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Preliminaries Basic Concepts

Definition of Bruhat Order

Sn, the set of permutations of [n] := {1, 2, . . . , n}.

Write π = π(1)π(2) · · ·π(n) ∈ Sn in one-line array notation.
An inversion of π is an ordered pair (i , j) with i > j and
π−1(i) < π−1(j).
Example. (3, 1) and (5, 4) are inversions of 35412.
We say π ≤ σ in Bruhat order iff π can be obtained from σ by
“undoing” some inversions of σ.
Intuitively, π ≤ σ means π is more orderly (closer to 12 · · ·n) than
σ.
(Sn,≤) is only a partially-ordered set (poset), i.e. it may happen
that given π, σ are incomparable.
Bruhat ordering can be extended to general Coxeter groups, but
we studied Sn only.
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Preliminaries Basic Concepts

Example of Bruhat Comparability

Example. 3412 > 1324:

3412 > 3142 > 3124 > 1324

There’s no need to restrict to undoing adjacent inversions as we
have here (such a restriction gives rise to another partial-ordering:
weak ordering).
Despite no restrictions on which inversions we destroy, the total
number of inversions strictly decreases each time we destroy one.
Problem: From the definition alone, checking Bruhat
comparability is far from algorithmic.
To get around this, we used two comparability criteria that are
algorithmic in nature: the Ehresmann Tableaux and {0, 1}-matrix
criteria.
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Preliminaries Basic Concepts

The Ehresmann Criterion

Discovered by C. Ehresmann in 1934.

Let π = 21534, σ = 45312. We build a pair of staircase tableaux
from these permutations.
Then π ≤ σ iff the tableau for π is dominated entry-wise by that for
σ.

1 2 3 4 5
1 2 3 5
1 2 5
1 2
2

1 2 3 4 5
1 3 4 5
3 4 5
4 5
4
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Preliminaries Basic Concepts

The {0, 1}-criterion (our primary focus)

Example. Let π = 21354, σ = 45312.

Get that π < σ.
Advantage: Algorithmic way to check comparability.

M(π, σ)

X

X

X

X

XO

O

O

O

O
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Preliminaries Basic Concepts

Definition of Weak Order

Given π, σ ∈ Sn, we have π ≤ σ in weak order (written π � σ) if π
can be obtained from σ by undoing adjacent inversions.

Example. We have 132 < 231 in Bruhat order, but 132 ⊀ 231.
Indeed, 132≺ 312 ≺ 321, and there are no other chains in weak
order starting with the permutation 132. However, 132 < 231.
The weak order poset (Sn,�) is a lattice (C. Berge, “Principles of
Combinatorics”), i.e. infimums and supremums exist. This is not
so for Bruhat order.
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Preliminaries Basic Concepts

The Posets (S3,�) and (S3,≤)
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Preliminaries Basic Concepts

Equivalent Definition of Weak Order

Again, checking π � σ is clumsy from the definition alone. Is there
an algorithmic way?

Yes! For each i ∈ [n], introduce

Ei(π) = {j < i : π−1(j) < π−1(i)}.

Then ∪i∈[n] {(j , i) : j ∈ Ei(π)} is the set of non-inversions of π.
We have π � σ iff Ei(π) ⊇ Ei(σ) for each i ∈ [n].
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Preliminaries Problems Studied

Problems Studied

(1) (Sn,≤) is only partially-ordered. So how likely is it that for
independent, uniformly random π, σ ∈ Sn we have π ≤ σ? That is,
what are bounds for P(π ≤ σ)? (Skandera, MIT, 2004.)

(2) More generally, for independent, uniformly random
π1, . . . , πr ∈ Sn, what are bounds for P(π1 ≤ · · · ≤ πr )?

(3) Same questions for the weak order.
(4) As (Sn,�) is a lattice, how likely is it that independent, uniformly

random π1, . . . , πr ∈ Sn have minimal infimum, 12 · · ·n?
Pittel studied the analogous problems for the poset of integer
partitions under dominance order, and for the poset of set
partitions ordered by refinement.
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Results Main Results

Bruhat Order Results

Theorem
Let π1, . . . , πr ∈ Sn be independent and uniformly random. Then there
are uniform constants c1 = c1(ε), c2 > 0 such that

c1

(
1
r !
− ε

)n

≤ P(π1 ≤ · · · ≤ πr ) ≤ c2n−r(r−1), ∀ε > 0.

Equivalently, there are at least (n!)r c1(1/r !− ε)n and at most
(n!)r c2n−r(r−1) length r chains in Bruhat order. In the case r = 2, there
is a uniform constant c > 0 such that

P(π1 ≤ π2) ≥ c(0.708)n.

We will focus on the proof of the r = 2 upper bound.
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Results Main Results

Weak Order Comparability Results

Theorem
Let π, σ ∈ Sn be independent, uniformly random, and write
P∗n := P(π � σ). Then, as a function of n, P∗n is submultiplicative, i.e.
P∗n1+n2

≤ P∗n1
P∗n2

. So (Fekete lemma) there exists
ρ = limn(P∗n)1/n = infk (P∗k )1/k . Furthermore, there exists an absolute
constant c > 0 such that

n∏
i=1

H(i)/i ≤ P∗n ≤ c(0.362)n;

here H(i) =
∑i

j=1 1/j . Consequently ρ ≤ 0.362.

Note that in any case (Bruhat or weak ordering) we have
P(•)→ 0, n→∞.
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Results Main Results

Weak Order Lattice-property Results

Theorem
Write Pn,r := P(inf{π1, . . . , πr} = 12 · · ·n). Then, as a function of n,
Pn,r is submultiplicative, and

lim
n→∞

(Pn,r )
1/n = 1/z∗;

here, z∗ = z∗(r) ∈ (1, 2) is the unique (positive) root of the equation∑
j≥0(−1)jz j/(j!)r = 0 within the disk |z| ≤ 2.

In the case r = 2, we have 1/z∗ ≈ 0.69. Note that, for r fixed,
Pn,r → 0 exponentially fast as n→∞.
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Results Sketch of Proofs

Toward the Proof of the Bruhat Order Upper Bound
(r=2)

Exact enumeration of pairs (π, σ) with π ≤ σ seems hopeless.
We need to select a subset of conditions necessary for π ≤ σ that
are sufficiently simple, so that we can compute (estimate) the
number of these pairs.
On the other hand, these conditions need to stringent enough so
that they collectively have probability o(1).
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Results Sketch of Proofs

Toward the Proof of the Bruhat Order Upper Bound

First Advance: the Ehresmann Criterion implies that for each
k ≤ n,

{π ≤ σ} ⊆


j∑

i=1

π(i) ≤
j∑

i=1

σ(i), ∀j ≤ k

 . (1)

So long as k = o
(
n1/2), the first k entries of a random

permutation are asymptotically independent and uniform on [n].
So letting k →∞ “slowly” with n, we obtain from (1)

P(π ≤ σ) = O
(

n−1/2
)

by using a certain connection with a random walk on the real line
(Feller, “Intro. to Prob. Theory, Vol. II”).
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Results Sketch of Proofs

Toward the Proof of the Bruhat Order Upper Bound

Second Advance: how are the Ehresmann and {0, 1} -criteria
equivalent?
Look at the sets of entries {π(1), π(2), . . . , π(k)},
{σ(1), σ(2), . . . , σ(k)} and sort them π(i1) < · · · < π(ik ),
σ(j1) < · · · < σ(jk ). The k -th Ehresmann condition says

π(i1) ≤ σ(j1), . . . , π(ik ) ≤ σ(jk ).

This is the same as “reading-off” rows of the first k columns of
M(π, σ), bottom to top, with the # X’s (for π) always more than the
# O’s (for σ) at any intermediate point.
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Results Sketch of Proofs

Equivalence of Ehresmann and {0, 1}-criteria
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Results Sketch of Proofs

Equivalence of Ehresmann and {0, 1}-criteria
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Results Sketch of Proofs

Upper Bound Proof (2nd advance, cont.)

We have
{π ≤ σ} ⊆ Ak ,

where Ak = {“the k -th Ehresmann cond. is satisfied”}.
We can compute |Ak |. There are exactly k X’s and k O’s to
distribute “properly” in these first k columns, i.e. in accordance
with the “ballot condition”.
` := # of rows with both an X and O.
Other 2(k − `) rows need to be split between π ( for X’s) and σ (for
O’s) according to the ballot condition.
The number of ways to do this, for given `, is(

n
`

)(
n − `

2(k − `)

)
1

k − ` + 1

(
2(k − `)

k − `

)
,

the last two factors coming from the classic Ballot Theorem.
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Results Sketch of Proofs

Statement of the Ballot Theorem

Theorem
Candidate A receives a votes, B gets b votes, a > b. Then the number
of ballot tallies (counted 1 vote at a time) such that A is always strictly
ahead of B equals

a− b
a + b

(
a + b

a

)
.

Equ., starting at (0, 0), we can make a rightward unit move each
time A gets a vote, and an upward unit move each time B gets a
vote. Then this theorem counts the number of lattice paths with
these moves, joining the points (0, 0)− (a, b), that never touch the
diagonal y = x .

H. and Pittel (BC, OSU) Comparability of Permutations October 9, 2012 20 / 38



Results Sketch of Proofs

Statement of the Ballot Theorem

Theorem
Candidate A receives a votes, B gets b votes, a > b. Then the number
of ballot tallies (counted 1 vote at a time) such that A is always strictly
ahead of B equals

a− b
a + b

(
a + b

a

)
.

Equ., starting at (0, 0), we can make a rightward unit move each
time A gets a vote, and an upward unit move each time B gets a
vote. Then this theorem counts the number of lattice paths with
these moves, joining the points (0, 0)− (a, b), that never touch the
diagonal y = x .

H. and Pittel (BC, OSU) Comparability of Permutations October 9, 2012 20 / 38



Results Sketch of Proofs

Ballot Theorem cont.

In our case, we are allowed to touch the diagonal, as “ties” in the
cumulative counts are permitted.

To compensate for this, we “shift” the diagonal left 1 unit, and the
Ballot Theorem count changes to, for a ≥ b,

a + 1− b
a + 1 + b

(
a + 1 + b

a + 1

)
=

a− b + 1
a + 1

(
a + b

a

)
.

For us, a = b = k − `, and this delivers the count(
n
`

)(
n − `

2(k − `)

)
1

k − ` + 1

(
2(k − `)

k − `

)
we claimed for the total number of admissible row selections for π
(to contain X’s) and for σ (to contain O’s) with overlap size `.
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Results Sketch of Proofs

Upper Bound Proof (2nd advance cont.)

To complete the construction of pairs (π, σ) ∈ Ak , we need to
decide where to put the X’s and O’s in these chosen rows, and
also place the remaining n− k X’s and n− k O’s somewhere in the
remaining rows/columns. The total number of ways to do this is

(k !)2(n − k)!2.

Putting these pieces together, and summing over all ` ≤ k , we get
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Results Sketch of Proofs

Upper Bound Proof (2nd advance cont.)

P(π ≤ σ) ≤ P(Ak ) =
∑
`≤k

(n
`

)( n−`
2(k−`)

)(2(k−`)
k−`

)
(k !)2(n − k)!2

(n!)2(k − ` + 1)

=
n + 1

(n − k + 1)(k + 1)

∑
`≤k

(k
`

)(n+1−k
k+1−`

)(n+1
k+1

)
=

n + 1
(n − k + 1)(k + 1)

= O
(

n−1
)

.

For fixed k and n→∞, P(Ak ) ∼ (k + 1)−1, which is in
accordance with our intuition.
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Results Sketch of Proofs

Upper Bound Proof (final form)

To obtain the final result, P(π ≤ σ) = O(1/n2), how do we take
into account an even larger subset of conditions?
Notice that we did not pay attention to the conditions in the last
n − k columns. So we need to incorporate them somehow, while
still preserving our ability to enumerate the resulting pairs of
permutations.
With the ballot-like conditions we just encountered driving our
intuition, we arrive at the following picture:
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Results Sketch of Proofs

Finding a Necessary Condition for π ≤ σ
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Results Sketch of Proofs

Finding a Necessary Condition for π ≤ σ

π,σM(      )
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Results Sketch of Proofs

Upper Bound Proof (final form)

In a manner similar to the O(1/n) proof, we obtain

P(π ≤ σ)

≤
∑

m1≥m2

(m1 −m2 + 1)4(n/2 + 1)4

(m1 + 1)4(n/2−m2 + 1)4

(
n/2
m1

)4(n/2
m2

)4

× m1!
2(n/2−m1)!

2m2!
2(n/2−m2)!

2

n!2

=
∑

m1≥m2

(m1 −m2 + 1)4(n/2 + 1)4

(m1 + 1)4(n/2−m2 + 1)4

2∏
i=1

(n/2
mi

)( n/2
n/2−mi

)( n
n/2

) .
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Results Sketch of Proofs

Upper Bound Proof (final form)

Extending this last sum over all m1, m2 (not just m1 ≥ m2), we see
that the extended sum equals

E
[
(M1 −M2 + 1)4(n/2 + 1)4

(M1 + 1)4(n/2−M2 + 1)4

]
,

so that this expectation bounds our probability P(π ≤ σ) from
above.

Here, M1, M2 are independent copies of the Hypergeometric
random variable with parameters n/2, n/2, n/2. So Mi is equal in
distribution to the number of red balls in a uniformly random
sample of size n/2 from a bin containing n/2 red and n/2 white
balls.
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Results Sketch of Proofs

Upper Bound Proof (final form)

To finish our bound on P(π ≤ σ), it remains to estimate this
expectation from above.

The Mi are sharply concentrated around their mean, n/4, with
exponentially high probability. Further, the difference
|M1 −M2 + 1| has expectation of order

√
n at most.

So, roughly speaking, we conclude that

P(π ≤ σ) ≤ E
[
(M1 −M2 + 1)4(n/2 + 1)4

(M1 + 1)4(n/2−M2 + 1)4

]
= O

(
(
√

n)4 · n4

n4 · n4

)
= O

(
n−2

)
.
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Results Sketch of Proofs

Conjectures

Write Pn = P(π ≤ σ), P∗n = P(π � σ).
(1) There is δ ∈ [0.5, 1] and C > 0 such that Pn ∼ Cn−(2+δ).
(2) There is ρ ∈ [0.3, 1/3] and C > 0 such that P∗n ∼ Cρn. Here

ρ = lim
n→∞

n
√

P∗n .
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Results Sketch of Proofs

Bruhat Order Numerics

n Rn Estimate of Pn ≈ Rn
109 Estimate of ln(Pn)/ ln n

10 61589126 0.0615891 . . . −1.21049 . . .
30 1892634 0.0018926 . . . −1.84340 . . .
50 233915 0.0002339 . . . −2.13714 . . .
70 50468 0.0000504 . . . −2.32886 . . .
90 14686 0.0000146 . . . −2.47313 . . .

110 5174 0.0000051 . . . −2.58949 . . .
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Results Sketch of Proofs

Bruhat Order Numerics
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Results Sketch of Proofs

Weak Order Numerics

n R∗n Estimate of P∗n ≈
R∗

n
109 Estimate of P∗n/P∗n−1

10 1538639 0.0015386 . . . 0.368718 . . .
11 541488 0.0005414 . . . 0.351926 . . .
12 184273 0.0001842 . . . 0.340308 . . .
13 59917 0.0000599 . . . 0.325153 . . .
14 18721 0.0000187 . . . 0.312448 . . .
15 5714 0.0000057 . . . 0.305218 . . .
16 1724 0.0000017 . . . 0.301715 . . .
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Results Sketch of Proofs

Weak Order Numerics
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Open Problems

Open Problems

An alternating sign matrix is a square matrix of 0’s, 1’s and −1’s for
which

the sum of the entries in each row and column is 1,
the non-zero entries of each row and column alternate in sign.

0 1 0 0 0
0 0 1 0 0
1 −1 0 0 1
0 1 −1 1 0
0 0 1 0 0


Any permutation matrix is also an alternating sign matrix.
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Open Problems

Open Problems

The set of Monotone Triangles of order n, Mn:


0 1 0 0 0
0 0 1 0 0
1 −1 0 0 1
0 1 −1 1 0
0 0 1 0 0

←→


0 1 0 0 0
0 1 1 0 0
1 0 1 0 1
1 1 0 1 1
1 1 1 1 1



←→

2
2 3

1 3 5
1 2 4 5

1 2 3 4 5
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Open Problems

Open Problems

(Mn,≤), defined entry-wise, is the unique (MacNeille) completion
of (Sn,≤) to a lattice (Stanley, “Enumerative Comb., Vol. II”).

(1) What about comparability probability for this lattice? Recent work
has only focused on enumeration of these objects (Zeilberger,
Kuperberg).

(2) What about the size of the largest anti-chain in weak order? This
is closed for Bruhat order (it has the Sperner property; Engel,
“Sperner Theory”).
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(2) What about the size of the largest anti-chain in weak order? This
is closed for Bruhat order (it has the Sperner property; Engel,
“Sperner Theory”).
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Appendix For Further Reading

For Further Reading

A. Hammett, B. Pittel.
How often are two permutations comparable?
Trans. of the Amer. Math. Soc., 2009.
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