^n.$$

• We will focus on the proof of the r = 2 upper bound.

H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 11 / 38

# Weak Order Comparability Results

### Theorem

Let  $\pi, \sigma \in \mathfrak{S}_n$  be independent, uniformly random, and write  $P_n^* := P(\pi \leq \sigma)$ . Then, as a function of n,  $P_n^*$  is submultiplicative, i.e.  $P_{n_1+n_2}^* \leq P_{n_1}^* P_{n_2}^*$ . So (Fekete lemma) there exists  $\rho = \lim_n (P_n^*)^{1/n} = \inf_k (P_k^*)^{1/k}$ . Furthermore, there exists an absolute constant c > 0 such that

$$\prod_{i=1}^{n} H(i)/i \le P_{n}^{*} \le c(0.362)^{n};$$

here  $H(i) = \sum_{i=1}^{i} 1/j$ . Consequently  $\rho \leq 0.362$ .

# Weak Order Comparability Results

### Theorem

Let  $\pi, \sigma \in \mathfrak{S}_n$  be independent, uniformly random, and write  $P_n^* := P(\pi \leq \sigma)$ . Then, as a function of n,  $P_n^*$  is submultiplicative, i.e.  $P_{n_1+n_2}^* \leq P_{n_1}^* P_{n_2}^*$ . So (Fekete lemma) there exists  $\rho = \lim_n (P_n^*)^{1/n} = \inf_k (P_k^*)^{1/k}$ . Furthermore, there exists an absolute constant c > 0 such that

$$\prod_{i=1}^{n} H(i)/i \le P_{n}^{*} \le c(0.362)^{n};$$

here  $H(i) = \sum_{j=1}^{i} 1/j$ . Consequently  $\rho \leq 0.362$ .

• Note that in any case (Bruhat or weak ordering) we have  $P(\bullet) \rightarrow 0, n \rightarrow \infty$ .

H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 12 / 38

# Weak Order Lattice-property Results

### Theorem

Write  $P_{n,r} := P(\inf\{\pi_1, \dots, \pi_r\} = 12 \cdots n)$ . Then, as a function of n,  $P_{n,r}$  is submultiplicative, and

$$\lim_{n\to\infty}(P_{n,r})^{1/n}=1/z^*;$$

here,  $z^* = z^*(r) \in (1, 2)$  is the unique (positive) root of the equation  $\sum_{j \ge 0} (-1)^j z^j / (j!)^r = 0$  within the disk  $|z| \le 2$ .

H. and Pittel (BC, OSU)

Comparability of Permutations

▲ 三 ト 4 三 ト 三 三 つ へ (\* October 9, 2012 13 / 38)

< 🗐 🕨

# Weak Order Lattice-property Results

### Theorem

Write  $P_{n,r} := P(\inf\{\pi_1, \dots, \pi_r\} = 12 \cdots n)$ . Then, as a function of n,  $P_{n,r}$  is submultiplicative, and

$$\lim_{n\to\infty}(P_{n,r})^{1/n}=1/z^*;$$

here,  $z^* = z^*(r) \in (1, 2)$  is the unique (positive) root of the equation  $\sum_{j \ge 0} (-1)^j z^j / (j!)^r = 0$  within the disk  $|z| \le 2$ .

• In the case r = 2, we have  $1/z^* \approx 0.69$ . Note that, for r fixed,  $P_{n,r} \rightarrow 0$  exponentially fast as  $n \rightarrow \infty$ .

H. and Pittel (BC, OSU)

Results

Sketch of Proofs

Toward the Proof of the Bruhat Order Upper Bound (r=2)

Toward the Proof of the Bruhat Order Upper Bound (r=2)

• Exact enumeration of pairs  $(\pi, \sigma)$  with  $\pi \leq \sigma$  seems hopeless.

H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 14 / 38

- Exact enumeration of pairs  $(\pi, \sigma)$  with  $\pi \leq \sigma$  seems hopeless.
- We need to select a subset of conditions necessary for  $\pi \leq \sigma$  that are sufficiently simple, so that we can compute (estimate) the number of these pairs.

- Exact enumeration of pairs  $(\pi, \sigma)$  with  $\pi \leq \sigma$  seems hopeless.
- We need to select a subset of conditions necessary for  $\pi \leq \sigma$  that are sufficiently simple, so that we can compute (estimate) the number of these pairs.
- On the other hand, these conditions need to stringent enough so that they collectively have probability o(1).

H. and Pittel (BC, OSU)

Comparability of Permutations

▲ Ξ ▶ ▲ Ξ ▶ Ξ = 少 へ (\*
 October 9, 2012
 15 / 38

## Toward the Proof of the Bruhat Order Upper Bound

 First Advance: the Ehresmann Criterion implies that for each k ≤ n,

$$\{\pi \le \sigma\} \subseteq \left\{ \sum_{i=1}^{j} \pi(i) \le \sum_{i=1}^{j} \sigma(i), \, \forall j \le k \right\}.$$
(1)

## Toward the Proof of the Bruhat Order Upper Bound

 First Advance: the Ehresmann Criterion implies that for each k ≤ n,

$$\{\pi \le \sigma\} \subseteq \left\{ \sum_{i=1}^{j} \pi(i) \le \sum_{i=1}^{j} \sigma(i), \, \forall j \le k \right\}.$$
(1)

• So long as  $k = o(n^{1/2})$ , the first k entries of a random permutation are asymptotically independent and uniform on [n].

# Toward the Proof of the Bruhat Order Upper Bound

 First Advance: the Ehresmann Criterion implies that for each k ≤ n,

$$\{\pi \le \sigma\} \subseteq \left\{ \sum_{i=1}^{j} \pi(i) \le \sum_{i=1}^{j} \sigma(i), \, \forall j \le k \right\}.$$
(1)

- So long as  $k = o(n^{1/2})$ , the first k entries of a random permutation are asymptotically independent and uniform on [n].
- So letting  $k \to \infty$  "slowly" with *n*, we obtain from (1)

$$P(\pi \leq \sigma) = O\left(n^{-1/2}\right)$$

by using a certain connection with a random walk on the real line (Feller, "Intro. to Prob. Theory, Vol. II").

H. and Pittel (BC, OSU)

October 9, 2012 15 / 38

H. and Pittel (BC, OSU)

Comparability of Permutations

▲ ■ ▶ < ■ ▶ ■ ■ </li>
 ● 
 October 9, 2012
 16 / 38

• Second Advance: how are the Ehresmann and  $\{0, 1\}$  -criteria equivalent?

- Second Advance: how are the Ehresmann and {0,1} -criteria equivalent?
- Look at the sets of entries  $\{\pi(1), \pi(2), \ldots, \pi(k)\},\$  $\{\sigma(1), \sigma(2), \ldots, \sigma(k)\}$  and sort them  $\pi(i_1) < \cdots < \pi(i_k),\$  $\sigma(j_1) < \cdots < \sigma(j_k)$ . The *k*-th Ehresmann condition says

$$\pi(i_1) \leq \sigma(j_1), \ldots, \pi(i_k) \leq \sigma(j_k).$$

H. and Pittel (BC, OSU)

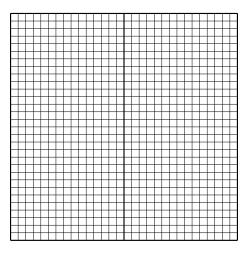
- Second Advance: how are the Ehresmann and {0,1} -criteria equivalent?
- Look at the sets of entries  $\{\pi(1), \pi(2), \ldots, \pi(k)\}$ ,  $\{\sigma(1), \sigma(2), \ldots, \sigma(k)\}$  and sort them  $\pi(i_1) < \cdots < \pi(i_k)$ ,  $\sigma(j_1) < \cdots < \sigma(j_k)$ . The *k*-th Ehresmann condition says

$$\pi(i_1) \leq \sigma(j_1), \ldots, \pi(i_k) \leq \sigma(j_k).$$

• This is the same as "reading-off" rows of the first *k* columns of  $M(\pi, \sigma)$ , bottom to top, with the # X's (for  $\pi$ ) always more than the # O's (for  $\sigma$ ) at any intermediate point.

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



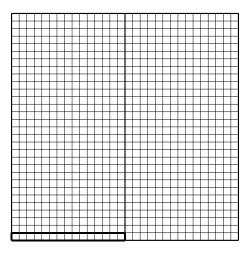
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



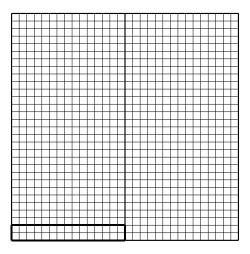
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



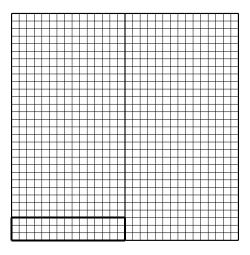
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



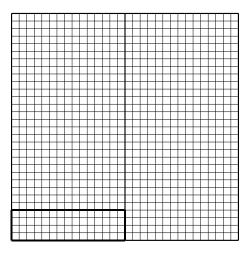
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



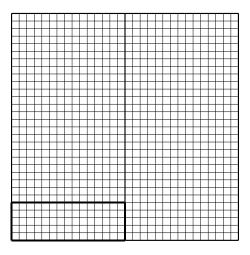
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



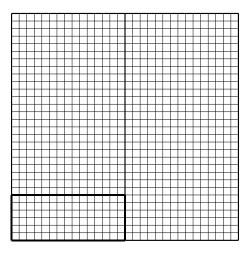
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



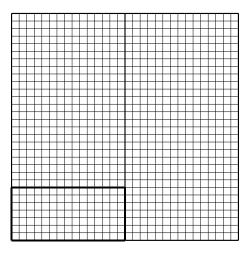
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



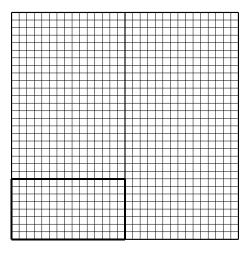
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



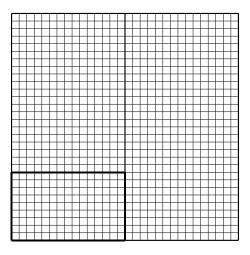
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



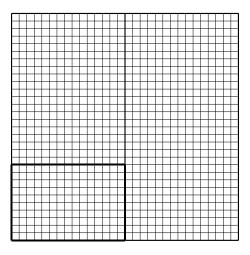
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



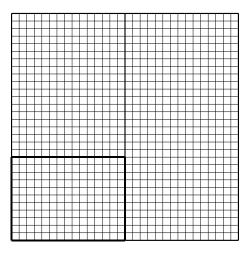
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



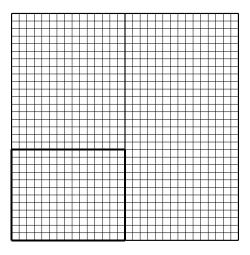
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



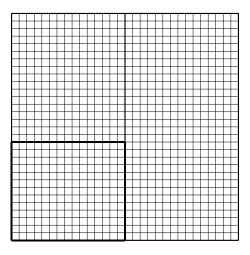
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



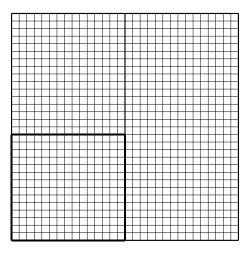
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



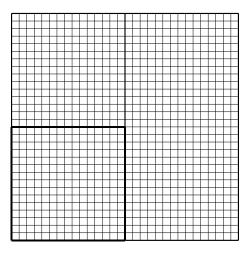
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



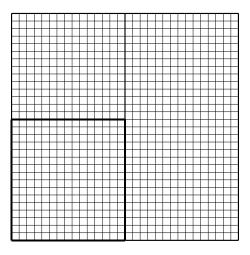
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



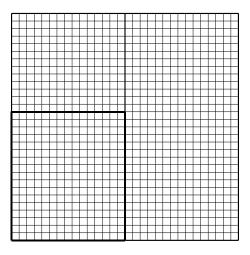
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



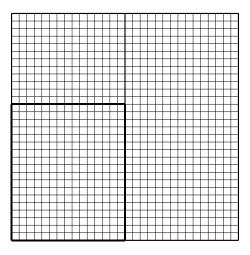
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



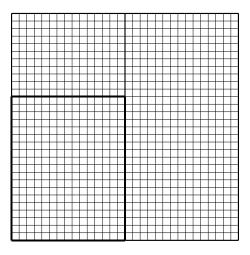
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



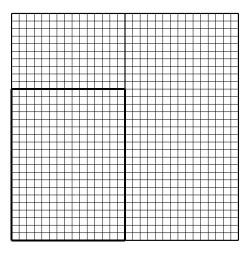
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



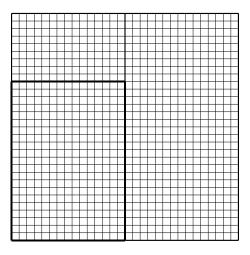
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



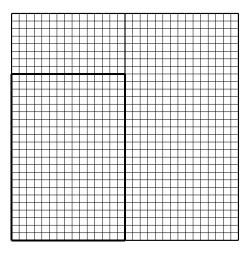
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



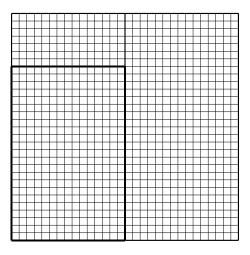
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



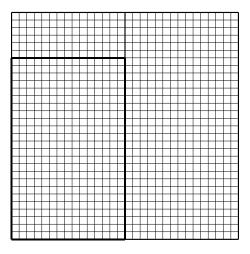
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

## Equivalence of Ehresmann and {0, 1}-criteria



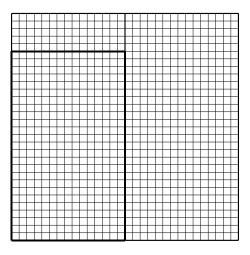
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

# Equivalence of Ehresmann and {0, 1}-criteria



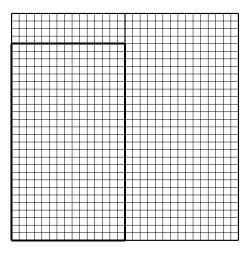
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

# Equivalence of Ehresmann and {0, 1}-criteria



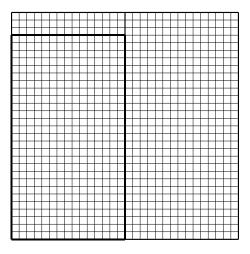
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

# Equivalence of Ehresmann and {0, 1}-criteria



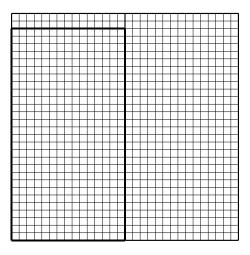
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

# Equivalence of Ehresmann and {0, 1}-criteria



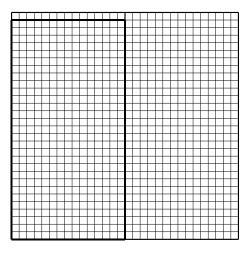
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

# Equivalence of Ehresmann and {0, 1}-criteria



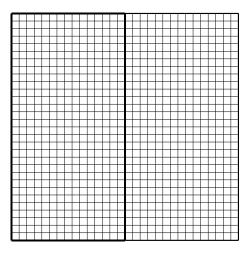
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

Sketch of Proofs

# Equivalence of Ehresmann and {0, 1}-criteria

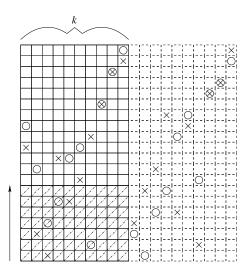


H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 17 / 38

# Equivalence of Ehresmann and {0, 1}-criteria



H. and Pittel (BC, OSU)

#### Comparability of Permutations

#### October 9, 2012 18 / 38

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 19 / 38

We have

$$\{\pi \le \sigma\} \subseteq \mathbf{A}_{\mathbf{k}},$$

where  $A_k = \{$ "the *k*-th Ehresmann cond. is satisfied" $\}$ .

We have

$$\{\pi \le \sigma\} \subseteq \mathbf{A}_{\mathbf{k}},$$

where  $A_k = \{$ "the *k*-th Ehresmann cond. is satisfied" $\}$ .

• We can compute  $|A_k|$ . There are exactly *k* X's and *k* O's to distribute "properly" in these first *k* columns, i.e. in accordance with the "ballot condition".

We have

$$\{\pi \le \sigma\} \subseteq \mathbf{A}_{\mathbf{k}},$$

where  $A_k = \{$ "the *k*-th Ehresmann cond. is satisfied" $\}$ .

- We can compute  $|A_k|$ . There are exactly *k* X's and *k* O's to distribute "properly" in these first *k* columns, i.e. in accordance with the "ballot condition".
- $\ell := #$  of rows with both an X and O.

We have

$$\{\pi \le \sigma\} \subseteq \mathbf{A}_{\mathbf{k}},$$

where  $A_k = \{$ "the *k*-th Ehresmann cond. is satisfied" $\}$ .

- We can compute  $|A_k|$ . There are exactly *k* X's and *k* O's to distribute "properly" in these first *k* columns, i.e. in accordance with the "ballot condition".
- $\ell := #$  of rows with both an X and O.
- Other  $2(k \ell)$  rows need to be split between  $\pi$  (for X's) and  $\sigma$  (for O's) according to the ballot condition.

We have

$$\{\pi \le \sigma\} \subseteq \mathbf{A}_{\mathbf{k}},$$

where  $A_k = \{$ "the *k*-th Ehresmann cond. is satisfied" $\}$ .

- We can compute  $|A_k|$ . There are exactly *k* X's and *k* O's to distribute "properly" in these first *k* columns, i.e. in accordance with the "ballot condition".
- $\ell := #$  of rows with both an X and O.
- Other  $2(k \ell)$  rows need to be split between  $\pi$  (for X's) and  $\sigma$  (for O's) according to the ballot condition.
- The number of ways to do this, for given  $\ell$ , is

$$\binom{n}{\ell}\binom{n-\ell}{2(k-\ell)}\frac{1}{k-\ell+1}\binom{2(k-\ell)}{k-\ell},$$

the last two factors coming from the classic Ballot Theorem.

# Statement of the Ballot Theorem

### Theorem

Candidate A receives a votes, B gets b votes, a > b. Then the number of ballot tallies (counted 1 vote at a time) such that A is always strictly ahead of B equals

$$\frac{a-b}{a+b}\binom{a+b}{a}.$$

H. and Pittel (BC, OSU)

# Statement of the Ballot Theorem

### Theorem

Candidate A receives a votes, B gets b votes, a > b. Then the number of ballot tallies (counted 1 vote at a time) such that A is always strictly ahead of B equals

$$\frac{a-b}{a+b}\binom{a+b}{a}.$$

• Equ., starting at (0, 0), we can make a rightward unit move each time *A* gets a vote, and an upward unit move each time *B* gets a vote. Then this theorem counts the number of lattice paths with these moves, joining the points (0, 0) - (a, b), that never *touch* the diagonal y = x.

## Ballot Theorem cont.

• In our case, we are *allowed* to touch the diagonal, as "ties" in the cumulative counts are permitted.

#### Sketch of Proofs

## Ballot Theorem cont.

- In our case, we are *allowed* to touch the diagonal, as "ties" in the cumulative counts are permitted.
- To compensate for this, we "shift" the diagonal left 1 unit, and the Ballot Theorem count changes to, for a ≥ b,

$$\frac{a+1-b}{a+1+b}\binom{a+1+b}{a+1} = \frac{a-b+1}{a+1}\binom{a+b}{a}.$$

### Sketch of Proofs

## Ballot Theorem cont.

- In our case, we are *allowed* to touch the diagonal, as "ties" in the cumulative counts are permitted.
- To compensate for this, we "shift" the diagonal left 1 unit, and the Ballot Theorem count changes to, for a ≥ b,

$$\frac{a+1-b}{a+1+b}\binom{a+1+b}{a+1} = \frac{a-b+1}{a+1}\binom{a+b}{a}.$$

• For us,  $a = b = k - \ell$ , and this delivers the count

$$\binom{n}{\ell}\binom{n-\ell}{2(k-\ell)}\frac{1}{k-\ell+1}\binom{2(k-\ell)}{k-\ell}$$

we claimed for the total number of admissible row selections for  $\pi$  (to contain X's) and for  $\sigma$  (to contain O's) with overlap size  $\ell$ .

H. and Pittel (BC, OSU)

 To complete the construction of pairs (π, σ) ∈ A<sub>k</sub>, we need to decide where to *put* the X's and O's in these chosen rows, and also place the remaining n − k X's and n − k O's somewhere in the remaining rows/columns. The total number of ways to do this is

$$(k!)^2(n-k)!^2.$$

H. and Pittel (BC, OSU)

 To complete the construction of pairs (π, σ) ∈ A<sub>k</sub>, we need to decide where to *put* the X's and O's in these chosen rows, and also place the remaining n − k X's and n − k O's somewhere in the remaining rows/columns. The total number of ways to do this is

$$(k!)^2(n-k)!^2.$$

• Putting these pieces together, and summing over all  $\ell \leq k$ , we get

$$P(\pi \le \sigma) \le P(A_k) = \sum_{\ell \le k} \frac{\binom{n}{\ell} \binom{n-\ell}{2(k-\ell)} \binom{2(k-\ell)}{k-\ell} (k!)^2 (n-k)!^2}{(n!)^2 (k-\ell+1)}$$
$$= \frac{n+1}{(n-k+1)(k+1)} \sum_{\ell \le k} \frac{\binom{k}{\ell} \binom{n+1-k}{k+1-\ell}}{\binom{n+1}{k+1}}$$
$$= \frac{n+1}{(n-k+1)(k+1)} = O\left(n^{-1}\right).$$

Comparability of Permutations

H. and Pittel (BC, OSU)

October 9, 2012 23 / 38

$$P(\pi \le \sigma) \le P(A_k) = \sum_{\ell \le k} \frac{\binom{n}{\ell} \binom{n-\ell}{2(k-\ell)} \binom{2(k-\ell)}{k-\ell} (k!)^2 (n-k)!^2}{(n!)^2 (k-\ell+1)}$$
$$= \frac{n+1}{(n-k+1)(k+1)} \sum_{\ell \le k} \frac{\binom{k}{\ell} \binom{n+1-k}{k+1-\ell}}{\binom{n+1}{k+1}}$$
$$= \frac{n+1}{(n-k+1)(k+1)} = O\left(n^{-1}\right).$$

For fixed k and n→∞, P(A<sub>k</sub>) ~ (k + 1)<sup>-1</sup>, which is in accordance with our intuition.

H. and Pittel (BC, OSU)

October 9, 2012 23 / 38

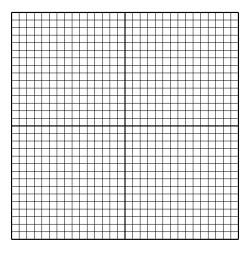
 To obtain the final result, P(π ≤ σ) = O(1/n<sup>2</sup>), how do we take into account an even larger subset of conditions?

- To obtain the final result, P(π ≤ σ) = O(1/n<sup>2</sup>), how do we take into account an even larger subset of conditions?
- Notice that we did not pay attention to the conditions in the last *n* - *k* columns. So we need to incorporate them somehow, while still preserving our ability to enumerate the resulting pairs of permutations.

- To obtain the final result,  $P(\pi \le \sigma) = O(1/n^2)$ , how do we take into account an even larger subset of conditions?
- Notice that we did not pay attention to the conditions in the last *n* - *k* columns. So we need to incorporate them somehow, while still preserving our ability to enumerate the resulting pairs of permutations.
- With the ballot-like conditions we just encountered driving our intuition, we arrive at the following picture:

Sketch of Proofs

# Finding a Necessary Condition for $\pi \leq \sigma$



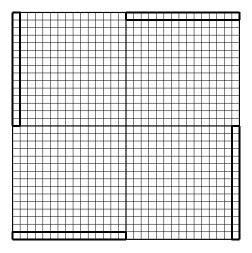
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 25 / 38

Sketch of Proofs

# Finding a Necessary Condition for $\pi \leq \sigma$



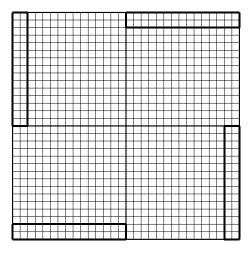
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 25 / 38

Sketch of Proofs

# Finding a Necessary Condition for $\pi \leq \sigma$

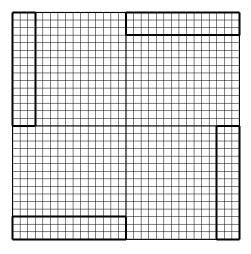


H. and Pittel (BC, OSU)

October 9, 2012 25 / 38

Sketch of Proofs

# Finding a Necessary Condition for $\pi \leq \sigma$



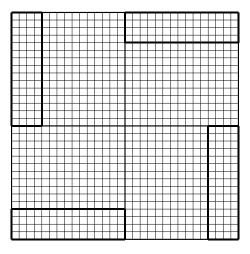
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 25 / 38

Sketch of Proofs

# Finding a Necessary Condition for $\pi \leq \sigma$



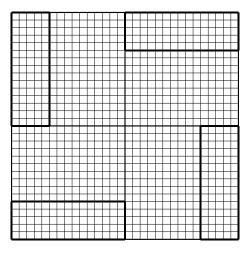
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 25 / 38

Sketch of Proofs

# Finding a Necessary Condition for $\pi \leq \sigma$



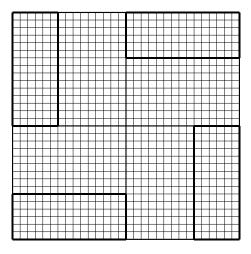
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 25 / 38

Sketch of Proofs

# Finding a Necessary Condition for $\pi \leq \sigma$



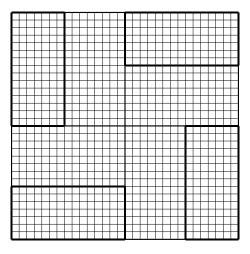
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 25 / 38

Sketch of Proofs

# Finding a Necessary Condition for $\pi \leq \sigma$



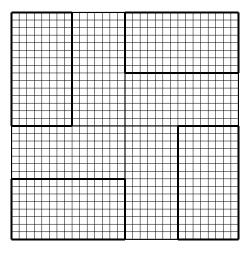
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 25 / 38

Sketch of Proofs

# Finding a Necessary Condition for $\pi \leq \sigma$



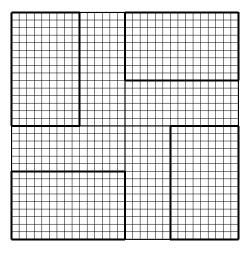
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 25 / 38

Sketch of Proofs

# Finding a Necessary Condition for $\pi \leq \sigma$



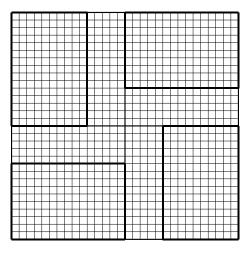
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 25 / 38

Sketch of Proofs

# Finding a Necessary Condition for $\pi \leq \sigma$



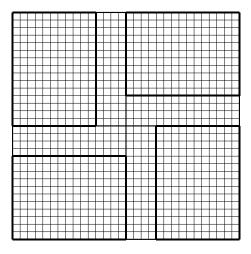
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 25 / 38

Sketch of Proofs

# Finding a Necessary Condition for $\pi \leq \sigma$



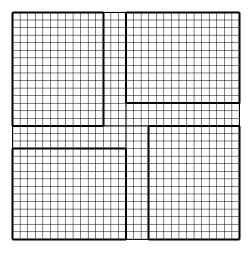
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 25 / 38

Sketch of Proofs

# Finding a Necessary Condition for $\pi \leq \sigma$



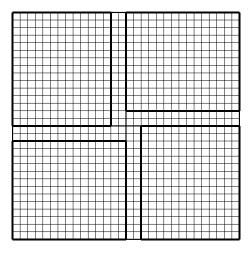
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 25 / 38

Sketch of Proofs

# Finding a Necessary Condition for $\pi \leq \sigma$



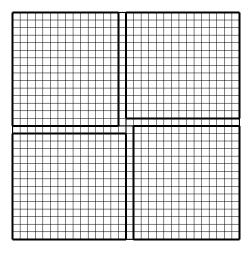
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 25 / 38

Sketch of Proofs

# Finding a Necessary Condition for $\pi \leq \sigma$



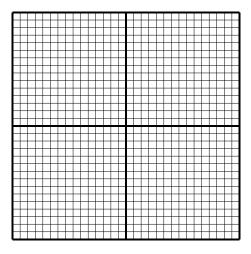
H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 25 / 38

Sketch of Proofs

# Finding a Necessary Condition for $\pi \leq \sigma$

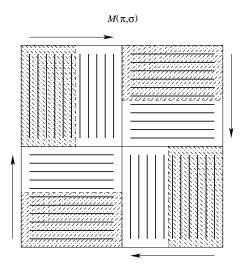


H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 25 / 38

# Finding a Necessary Condition for $\pi \leq \sigma$



H. and Pittel (BC, OSU)

October 9, 2012 26 / 38

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• In a manner similar to the O(1/n) proof, we obtain

$$\begin{split} P(\pi \leq \sigma) \\ \leq & \sum_{m_1 \geq m_2} \frac{(m_1 - m_2 + 1)^4 (n/2 + 1)^4}{(m_1 + 1)^4 (n/2 - m_2 + 1)^4} \binom{n/2}{m_1}^4 \binom{n/2}{m_2}^4 \\ & \times \frac{m_1!^2 (n/2 - m_1)!^2 m_2!^2 (n/2 - m_2)!^2}{n!^2} \\ = & \sum_{m_1 \geq m_2} \frac{(m_1 - m_2 + 1)^4 (n/2 + 1)^4}{(m_1 + 1)^4 (n/2 - m_2 + 1)^4} \prod_{i=1}^2 \frac{\binom{n/2}{m_i} \binom{n/2}{n/2 - m_i}}{\binom{n}{n/2}}. \end{split}$$

H. and Pittel (BC, OSU)

October 9, 2012 27 / 38

Extending this last sum over all *m*<sub>1</sub>, *m*<sub>2</sub> (not just *m*<sub>1</sub> ≥ *m*<sub>2</sub>), we see that the extended sum equals

$$\mathsf{E}\left[\frac{(M_1-M_2+1)^4(n/2+1)^4}{(M_1+1)^4(n/2-M_2+1)^4}\right],$$

so that this expectation bounds our probability  $P(\pi \leq \sigma)$  from above.

Extending this last sum over all *m*<sub>1</sub>, *m*<sub>2</sub> (not just *m*<sub>1</sub> ≥ *m*<sub>2</sub>), we see that the extended sum equals

$$\mathsf{E}\left[\frac{(M_1-M_2+1)^4(n/2+1)^4}{(M_1+1)^4(n/2-M_2+1)^4}\right],$$

so that this expectation bounds our probability  $P(\pi \leq \sigma)$  from above.

• Here,  $M_1$ ,  $M_2$  are independent copies of the Hypergeometric random variable with parameters n/2, n/2, n/2. So  $M_i$  is equal in distribution to the number of red balls in a uniformly random sample of size n/2 from a bin containing n/2 red and n/2 white balls.

To finish our bound on P(π ≤ σ), it remains to estimate this expectation from above.

- To finish our bound on P(π ≤ σ), it remains to estimate this expectation from above.
- The  $M_i$  are sharply concentrated around their mean, n/4, with exponentially high probability. Further, the difference  $|M_1 M_2 + 1|$  has expectation of order  $\sqrt{n}$  at most.

- To finish our bound on P(π ≤ σ), it remains to estimate this expectation from above.
- The  $M_i$  are sharply concentrated around their mean, n/4, with exponentially high probability. Further, the difference  $|M_1 M_2 + 1|$  has expectation of order  $\sqrt{n}$  at most.
- So, roughly speaking, we conclude that

$$egin{split} \mathcal{P}(\pi \leq \sigma) \leq \mathcal{E}\left[rac{(M_1-M_2+1)^4(n/2+1)^4}{(M_1+1)^4(n/2-M_2+1)^4}
ight] \ &= \mathcal{O}\left(rac{(\sqrt{n})^4 \cdot n^4}{n^4 \cdot n^4}
ight) = \mathcal{O}\left(n^{-2}
ight). \end{split}$$

# Conjectures

H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 30 / 38

# Conjectures

• Write 
$$P_n = P(\pi \leq \sigma), P_n^* = P(\pi \leq \sigma).$$

H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 30 / 38

# Conjectures

- Write  $P_n = P(\pi \leq \sigma), P_n^* = P(\pi \leq \sigma).$
- (1) There is  $\delta \in [0.5, 1]$  and C > 0 such that  $P_n \sim Cn^{-(2+\delta)}$ .

#### Sketch of Proofs

# Conjectures

- Write  $P_n = P(\pi \leq \sigma), P_n^* = P(\pi \leq \sigma).$
- (1) There is  $\delta \in [0.5, 1]$  and C > 0 such that  $P_n \sim Cn^{-(2+\delta)}$ .
- (2) There is  $\rho \in [0.3, 1/3]$  and C > 0 such that  $P_n^* \sim C \rho^n$ . Here

$$\rho = \lim_{n \to \infty} \sqrt[n]{P_n^*}.$$

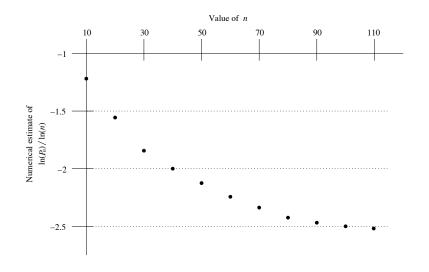
H. and Pittel (BC, OSU)

# **Bruhat Order Numerics**

| п   | R <sub>n</sub> | Estimate of $P_n \approx \frac{R_n}{10^9}$ | Estimate of $\ln(P_n)/\ln n$ |
|-----|----------------|--------------------------------------------|------------------------------|
| 10  | 61589126       | 0.0615891                                  | -1.21049                     |
| 30  | 1892634        | 0.0018926                                  | -1.84340                     |
| 50  | 233915         | 0.0002339                                  | -2.13714                     |
| 70  | 50468          | 0.0000504                                  | -2.32886                     |
| 90  | 14686          | 0.0000146                                  | -2.47313                     |
| 110 | 5174           | 0.0000051                                  | -2.58949                     |

October 9, 2012 31 / 38

# **Bruhat Order Numerics**



October 9, 2012 32 / 38

315

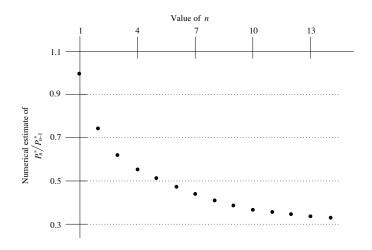
#### Weak Order Numerics

| n  | $R_n^*$ | Estimate of $P_n^* \approx \frac{R_n^*}{10^9}$ | Estimate of $P_n^*/P_{n-1}^*$ |
|----|---------|------------------------------------------------|-------------------------------|
| 10 | 1538639 | 0.0015386                                      | 0.368718                      |
| 11 | 541488  | 0.0005414                                      | 0.351926                      |
| 12 | 184273  | 0.0001842                                      | 0.340308                      |
| 13 | 59917   | 0.0000599                                      | 0.325153                      |
| 14 | 18721   | 0.0000187                                      | 0.312448                      |
| 15 | 5714    | 0.0000057                                      | 0.305218                      |
| 16 | 1724    | 0.0000017                                      | 0.301715                      |

三日 のへで

イロト イヨト イヨト イヨト

#### Weak Order Numerics



315

イロト イヨト イヨト イヨト

An alternating sign matrix is a square matrix of 0's, 1's and -1's for which

An alternating sign matrix is a square matrix of 0's, 1's and -1's for which

• the sum of the entries in each row and column is 1,

An alternating sign matrix is a square matrix of 0's, 1's and -1's for which

- the sum of the entries in each row and column is 1,
- the non-zero entries of each row and column alternate in sign.

An alternating sign matrix is a square matrix of 0's, 1's and -1's for which

- the sum of the entries in each row and column is 1,
- the non-zero entries of each row and column alternate in sign.

An alternating sign matrix is a square matrix of 0's, 1's and -1's for which

- the sum of the entries in each row and column is 1,
- the non-zero entries of each row and column alternate in sign.

Any permutation matrix is also an alternating sign matrix.

The set of Monotone Triangles of order n,  $\mathfrak{M}_n$ :

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ = ・ ○ < ○

The set of Monotone Triangles of order n,  $\mathfrak{M}_n$ :

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \longleftrightarrow \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

H. and Pittel (BC, OSU)

October 9, 2012 36 / 38

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ = ・ ○ < ○

The set of Monotone Triangles of order n,  $\mathfrak{M}_n$ :

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \longleftrightarrow \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\begin{array}{c} 2 \\ 2 & 3 \\ \longleftrightarrow & 1 & 3 & 5 \\ 1 & 2 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{array}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(𝔅n, ≤), defined entry-wise, is the unique (MacNeille) completion of (𝔅n, ≤) to a lattice (Stanley, "Enumerative Comb., Vol. II").

- (𝔅n, ≤), defined entry-wise, is the unique (MacNeille) completion of (𝔅n, ≤) to a lattice (Stanley, "Enumerative Comb., Vol. II").
- What about comparability probability for this lattice? Recent work has only focused on enumeration of these objects (Zeilberger, Kuperberg).

- (𝔅n, ≤), defined entry-wise, is the unique (MacNeille) completion of (𝔅n, ≤) to a lattice (Stanley, "Enumerative Comb., Vol. II").
- What about comparability probability for this lattice? Recent work has only focused on enumeration of these objects (Zeilberger, Kuperberg).
- What about the size of the largest *anti*-chain in weak order? This is closed for Bruhat order (it has the Sperner property; Engel, "Sperner Theory").

## For Further Reading



A. Hammett, B. Pittel. How often are two permutations comparable? *Trans. of the Amer. Math. Soc.*, 2009.

H. and Pittel (BC, OSU)

Comparability of Permutations

October 9, 2012 38 / 38

12

(B)

A .