
Cedarville University
DigitalCommons@Cedarville

Science and Mathematics Faculty Presentations Department of Science and Mathematics

2008

Modeling Biochemical Processes as Designed
Systems
Steven M. Gollmer
Cedarville University, gollmers@cedarville.edu

Follow this and additional works at: http://digitalcommons.cedarville.edu/
science_and_mathematics_presentations

Part of the Biology Commons, and the Geology Commons

This Conference Presentation is brought to you for free and open access by
DigitalCommons@Cedarville, a service of the Centennial Library. It has
been accepted for inclusion in Science and Mathematics Faculty
Presentations by an authorized administrator of
DigitalCommons@Cedarville. For more information, please contact
digitalcommons@cedarville.edu.

Recommended Citation
Gollmer, S. M. (2008). Modeling Biochemical Processes as Designed Systems. International Conference on Creationism.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons

https://core.ac.uk/display/301478993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cedarville.edu/?utm_source=digitalcommons.cedarville.edu%2Fscience_and_mathematics_presentations%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.cedarville.edu/?utm_source=digitalcommons.cedarville.edu%2Fscience_and_mathematics_presentations%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cedarville.edu?utm_source=digitalcommons.cedarville.edu%2Fscience_and_mathematics_presentations%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cedarville.edu/science_and_mathematics_presentations?utm_source=digitalcommons.cedarville.edu%2Fscience_and_mathematics_presentations%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cedarville.edu/science_and_mathematics?utm_source=digitalcommons.cedarville.edu%2Fscience_and_mathematics_presentations%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cedarville.edu/science_and_mathematics_presentations?utm_source=digitalcommons.cedarville.edu%2Fscience_and_mathematics_presentations%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cedarville.edu/science_and_mathematics_presentations?utm_source=digitalcommons.cedarville.edu%2Fscience_and_mathematics_presentations%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.cedarville.edu%2Fscience_and_mathematics_presentations%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=digitalcommons.cedarville.edu%2Fscience_and_mathematics_presentations%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@cedarville.edu
http://www.cedarville.edu/Academics/Library.aspx?utm_source=digitalcommons.cedarville.edu%2Fscience_and_mathematics_presentations%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.cedarville.edu/Academics/Library.aspx?utm_source=digitalcommons.cedarville.edu%2Fscience_and_mathematics_presentations%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages


Modeling Biochemical Processes as Designed Systems

Steven M. Gollmer, Ph.D., Department of Science and Mathematics, 
 Cedarville University,Cedarville, OH 45314-0601

Abstract
Being in the post-genomic era, there is a need for new methodologies from an interdisciplinary 

perspective, which can complement current genomics research. Bioinformatics and systems biology 
are rapidly growing research areas that are meeting this need. Operating with the assumption that 
there is design with a purpose, creationists provide a unique perspective for discovering order in the 
complexity of genes, regulatory networks, and biochemical reactions.

Since the genome acts as an information storage system, it seems reasonable to apply design 
concepts, originating from computer and network programming, to make sense of genomic 
information. One such concept is that of design patterns, which has been formalized by programmers 
and analysts working with object-oriented programming (OOP). Several patterns are introduced and 
related to biochemical systems in the cell.

A more detailed analysis of the observer pattern is made in the context of galactose metabolism 
in Saccharomyces cerevisiae. Since design patterns embody good OOP practice and do not specify 
a specific implementation, it is possible to explore a variety of implementations that can achieve 
regulation of galactose metabolism. This methodology can complement current research approaches 
by clarifying what is meant by system homology at the biochemical level.

Keywords
Design patterns, Galactose metabolism, Object oriented programming, Saccharomyces cerevisiae, 
Systems biology, Systems theory, Transcription networks

In A. A. Snelling (Ed.) (2008). Proceedings of the
Sixth International Conference on Creationism (pp. 133–148).
Pittsburgh, PA: Creation Science Fellowship and
Dallas, TX: Institute for Creation Research. 

Introduction
Information gathered through genetic sequencing 

has increased dramatically in the past decade. Entire 
genomes of many organisms have been sequenced 
and the process has culminated in the completion of 
the human genome project. Although the sequencing 
of different organisms is still a productive avenue of 
research, the greater challenge, in a post-genomic 
era, is determining the structure and regulation 
of the genome and its expressed proteins. Prior to 
genomic sequencing, physical maps were generated 
relating protein expression to chromosome location. 
However, a genomic sequence provides a complete 
and more accurate picture of the information stored 
in an organism’s genome. Prior to the sequencing of 
Saccharomyces cerevisiae, budding yeast, its physical 
map consisted of about 1,200 genes (Feldmann, 2000).  
With its genome completely sequenced by 1996, it was 
found that the S. cerevisiae genome consists of more 
than 6,000 genes (Cherry et al., 1998).

With the wealth of information gained through 
genetic sequencing, it was necessary to integrate 
sophisticated techniques of data analysis with 
biological understanding. This has given rise to the 
inter-disciplinary field of bioinformatics. Through 

pattern matching and statistics, it has been possible 
to identify Open Reading Frames (ORFs), which are 
locations of potential protein expression (Velculescu et 
al., 1997). For S. cerevisiae, 72% of its genome consists 
of coding sequences with the remainder containing 
signals for replication and regulation of gene expression 
(Feldmann, 2000). Using microarrays it is possible 
to determine the presence of mRNAs and proteins 
expressed by a cell given particular environmental 
conditions. In addition, protein structure and function 
can be inferred from the amino acid sequence coded 
in the genome. However, the current understanding 
of the S. cerevisiae genome has 1,145 ORFs listed 
as uncharacterized and 815 listed as dubious 
(Saccharomyces Genome Database, 2007).

Systems biology goes beyond bioinformatics by 
studying an organism as “an integrated and interacting 
network of genes, proteins and biochemical reactions 
which give rise to life” (Institute for Systems Biology, 
2006, p. 1). Having a much broader scope, systems 
biology draws from the expertise of biologists, chemists, 
physicists, mathematicians, and computer scientists. 
Providing a broader conceptual framework for this 
holistic approach to biology is general systems theory, 
which was introduced by Ludwig von Bertalanffy in 



S. M. Gollmer 134

the 1950s (Skyttner, 1996). General systems theory 
proposes that there are ordering principles inherent in 
complex systems that are independent of the particular 
system being studied (Bertalanffy, 1968). This allows 
physicists, computer scientist, and scientists of other 
disciplines to apply their intuition of complex systems 
to biological systems. The focus of systems biology is 
to model cellular systems by discovering interaction 
networks and performing computer simulations so as 
to determine recurring patterns of order (Hieronymus 
& Silver, 2004; Vazquez, Dobrin, Sergi, Eckmann, 
Oltvai, & Barabasi, 2004).

Modularity
The biochemical and regulatory mechanisms of the 

cell are numerous and involve overlapping composite 
networks (Yeger-Lotem et al., 2004). In spite of this 
complexity, systems biology research indicates that 
cellular functions are modular (Hartwell, Hopfield, 
Leibler, & Murray, 1999; Herrgard, Covert, & Palsson, 
2003). Rives and Galitski (2003, p. 1132) studied the 
yeast filamentation network to develop a model that 
“reduces the complexity of this network to a small 
number of connected units of structure and function”. 
Snel and Huynen (2004, p. 392) compared functional 
modules across 110 genomes and concluded that 
they are “significantly more modular than random;” 
however, they also concluded that there is limited 
modularity in yeast transcriptional data sets. While 
studying the galactose utilization pathway, de Atauri, 
Orrell, Ramsey, and Bolouri, (p. 29, 2004) concluded 
that there are “recurring, dynamic organizational 
principles in biochemical pathways” and “computer 
modeling and simulation can be used to identify and 
study such ‘evolutionary design principles’”.

These “evolutionary design principles” are 
regulatory mechanisms involving positive and 
negative feedback. The types of order reported 
by the systems biology community are of limited 
complexity and involve network motifs that lead to 
optimal gene circuits (Alon, 2007; Milo, Shen-Orr, 
Itzkovitz, Kashtan, Chklovskii, & Alon, 2002). It is 
the hierarchical design of modular structures that 
lead to the orderly behavior of biochemical systems on 
the cellular level (Ravasz, Somera, Mongru, Oltvai, & 
Barabasi, 2002). Since their research is approached 
from an evolutionary paradigm, it is assumed that 
the optimal interactions are chanced upon by the 
system due to random processes and shifting goals 
(Kashtan & Alon, 2005; Cordero & Hogeweg, 2006). 
To acknowledge the existence of design principles is a 
bold statement given the observation by de Atauri et 
al. (2004, (p. 28) that “many experimentalists argue 
that cellular pathways are the idiosyncratic result of 
eons of evolutionary tinkering whose behavior cannot 
be understood in terms of engineering principles”.

Design
In stark contrast to the evolutionary paradigm 

is the claim of scripture that states “His invisible 
attributes are clearly seen, being understood by the 
things that are made, even His eternal power and 
Godhead, so that they are without excuse” (NKJV, 
Romans 1:20). From the Genesis account of creation 
it is clear that God, a purposeful and personal creator, 
made the universe and all that is in it. The design 
of His creation is clearly evident so that no one has 
any excuse to dismiss His existence. This worldview 
was present in the writings of John Ray, William 
Paley, and the authors of the Bridgewater Treatises. 
Opposition to the design argument was present 
at this time and Paley used the first chapter of his 
book Natural Theology to summarize them. Without 
surprise, the arguments against design are the 
same today only updated in their terminology. With 
the publication of Darwin’s Origin of the Species, 
Aristotelian final causes were rejected and natural 
theology lost influence in the scientific world.

The modern day intelligent design movement 
is dominated by two significant ideas. The first 
is irreducible complexity, which was proposed by 
Michael Behe (1996) in his book Darwin’s Black Box. 
Behe proposes that biochemical and cellular systems 
can be reduced to a minimal functional system, 
which is still too complex to explain through natural 
causation. The second is specified complexity as 
described by William Dembski (2001) in The Design 
Inference. Dembski proposes that complexity by itself 
is insufficient to indicate design, but complexity must 
be linked to a specification or pattern that is unlikely 
to occur given the probabilistic resources present 
in the known universe. Other design arguments 
exist, but they invariably lead back to the extreme 
improbability that the state of the universe and the 
existence of life in the universe could occur through 
natural causes.

Although, the intelligent design movement 
distinguishes itself from natural theology, it still falls 
short of establishing itself as a productive scientific 
paradigm. Dembski (2001) observed that the natural 
theology movement used observations of the natural 
world to draw conclusions about reality beyond 
this world (p. 1). In contrast, the intelligent design 
movement separates the question of “Can design be 
detected in the natural world?” from the question of 
“Once design is acknowledged, who is the designer?” 
The first question is seen as scientific while the second 
is seen as a theological or philosophical question. 
In spite of this distinction, both natural theology 
and intelligent design are based on an argument 
of incredulity, “Isn’t it amazing that. . . .” This is an 
a posteriori approach where the conclusion is made 
after the facts are given. This approach is important 



135Modeling Biochemical Processes as Designed Systems

in science; however, to have a productive research 
paradigm there must also be an a priori approach. 
This predictive component drives scientists towards 
new discoveries.

Although Ray’s work The Wisdom of God Manifest 
in the Works of the Creation (Ray, 1979) predates 
the industrial revolution, the popularity of natural 
theology in England was framed in this context. Paley’s 
arguments allude to the precision of manufacturing 
and the intermeshing of gears to create machines 
(Paley, 1850). This approach was used to explain the 
design of biological systems, such as the eye.  However, 
this classical view of design creates the notion that 
there is a platonic idealized form, or best design, 
which is unchanging and imperfectly represented in 
the physical world (Ruse, 1999, p. 3). It is clear from 
selective breeding that, although there are limits, 
there is still a significant amount of variability within 
species to give rise to different coloration, size, and 
feature shapes (Wood, Wise, Sanders, & Doran, 2003) 
When Darwin proposed natural selection as a driver 
for variation, it supplanted the rigid view of design 
proposed by natural theology.

The view of design proposed by natural theology 
resonates with modern day creationists given that 
God’s creation was perfect before the fall. However, 
to limit God’s creation to a rigid design lessens the 
wonder of God’s handiwork and prevents design from 
being a productive paradigm for scientific research. 
In two centuries, mankind has moved from an 
industrial revolution to an information revolution.  
Individuals experienced with managing information 
and complex systems recognize that good design is a 
balance between competing constraints. Since these 
constraints can change, that design must also be 
reusable, robust, and adaptive.

The remainder of this paper proposes a means 
of extending the definition of good design. Relating 
the behavior of biological systems to that of complex 
computer software systems, a broader view of good 
design will be developed. In section 1, biological systems 
are related to the Object Oriented Programming 
(OOP) paradigm and the concept of design patterns 
is introduced. In section 2, a design pattern is applied 
to the transcription regulatory networks of the 
model organism S. cerevisiae. In section 3, this new 
paradigm is used to propose a means of studying 
biochemical systems and potentially restoring lost 
function in biological systems affected by the fall.

Biochemical systems and OOP
Cellular systems

At the cellular level, an organism consists of 
numerous components that interact in a predictable 
manner. Each component has a set of delegated 
responsibilities such as the mitochondria handling 

oxidative metabolism and the nucleus containing 
and controlling the genetic information of the cell. 
Responsibilities within the cell are neither exclusive 
nor simple. Although the nucleus is responsible 
for the replication and transcription of DNA, the 
mitochondrion contains its own DNA, which is 
transcribed and replicated. The information storage 
mechanism of the cell is a double strand of DNA 
consisting of a sequence of base pairs strung together 
by a phosphate-deoxyribose backbone. However, the 
base pair sequence not only stores information for 
protein expression and regulation, but also provides 
structural information that allows the DNA to wind 
around histones to form nucleosomes, which in turn 
pack together to form chromatin fibers. Neither 
shared responsibilities nor complexity diminishes the 
fact that these are interacting components.

An object representation of cellular components 
embodies the requirement that complex biological 
systems behave in a predictable and reliable manner. 
Restricting a series of biochemical reactions to the 
interior of a mitochondrion prevents those reactions 
from interfering with the complex control mechanisms 
within the nucleus. If all cellular processes were 
exposed to each other, there would be a dilution 
effect as well as unexpected interference between 
reactions. Considering 1,000 biochemical species, the 
number of potential interactions could be nearly a 
half a million. Restricting processes within physical 
structures or carrying out processes over different 
timescales reduces the number of interactions and, 
therefore, reduces the complexity of the organism. 
This statement is made not to infer that biological 
systems are simple, but that they are less complex 
than they potentially could be.

Just as biological systems can conform to an object 
representation; it appears that this is also true of 
biochemical reactions. Since each biochemical species 
falls within a family of compounds, the number of 
chemical interactions is reduced. This reduction in 
possibilities not only makes biochemical interactions 
more predictable, but also assists researchers as 
they search for proteins of homologous structure 
and function (Pritsker, Liu, Beer, & Tavazoie, 2004). 
The specificity of protein interaction allows multiple 
enzymes and transcription factors to occupy the same 
cellular component without producing unexpected 
interactions.

Information systems and OOP design
In like manner, computer based information systems 

also require a component structure to their software. 
Failing to restrict the interaction between segments 
of computer code and data leads to fragile and error 
prone systems. This approach to programming was 
historically known as writing spaghetti code and was 



S. M. Gollmer 136

generated either through a pragmatic easiest route to 
a solution or through a necessity to generate a highly 
efficient, tightly interacting program to satisfy a very 
specific need. The first motivation for spaghetti code 
indicates little foresight about future changes and 
parallels a bottoms-up approach to design analogous 
to the evolutionary paradigm. The second motivation 
for spaghetti code indicates a high level of planning 
for the express purpose of generating a static optimal 
design commensurate with an industrial revolution 
view to design.

As software systems increase in size and complexity, 
it becomes necessary to sacrifice optimal speed and 
size to achieve reliability and reusability in the face 
of change. Although a number of programming 
paradigms exist, it is acknowledged that the 
OOP paradigm can improve software reliability 
and reusability through the use of encapsulation, 
inheritance, polymorphism, and abstraction.

To achieve encapsulation, data and methods for 
operating on the data are placed within objects. This 
makes the interior of the object a black box. Access to 
the object’s function and data is restricted to a limited 
number of well defined interactions. Although DNA 
is not physically isolated from the biochemistry of the 
nucleus, its data is still encapsulated in functional 
space with access granted under specific conditions, 
such as attachment of a DNA polymerase in the 
presence of a primer to initiate replication.   

Inheritance allows a family of objects with 
similar data and function to be constructed from a 
common parent object. In the context of transcription 
regulation, transcription activators consist of two 
domains. The first binds to specific sequences on 
the DNA while the second binds to the transcription 
machinery. A whole family of activators can be 
generated by changing the DNA binding domain 
in order to recognize different DNA sequences. The 
GAL4 activator, discussed later in this paper, has this 
property and is used in the yeast two-hybrid system 
to identify cDNAs (Feldmann, 2005, p. 9).

Polymorphism makes use of inheritance to provide 
a change of behavior through the interchange of 
different family members. A family of binding 
proteins has the ability to recruit the machinery 
necessary for transcription. However, each member 
of the family recognizes a different DNA binding site 
within the promoter region of the gene. Therefore, 
different proteins can be generated by interchanging 
family members and yet using the same transcription 
machinery.

Abstraction allows one to access objects at the level 
of detail that is necessary for the desired interaction. 
DNA can be viewed at different levels of abstraction. 
When the cell is in S phase, the DNA sequence of base 
pairs is exposed through the replication machinery to 

allow a duplicate to be made. During prophase, the 
DNA chromatin restricts access to the base pairs and 
condenses into a chromosome. During anaphase the 
chromosome is accessed by its centromere so that 
spindle fibers can attach and separate the daughter 
chromatids. At each level of abstraction, the object 
may hide or expose data and functions in order to 
meet the need at hand. 

Design patterns
Those experienced with OOP recognize that there 

are recurring programming problems that are best 
solved by isolating the portion of the program or 
system that is expected to change from that which 
is more static.  This improves the reusability of 
the static portion and allows the programmer to 
focus only on the dynamic portion of the code.  This 
requires analysis of the whole system and focuses on 
establishing appropriate interactions between the 
components of the system (Shalloway & Trott, 2005).

Through this process of analysis, it was found that 
there are recurring patterns of best practice solutions 
for computer and network systems.  Gamma, Helm, 
Johnson, & Vlissides (1995) identifies twenty-three 
of these patterns and categories them as either 
creational, structural, or behavior design patterns. 
The names of the individual patterns by category 
are provided in Figure 1. Since 1995, the number of 
design patterns have increased significantly; however, 
the initial 23 patterns are not as specialized and 
provide a starting point for relating design patterns 
to biological systems.

One of the creational patterns, builder, separates 
the construction of an object from its representation.  
Figure 2A provides the standard Unified Modeling 
Language (UML) diagram for the builder pattern 
(Gamma et al., 1995). The director initiates the 
construction of an object by communicating with the 
builder object. The builder could be one of a family of 
builder objects. When the instruction is received, the 

Creational Structural Behavioral
Abstract Factory Adapter Chain of Responsibility
Builder Bridge Command Observer
Factory Method Composite Interpreter State
Prototype Decorator Iterator Strategy
Singleton Facade Mediator Template Method

Flyweight Memento Visitor
Proxy

Figure 1. The 23 design patterns identified by Gamma et 
al. (1995) fall into three different categories. Creational 
patterns describe ways of dynamically constructing 
objects once a program is running. Structural patterns 
provide a means of encapsulating data and function into 
objects. Behavioral patterns define object interaction, 
which can be extended to provide reliable complex 
behavior.



137Modeling Biochemical Processes as Designed Systems

builder then goes through the process of generating a 
product. A biological example of the builder pattern is 
the construction of a protein. As illustrated in Figure 
2B, the director is the RNA transcription machinery. 
When a transcription activator is present, the 
director generates an mRNA strand, which acts as a 
message to construct a protein. When the message is 
received by a ribosome, the protein is constructed. In 
this illustration, the ribosome is the builder and the 
protein is the product. It is possible that the building 
process is more complex than this and a different 
builder needs to be implemented. Perhaps the builder 
is a multi-step process which involves a spliceosome 
and a ribosome. In the presence of exonic splicing 
enhancers and suppressors, different proteins can 

be constructed from the same initial strand of RNA 
(Ast, 2005). The benefit of the builder pattern is that 
any modifications in the process are encapsulated in 
the builder and are isolated from the activity of the 
director.

Adaptor is a structural pattern that mediates 
between two systems with different input and 
output requirements. This design pattern allows two 
potentially incompatible systems to communicate 
with each other. The client in Figure 3A belongs to 
the first system and has an expectation on how to 
give instructions. The adaptor has knowledge of 
the adaptee, which belongs to the second system, 
and provides a result based on interaction with the 
client. Two incompatible information systems in the 
cell are DNA/RNA, which uses nucleic acid bases, 
and protein, which uses amino acids. The adaptor 
between these two systems is tRNA. As illustrated 
in Figure 3B, the anticodon end of tRNA receives 
an instruction from the client, mRNA, and delivers 
an adaptee, the appropriate amino acid, for addition 
to the polypeptide. The fidelity of the translation 
processes is achieved by aminoacyl tRNA synthetase, 
which makes sure the correct amino acid is associated 
with its corresponding tRNA (Cooper, 1997, p. 275). 
Either end of the tRNA adaptor could be modified 

Product

A

For all {
 builder.BuildPart()
 }
 return builder.GetPart()

Specific Builder

+ BuildPart()
+ GetPart(): Product

Builder {Abstract}

+ BuildPart()
+ GetPart(): Product

Director

+Construct(): Product

Ribosome

Polypeptide

ProductBuilderDirector

Spliceosome

mRNA

DNA

Transcription
Complex

B
Figure 2. The builder pattern separates the request for 
constructing an object from the construction process. 
The standard UML representation of the builder pattern 
(A) consists of a director, which can access a variety of 
builder objects. Depending on which builder is accessed, 
a particular product is generated. The construction 
of a polypeptide from DNA (B) can be described in 
the context of the builder pattern. The director is a 
mRNA molecule, which is transcribed from the DNA. 
The builder in this process can take on several forms. 
One is the translation of RNA codons into an amino 
acid sequence in the presence of a ribosome. A second 
form also uses a ribosome, but first modifies the RNA 
strand by removing introns and assembling exons in the 
presence of a spliceosome. 

A...
adapter.methodA()
...

...
adaptee.methodB()
...

Client

+Instruction() +methodB()

Adaptee

+methodA()

Adaptor

tRNA

Ribosome

Polypeptide

mRNA A
da
pt
or

B

A
da
pt
ab
ee

C
lie
nt

Figure 3. The adaptor pattern allows instructions to be 
passed between two incompatible systems. The UML 
representation of the adaptor pattern (A) consists of a 
client, which issues the instructions, an adaptor, which 
associates the instructions to a different representation, 
and an adaptee, which issues the instruction in the 
new representation. (B) In the process of constructing 
polypeptides from mRNA in the presence of a ribosome, 
tRNA serves the role of adaptor. It associates the three 
base codon to a specific amino acid for construction of 
the polypeptide.



S. M. Gollmer 138

to deal with changes in either the DNA codon or its 
associated amino acid. Because the cell makes use of 
this pattern, such novel work as a quadruplet codon 
or incorporating more than 21 different amino acids 
in a protein is possible (Anderson, Wu, Santoro, 
Lakshman, King, & Schulz, 2004; Turner, Graziano, 
Spraggon, & Schultz, 2006).

As an example of a behavioral pattern, the 
template pattern is used in concert with the strategy 
pattern. The template method pattern is a framework 
for conducting a number of different procedures. As 
illustrated in Figure 4A, the requested procedure can 
vary, but the manner in which it is requested remains 
the same. The variation of procedure is accomplished 
by using the strategy pattern.  The strategy pattern 
is simply a family of objects that can be interchanged 
to implement functional polymorphism.  The context 
from Figure 4B is just another object, in this case the 
template method, which has a means of calling one of 
the strategy’s family members.  Figure 4C illustrates 
how development within multi-cellular organisms 

makes use of the template method and strategy 
patterns.  During development, the body plan of an 
organism is determined by gradients of proteins 
generated by toolbox genes, and these proteins 
activate the development of different appendages 
at the appropriate location (Carroll, 2005).  This is 
similar to the template method, which determines 
when and where a procedure will be called, but does 
not participate in the activity of the procedure.  This 
reduces the complexity of the development process 
because the body layout delegates development 
of individual appendages to the strategy pattern.  
Developmentally, these appendages are wildly 
different (legs, wings, and antennae); however, 
they are members of the same family because they 
implement a common means of initiating development 
from a targeted portion of the body.  Since appendage 
development is decoupled from the body plan, it is 
possible to develop a leg in place of an antenna, as in 
the Drosophila mutation antennapedia (Emerald & 
Cohen, 2004).

A

B

Class {Abstract}

+ TemplateMethod()
+Op1() {Abstract}
+Op2() {Abstract}
+Op3() {Abstract}
...

TemplateMethod() {
 +Op1()
 +Op2()
 +Op3() ...
}

Concrete Class

+Op1() {
 strategyA.action()
}
+Op2() {
 strategyB.action()
}
+Op3() {
 strategyA.action ()
}

Context

+Instruction() {
 strategy.action();
  }

Strategy

+action()

StrategyA

+action() StrategyB

+action()

StrategyC

+action()

Figure 4. A class implements the template pattern (A) by adding a template method, which calls a sequence of 
instructions. These instructions are decoupled from the template by establishing a family of concrete classes, which 
can be called interchangeably. The family of classes called by the template method is another design pattern called 
a strategy (B). All members of a family have a common means for calling an action. However, each family member is 
designed to perform different actions. (C) An example of the template pattern and strategy is found in developmental 
biology. The developmental genetic network of an organism uses spatial and temporal cues to activate development 
of different body parts. Each body part behaves like a member of a strategy, which can be associated to the action of 
a particular template method.

Developmental Genetic Network

L
e
g

A
n
t
e
n
n
a
e

W
i
n
g

L
e
g

A
n
t
e
n
n
a
e

W
i
n
g

L
e
g

A
n
t
e
n
n
a
e

W
i
n
g

Te
m

pl
at

e 
M

et
ho

d
A

ct
io

n
S

tra
te

gy

C

Temporal Expression

Spatial Expression



139Modeling Biochemical Processes as Designed Systems

Complementary view of design
It is seen from the examples given above that 

design patterns are at least analogously expressed 
in biological systems. A goal of general systems 
theory is to discover ordering principles of complex 
systems, which are independent of the system being 
studied. Within this context Babaoglu et al. (2005) 
proposes biologically based design patterns for use 
in distributed computing. Perhaps design patterns 
are one way of defining these ordering principles. 
Since design patterns use encapsulation, inheritance, 
polymorphism, and abstraction to manage variability 
within a system, these patterns can provide a means 
of expressing a more dynamic view of design. While 
the classical view of design focuses on the optimal 
construction of simple components, the dynamic 
view of design focuses on the complex interaction 
between components. This complementary view of 
design involves analysis of the whole system and 
requires a choice between numerous possible optimal 
components.

This complementary approach to design draws 
upon the strength of design patterns. Shalloway and 
Trott (2005) identify a number of advantages gained 
by using design patterns. The following are just a few 
of those advantages: (1) Focus is on the design, not 
on what works, (2) Provides a common language for 
communication, (3) Shifts thinking away from the 
details to the quality and types of interactions (p. 86). 
The first advantage acknowledges that there are 
numerous ways a system can be constructed to provide 
the desired behavior. However, there are design 
principles that make some constructions superior to 
others. The second and third advantages emphasize 
the necessity for a design language. Biologists 
have a bio-molecular language that expresses the 
details of DNA replication and transcription, such 
as promoters, activators, polymerases, etc.; however, 
a common design language can provide a means 
of communicating higher-level concepts such as 
adapter (moderation between two different means 
of representing information) and builder (means of 
separating the information from the construction of a 
molecular component). 

This complementary approach to design also 
acknowledges the limitations of design patterns. 
Design patterns are not intended to replace the finely 
tuned and optimized code that defines the behavior 
of each component in the system. Likewise, it does 
not mandate that the code within each component 
remain static. As long as component interactions, as 
defined by the pattern, are maintained, the system 
can dynamically adjust to changes in the system’s 
environment. Also, it is not realistic to expect design 
patterns to describe a whole system. Patterns are not 
a programming language, but an embodiment of what 

is good OOP design. Each system has interactions that 
are unique and, therefore, require unique solutions.

Biochemical Networks in S. cerevisiae
To better understand the role and utility of design 

patterns in biochemical systems, the regulation of the 
galactose metabolism in S. cerevisiae is studied. S. 
cerevisiae is an appropriate organism for this study 
since it is the simplest eukaryotic model organism 
and it has been extensively studied. Its simplicity is 
relative to other organisms as it is single-celled and 
has a genome consisting of 12.8 million base pairs 
(Feldmann, 2000). Since it is a eukaryote, it contains 
features present in more complex organisms, such as 
organelles within the cell and linear chromosomes 
with transposable elements and telomeres. Although 
only 4% of its genes contain introns, it maintains the 
sophisticated machinery necessary for splicing RNA 
molecules (Lopez & Seraphin, 2000).

Galactose metabolism
Galactose metabolism is not a primary source of 

energy for S. cerevisiae; however, when present and 
not inhibited by the presence of glucose (Rønnow, 
Olsson, Nielson, & Mikkelsen, 1999), the cell is able to 
activate the appropriate genes in a concerted manner 
through the use of Gal4 binding sites. Activation and 
regulation of expression levels for these genes depend 
on numerous factors (Travern, Jelicic, & Sopta, 2006); 
however, de Atauri et al. (2004) identify seven genes 
directly related to galactose metabolism. Figure 5A 
illustrates the relative position of these genes within 
the S. cerevisiae genome. The position of the Gal4 
binding site for each gene is illustrated as a red square. 
The regulatory genes have a single binding site while 
the structural genes consist of multiple binding sites 
(Hittinger, Rokas, & Carroll, 2004). The role of the 
structural proteins is illustrated in Figure 5B. GAL1, 
GAL10, and GAL7 are located on chromosome II 
and code for proteins that catalyze the conversion of 
galactose into glucose 1-phosphate (de Atauri et al., 
2004). GAL2 is located on chromosome XII and its 
protein facilitates the transport of galactose across 
the cell membrane. Expression levels of these four 
genes are strongly affected by the presence of a dimer 
of GAL4’s DNA binding protein (de Atauri et al.). The 
remaining two genes, GAL3 and GAL80, code for 
proteins that regulate the ability of the Gal4 dimer to 
activate transcription.

This regulatory mechanism is seen by de Atauri et 
al. (2004) as optimal and is described as follows. In the 
absence of galactose, Gal80 inhibits the Gal4 dimer 
from activating the transcription machinery. Genes 
with single binding sites have a basal transcription 
level; however, the ones with multiple binding sites 
have a much lower, but not quite zero expression 



S. M. Gollmer 140

level because Gal80 is more effective at repressing 
transcription (de Atauri et al.,p. 34). Therefore, 
small quantities of galactose, when present, will be 
transported into the cell due to Gal2. As illustrated 
in Figure 5C, when galactose is inside the cell, Gal3 
becomes activated and interferes with Gal80’s ability 
to inhibit gene expression by Gal4. This now allows 
Gal4 to activate transcription. Since inhibition of Gal4 
is due to protein-protein interaction (Bhat & Murthy, 
2001), this transition takes place very quickly. All of 
the genes with the Gal4 activation site will turn on 
and their respective proteins will be expressed. Within 
minutes the concentration of the galactose structural 
and regulatory proteins increases. This increase is 
most pronounced in the structural proteins, whose 
genes have multiple activation sites. Notice that when 
Gal1, Gal7, and Gal10 are available to metabolize 
galactose, the concentration of Gal2 has increased 
to facilitate the transport of even more galactose 
within the cell. When galactose is no longer present 
in the environment, Gal3 will become inactive and 
Gal80 will again inhibit Gal4’s ability to activate 

transcription. At this point, the structural genes 
become inactive and the regulatory genes decline to 
their basal transcription levels.

Regulatory motifs
The use of activation sites, regulatory proteins, 

and inhibition demonstrates one means of controlling 
gene transcription. Using transcription networks of 
this type, Alon (2007) documents regulatory patterns 
that are common in gene networks. These patterns, 
or motifs, control expression rates and levels and 
provide stability for the gene network in the presence 
of mutation. If a mutation affects either the binding 
site or the DNA binding protein, the binding affinity 
can change and modify the expression level of the 
regulated gene (Liu & Clarke, 2002). This can have 
a cascading effect and may affect the whole cell. 
However, by providing feedback mechanisms in the 
network, the system as a whole is made relatively 
insensitive to these changes (Orrell & Bolouri, 
2004).

Other motifs provide a means of optimizing 

Intracellular
Galactose

Activation

Gal3

Gal3

Gal80

Dimerization

GAL3 GAL2

GAL7 GAL10 GAL1

Galactose Galactose Glucose 1p

Cell
Membrane

GAL80 GAL4
IV XII XIII XVI

Transport

Gal2 Gal1 Gal7 Gal10 Gal7

Gal4

Gene activation

Galactose 1p UDP GalactoseUDP Glucose

A

B

C

Figure 5. Based on the model of galactose metabolism from de Atauri et al. (2004) and Hittinger, Rokas, & Carroll. 
(2004), (A) Gal4 activation sites are shared by structural and regulation proteins involved in galactose metabolism 
as indicated by the red squares. (B) The sequential enzymatic activity of Gal1, Gal7, and Gal10 metabolize galactose 
into glucose 1-phosphate, while Gal2 facilitates the transport of galactose into the cell. (C) Gal80 normally inhibits a 
dimerized form of Gal4 from activating transcription. However in the presence of galactose, Gal3 becomes activated 
and in turn inhibits the action of Gal80. This protein-protein interaction allows Gal4 to quickly activate transcription 
of the associated genes.



141Modeling Biochemical Processes as Designed Systems

performance of the regulatory network. The addition 
of binding sites can enhance the transition between 
basal and activated expression levels; however, 
this increase in switching rate is also tied to larger 
expression levels. To achieve both fast transitions and 
moderate expression levels, negative auto-regulation 
can be applied (Alon, 2007, p. 33). Negative auto-
regulation is achieved when a protein expressed by a 
gene is also an inhibitor of the same gene. If this self-
regulation is changed from inhibition to activation, 
the gene acts like a switch, which will remain in a 
perpetual on state once it is activated. This is called 
positive auto-regulation.

These two motifs along with others are summarized 
in Alon (2007, p. 93) and are illustrated in Figure 6. 
The type-1 coherent feed-forward loop (FFL) is the 
most common FFL (Milo et al., 2002) and has the 
advantage of filtering out transient on and off signals. 
Protein X activates the expression of both Y and Z. 
Since expression of Z depends on both X and Y, brief 
interruptions in the presence of X can be moderated 
by the expression of Y. An incoherent FFL can 
generate a pulse when Z is initially expressed in the 
presence of X, but later inhibited by the presence of 
Y (Mangan & Alon, 2003). The single input module 
(SIM) demonstrates how X can activate multiple 
regulatory proteins (Y1, Y2, Y3) and can generate 
a staggered activation of multiple genes due to the 
different expression rates of Y1, Y2, and Y3. Dense 
overlapping regulons (DOR’s) produce combinatorial 
logic as transcription factors interact to produce a 
secondary series of transcription factors.

These motifs represent optimizations in the 
expression and regulation of proteins and, when 
mutation occurs, provide a means of limiting change. 
As mentioned before, mutations in the binding 
protein, the activation site, or the inhibiting protein 
can affect the level of transcription of the controlled 
protein. Some motifs mitigate the affect of change 
by controlling the level of expression at the expense 
of timing. However, some activities in the cell 
are time sensitive and regulation of timing takes 
priority over expression levels. In either case, there 
is room for variation, which enables some genetic 
variants to optimally perform in a specific metabolic 
environment.

 Although the network motifs described above 
represent a level of design in biochemical systems, 
they fall short of the language represented by design 
patterns. Network motifs describe the implementation 
of specific programming instructions while design 
patterns represent the optimal application of OOP 
goals. Therefore, the implementation of a design 
pattern may vary, but a network motif always has the 
same implementation.

Motifs vs. design patterns
The regulation of galactose metabolism 

demonstrates the difference between motifs and 
design patterns. The GAL80 gene is activated by the 
dimer form of Gal4. As the level of Gal80 increases, 
it inhibits the action of Gal4 and, therefore, provides 
negative auto-regulation. Gal4 is always present in 
the cell since its gene is not regulated; however, the 
basal transcription level of Gal80 is affected by this 
feedback mechanism. When galactose is present and 
Gal3 is activated, the negative feedback is stopped 
and production of Gal80 increases. When galactose 
is no longer present, Gal3 becomes inactive and there 
is a surplus of Gal80 in the cell. This causes a strong 
inhibition effect on Gal4 and rapidly drops production 
of Gal80 (de Atauri et al., 2004). However, GAL80 is 
not the only gene affected by the inhibition of the Gal4 
dimer. The collective regulating effect of the Gal4 
dimer is a component of a regulon and represents a 
design pattern.

The observer pattern illustrated in Figure 7A, 
consists of a subject and a number of observers. In 
this case, the subject is the presence of galactose 
and the observers are all of the genes activated by 
the Gal4 dimer. The observers are those genes that 
have the GAL4 activation site and the notification 
mechanism is the activation by the Gal4 dimer. 
Alternate means of notification can be proposed in the 
observer pattern. Instead of an inhibition/inhibition 
interaction between Gal3, Gal80, and Gal4, activation 
could be accomplished directly with the GAL4 gene. 
By means of genetic engineering, it seems reasonable 

X

Negative
auto-regulation

X

Positive
auto-regulation

X

Y
Z

Coherent
FFL

Incoherent
FFL

X

Y1 Y2 Y3

SIM

X1 X2 X3

Y1 Y2 Y3

DOR

X

Y
Z

Figure 6. Common motifs exist in transcription networks 
as documented by Alon (2007). Auto-regulation occurs 
when the expressed protein either inhibits or enhances 
its own expression. Feed-forward loops (FFLs) provide 
means for filtering noise from the transcription network. 
Single input modules (SIMs) coordinate the expression 
of a number of genes. The dense overlapping regulon 
(DOR) can have varying degrees of complexity, but 
provides a means of generating combinatorial logic in 
transcription networks.



S. M. Gollmer 142

that a novel activation site could be introduced to 
the promoter region of the GAL4 gene. In addition, 
a DNA binding protein could be constructed that 
actively binds to this novel site in the presence of 
galactose. Although this implementation would work 
in theory, the rate at which structural genes are 
activated would be slowed because the concentration 
of Gal4 would have to build up once the GAL4 gene 
was activated. In the context of this exercise, there 
are a number of ways that the observer pattern could 
be implemented, but some implementations are better 
than others. The best implementations correspond to 
network motifs and their variants.

Just as the observer pattern allows variety in the 
details of implementation, it also allows for variety in 
the scope of implementation. The galactose example 
given above is a very limited form of the observer 
pattern. It allows each gene to be notified; however, 
it is not evident that there is a dynamic means of 
removing a gene from the notification process. Usually 
in computer programs, the subject keeps a list of 
observers and individually notifies them when the 
subject’s state changes. New observers can be added 
by calling a routine within the subject and in like 
manner observers can be removed from the subject’s 
notification list. This means of notification could be 
implemented as illustrated in Figure 7B. Each gene 

could have different activation sites that respond to a 
series of binding proteins: A1, A2, A3, and A4. These 
binding proteins could be sequentially arranged in a 
locus control region and activated by a change of the 
chromatin structure in the presence of galactose or a 
galactose activated protein. Registering new observers 
would involve targeted insertion of new binding 
proteins in the locus control region. An observer could 
be removed by maintaining an identification region 
that allows the gene to be selectively removed intact. 
Once again, this is one implementation of many that 
can be imagined to provide the extended capabilities 
of the observer pattern.

 As in the example above, design patterns are 
not specified structures, but time test best solutions 
to OOP problems. The context, within which the 
design pattern is applied, provides constraints for 
implementing a specific solution. The coordinated 
activation of genetic elements in the presence of 
an environmental or developmental change, will 
invariably involve an observer pattern. However, 
the best implementation depends on additional 
requirements of the system. For optimal activation 
time the notification process involves a rapid protein-
protein interaction rather than a slower protein 
transcription process. It appears that the cell has other 
mechanisms for regulating protein expression. One of 
these is RNA interference, which complementarily 
binds to mRNA and either inhibits translation or 
reduces the concentration of mRNA through targeted 
destruction (Mundodi, Kucknoor, & Gedamu, 2005). 
Modeling of these interactions may provide a means of 
determining the context where this process is optimal 
for gene regulation.

Potential for an Extended View of Good Design
In light of the regulation of biochemical processes 

and more specifically the regulation of galactose 
metabolism in S. cerevisiae, an extended view of good 
design involves optimal regulatory and biochemical 
interactions within the context of a top-down OOP 
description of cellular interactions. The study of 
network motifs demonstrates that optimal regulatory 
interactions exist and they are expressed in organisms 
of all sizes  (Alon, 2007, p. 90). These motifs represent 
modular components that can be assembled to form 
more complex systems. However, just as instructions 
of a programming language or the components of 
an electric circuit are modular components with 
predictable behavior, motifs define the components, 
but not the design of the system. The design of the 
system lies in the holistic interaction of all the system’s 
components. As in OOP, it is necessary to apply good 
design principles to achieve reliability and reusability 
and these principles are, at least in part, embodied in 
design patterns.

A

Subject

+AddObserver()
+RemoveObserver()
+NotifyObservers()

+Notify()

Observer

For all {
 Observer.Notify()
 }

+Notify()

ObserverA

+Notify()

ObserverB

+Notify()

ObserverC

B

GAL1

GAL2

New Gene GAL7

GAL10

A1 A2 A3 A4

Locus Control Region

O
bs

er
ve

rs
S

ub
je

ct

Figure 7. The observer pattern (A) allows multiple 
objects to be notified when the state of the subject 
changes. (B) Transcription activation binding sites can 
act as observers when the appropriate protein is present. 
Expression of the activation protein may depend on the 
state of a locus control region, which serves as the design 
pattern’s subject.



143Modeling Biochemical Processes as Designed Systems

Synthetic biology
The application of design patterns to biochemical 

systems is most clearly seen in the context of 
synthetic biology. Synthetic biology goes beyond 
genetic engineering by constructing biological 
systems that don’t exist in nature and redesigning 
existing systems in order to understand biological 
systems (Chopra & Kamma, 2006, p. 401). The M.I.T. 
Registry of Standard Biological Parts consists of over 
140 parts, which are segments of DNA that perform 
a specific function when inserted in a chromosome  
(Gibbs, 2004, p. 77). These BioBricks are treated as 
interchangeable components and have the potential 
of being assembled into complex systems. As 
understanding of the biochemical processes of the 
cell increases, the potential for inserting a complex 
biochemical program into the genome becomes 
realizable.

The design of a biochemical program involves 
programming, technical, and ethical considerations. 
The complexity of the cell at the molecular level is vast 
and insertion of a program can produce unexpected 
results. Unlike a computer program, which can be 
restricted to a single processor or thread, a biochemical 
program must operate concurrently with other cellular 
processes in the same physical space and compete 
for the same resources. To mitigate this problem, 
biochemical programmers will need to consider design 
principles that produce fault tolerant operation in an 
asynchronous distributed environment. This process 
involves a significant understanding of the whole 
cellular system and the operation of the biochemical 
program within this context.

Assuming, adverse interactions can be avoided 
through the use of good OOP design, technical 
issues rest upon a complete understanding of gene 
regulation and replication. Inserting a biochemical 
program into a cell could use a process similar to 
infection by a retrovirus. However, without targeted 
insertion into the genome, cellular function could 
be lost due to disrupted genes or promoter regions. 
The size of a biochemical program can be another 
technical hurdle. The program could be broken up 
into individual segments and inserted as a series of 
artificial chromosome vectors. However, with multiple 
vectors the probability of successfully incorporating 
all vectors becomes increasingly small. An alternate 
approach is to place the program within a separate 
artificial chromosome. This task would require 
a complete understanding of the structural and 
regulatory cues embedded within the chromosome for 
replication, nucleosome formation, and condensation 
into chromosomes.

Of greater consideration in the development of 
biochemical programs are the ethical issues. On the 
pragmatic level, there is a fear that accidental or 

purposefully hazardous programs could be released 
into the environment. Given the economic and social 
loss due to computer viruses, it gives one pause to 
think of releasing a malicious biochemical program 
that could potentially infect all of life on the planet 
(Block, 2001). Even beneficial programs can have 
unintended effects. By re-engineering organisms to 
efficiently manufacture expensive chemicals or to 
clean up hazardous waste, the balance of processes 
within the organism is changed and affects how 
it interacts with its environment. Although these 
specialized organisms are intended to operate within 
controlled environments, accidental release into the 
global environment could have unanticipated effects 
(Joy, 2000).

Beyond pragmatics, one must consider the spiritual 
implications of modifying living systems. Although, 
the dominion mandate in Genesis 1:28 gives mankind 
a directive to understand and rule over the creation, 
the principle of stewardship provides balance to make 
sure mankind’s rule is benevolent. Although ethical 
and spiritual issues apply to organisms in general, they 
become more pronounced when applied specifically 
to mankind. It is beyond the scope of this paper to 
address this significant issue, but many ethicists 
are addressing the issues of personhood, sanctity of 
life, and the implications of genetic engineering and 
transhumanism (Waters, 2006). For the remainder of 
this section, the discussion will focus on the potential 
of restoring lost function, which is less controversial 
than the use of bioengineering to extend function.

Restoration of function
 In order to restore lost function, it is necessary to 

know what was originally present in the system. As 
the genome of an organism is replicated and impacted 
by its environment, it can experience point mutations, 
translocations, insertions, and deletions. Identifying 
lost genetic function and seeking effective therapies 
to counteract this loss has been the ongoing job of 
medical researchers for decades. An effective means 
of accomplishing this goal is to genetically screen a 
population of individuals suffering from a particular 
malady. Comparing their genomes with those from 
a healthy population, it is possible to identify genetic 
markers that predispose an individual to this malady. 
At the genetic level, it is possible to identify which 
gene is mutated and how it should be corrected.

Since correcting a mutation would involve 
changing the genome of each cell in the organism, it 
is more practical to identify the protein coded by the 
gene and provide a medication or therapy that would 
substitute for the defective protein. This process 
is not easy since the functions of proteins coded by 
the genome are not completely known. A method for 
determining protein function is to search databases 



S. M. Gollmer 144

for homologous proteins in other organisms, whose 
function has been identified (Hodges, McKee, Davis, 
Payne, & Garrels, 1999). A type of colorectal cancer 
in humans was linked to a mutation in a gene whose 
protein corrects for mismatch repair (Watson, Baker, 
Bell, Gann, Levine, & Losick, 2004, p. 241). This 
protein is homologous to MutS in E. coli.

A complimentary approach to the standard 
medical research paradigm is that of systems biology. 
This rapidly growing field attempts to understand 
biological processes in a holistic manner (Powell, 
2004). Although proteins perform specific functions, 
these functions operate in the context of a biochemical 
system. If the system is well understood, then it is 
possible to infer what functional proteins must 
be present to maintain the system (Mak, Daly, 
Gruebel, & Ideker, 2007). Through the techniques 
of proteomics (2-D gel electrophoresis, mass 
spectroscopy, and bioinformatics) a link can be made 
between proteins expressed when the system is active 
and the protein coding sequences in the genome 
(Watson et al., 2004, p. 678). This provides a means 
of determining the function of proteins linked to 
currently uncharacterized ORFs.

Thinking in terms of a system rather than 
components enables a researcher to study the broader 
impact of lost genetic function. Although a component 
has become inactive due to mutation, the system may 
compensate such that the impact of the change is 
relatively minor. For a well designed system, multiple 
changes may occur before significant impairment 
is observed. It is in this context that an extended 
definition of design may provide some insight into the 
robustness of biochemical systems and the restoration 
of function due to genetic changes.

At the biochemical level, an extended definition of 
design consists of a collection of interoperating systems 
conforming to good OOP design principles. These 
systems are not restricted to biochemical reactions, 
but include the genetic information, transcription and 
translation processes, and all regulatory mechanisms 
that service the system (Johnston, Chang, Etchberger, 
Ortiz, & Hobert, 2005). This approach assumes that 
cellular systems are modular. Although a significant 
amount of transcription and translation machinery is 
common to all biochemical systems, this commonality 
does not invalidate the possibility that biochemical 
systems can operate somewhat independent of each 
other. Given the complexity of interactions present 
within the cell, any hope of untangling the intricacies 
of its operation will come through an assumption of 
modularity. Although design patterns will not be 
able to capture the richness of design provided by the 
creator, they will provide a means of understanding 
the reliable interactions of major subsystems of the 
cell.

As demonstrated by the application of design 
patterns to biochemical systems, there are multiple 
ways of implementing a particular pattern. This 
flexibility allows components of similar function to 
compensate for each other when necessary. It also 
allows for significant interchange of modules when 
conditions of the environment change. In light of 
this flexibility, restoring lost function is a process 
of exploring possible implementations of a design 
pattern deemed necessary for the system to operate 
well. Residual components of the lost function direct 
the researcher to a particular implementation. The 
implementation then provides clues to identifying 
missing or deteriorated components. These 
components may be genes or regulatory elements 
within the DNA. At this point intervention would 
follow standard medical practices of therapy.

In theory this process looks simple; however, in 
practice biomedical research is a costly and time 
consuming process. The loss of function due to 
mutation may not have an immediate effect due to 
compensating systems. However, the cumulative 
effect of multiple mutations will eventually manifest 
itself in the form of genetic diseases and cancers (Kim, 
2007). Some molecular networks have a global impact 
on the dynamics of a cell. To achieve stable and robust 
function, many processes flow into a limited number 
of checkpoints, which control such processes as the 
cell cycle (Li, Long, Lu, Ouyang, & Tang, 2004). 
Mutations to p53, a transcription factor tied to cell 
cycle regulation, can lead to tumor development and 
restoration of its function can prove a useful therapy 
(Ventura et al., 2007). Proteins of the Ras family 
serve as important switches in signal pathways and 
mutations to this protein are found in a number of 
different tumor types (Bos, 1989). Cancer cells with 
this mutation are susceptible to reoviruses and this 
provides the basis for a viral based tumor therapy 
(Coffey, Strong, Forsyth, & Lee, 1998; Kim, Chung, 
& Johnston, 2007). For mutations that are more 
distant from critical pathways, it will be necessary to 
reverse engineer the biological system with all of its 
complexity (Csete & Doyle, 2002). Systems biologists 
are making progress in this area and the discovered 
network structure is providing insights on disease 
(Zhu, Gerstein, & Snyder, 2007). The role of design 
patterns in this process is to provide insights on 
cellular interactions beyond those provided by network 
motifs and based on design principles. Analysis of this 
type applied to functions related to p53 and Ras are 
beyond the scope of this paper and provide a direction 
for future research.

Galactose metabolism
Returning to the galactose metabolism example, 

it is possible to observe the extent of genetic change 



145Modeling Biochemical Processes as Designed Systems

when a system is lost. Hittinger et al. (2004, p. 14146) 
compared eleven yeasts species, four of which can not 
metabolize galactose. While three of these species 
are missing the genes for galactose metabolism, S. 
kudriavzevii maintains pseudogenes corresponding 
to GAL7, GAL10, and GAL1, which are contiguously 
located on chromosome II of S. cerevisiae. Assuming 
the genes and intergenic regions related to galactose 
metabolism in S. cerevisiae are relatively stable, it 
is possible to determine how the associated genes in 
S. kudriavzevii have deteriorated since this function 
was lost. Obtaining data from GenBank for both S. 
cerevisiae and S. kudriavzevii, a comparison was 
made between segments of these two genomes using 
the program PipMaker (Benson, Karsch-Mizrachi, 
Lipman, Ostell, & Wheeler, 2007; Schwartz et al., 
2000). Figure 8A clearly illustrates how this segment 
of the genome for S. kudriavzevii has changed over 
time. The intergenic region preceding GAL7 has been 
deleted, as well as, a segment in the interior of GAL7. 
Two other intergenic regions have been deleted along 
with a significant portion of GAL10. Half of GAL1 
and its subsequent intergenic region are still present. 
Although not visible in this figure, there are a number 
of point deletions resulting in frame-shift errors.

Choosing a segment of the GAL10 gene, it is 
possible to estimate the number of point mutations 
that have occurred since this function was lost. 
Figure 8B illustrates the six significant segments 
analyzed by Pipmaker. Except in the last segment, 
breaks between segments are due to frame-shift 
errors. The longest segment is 297 base pairs long 
and matches S. cerevisiae 69% of the time. Although 
this represents 92 matching errors, this percentage 
corresponds to about 110 mutation events, assuming 
all of these errors are due to random substitutions. 
Although the number of mutations is great since the 
divergence of S. cerevisiae and S. kudriavzevii, there 
is hope that fewer mutations would be present in more 
complex eukaryotes due to the average cell cycle time 
for gametes being much larger than the two hours for 
yeast (Alon, 2007, p. 6).

Conclusion
An extended definition of good design in 

biochemical systems involves the use of OOP concepts 
to determine orderly patterns of interaction between 
biochemical and regulatory components of the cell. 
By comparing biochemical systems to known design 
patterns, it is concluded that these design principles 
are at least analogous between cellular biology and 
computer science, if not homologous. By applying 
design patterns to a specific system, it is possible to 
envision a greater array of possible implementations 
of the studied system.

Design patterns as a heuristic provides benefits 

to both bio-research and bio-engineering. Just as 
protein function can be identified by comparison with 
homologous proteins, system components and function 
can be identified by comparison with homologous 
systems. Using a design pattern approach could 
provide a means for identifying protein function in the 
context of a system and for identifying and potentially 
restoring system deterioration. OOP design principles 
applied to biochemical systems will help bio-engineers 
develop a wider variety of interoperating components 
and assemble these components into patterns that 
will minimize adverse interactions when introduced 
into the cell. Although biologists already use similar 
approaches, a design pattern language can serve 
to refine systems level ideas and provide a common 
language for communicating these ideas.  

On the philosophical side, the presence of design 
patterns in biochemical systems gives some evidence 
that a top-down approach to design is present 
in the cell. This begs the question whether OOP 
principles of abstraction can arise through natural, 
self-ordering principles. Paley’s view of design was 
rejected because it did not capture the dynamics of 
organic systems. However, by extending the design 
paradigm to include the OOP view of good design, it 

8000

7000

6000

5000

4000

3000

2000

1000

0
70006000500040003000200010000

GAL1

GAL10

GAL7

S. kudriavzevii position (bp)

S.
 c

er
ev

is
ia

e 
po

si
tio

n 
(b

p)

4600

4500

4400

4300

4200

4100

4000

3900

3800
S.

 c
er

ev
is

ia
e 

lo
ca

tio
n 

(b
p)

46004500440043004200410040003900 4700

70%
67%

69%

60%
80%

70%

GAL10

S. kudriavzevii location (bp)

A

B

Figure 8. A comparison between gene sequences 
of S. cerevisiae and S. kudriavzevii (A) illustrate 
the deterioration that has occurred since galactose 
metabolism has been lost in S. kudriavzevii. The 
percentage difference in the GAL10 gene (B) demonstrates 
the amount of loss due to point mutations. 



S. M. Gollmer 146

is possible to view good design that provides a degree 
of variability and adaptability that was inconceivable 
in the classical view of design. This extended view 
of design may provide answers for understanding 
the plasticity of organisms during development and 
the rapid adaptation of organisms in the wake of the 
global flood (Marsh, 1983; Wood, 2003).

Bill Joy (1999), originator of the Java computer 
language, made the following statement during a 
panel discussion at the JavaOneSM Conference:  

Systems that are based totally on mechanical 
principles, Newtonian thinking, tend to be very 
brittle. If something is slightly the wrong dimension, 
it tends to break. Biological systems tend to have 
different properties. . . . we have to look to a different 
intellectual tradition, not just to mechanical 
engineering and physics, but to biology and the 
evolution of natural systems, what we call complex 
adaptive systems, going forward. 
Although he states that these systems emerge 

in nature, his recognition for an extended view of 
design is clear. How much more should the creationist 
community value an extended view of design, 
knowing that through the choice of the Creator; the 
intricate, robust, and adaptable biological world came 
into being! Computer science has much to learn from 
the biological world; however, this is a two-way street. 
By defining a common language of design for biology 
as well as computer science, both disciplines will 
benefit.

Acknowledgments
Thanks go to the Fieldstead Institute who 

provided a grant for the Calvin College Seminars 
in Christian Scholarship. It was at the Design, Self-
Organization, and the Integrity of Creation seminar 
lead by Dr. William Dembski that ideas for this 
paper began to form. Additional thanks go to the 
Creation Biology Study Group (BSG), who provided 
feedback and encouragement while these ideas were 
in their formative stages. The analytic work for this 
paper would not have been possible without data 
and information supplied by GenBank http://www.
ncbi.nlm.nih.gov/ and the Saccharomyces Genome 
Database http://www.yeastgenome.org/. Genome 
comparisons were done by Pipmaker at the address 
http://pipmaker.bx.psu.edu/pipmaker/.

References
Alon, U. (2007). An introduction to systems biology: Design 

principles of biological circuits (1st ed.). Chapman and 
Hall/CRC.

Anderson, J. C., Wu, N., Santoro, S. W., Lakshman, V., King, 
D. S., & Schultz, P. G. (2004). An expanded genetic code 
with a functional quadruplet codon. Proceedings of the 
National Academy of Sciences, 101(20), 7566–7571. 

Ast, G. (2005). The alternative genome. Scientific American, 
292(4), 58–65. 

Babaoglu, O., Canright, G., Deutsch, A., Di Caro, G., Ducatelle, 
F., Gambardella, L., Ganguly, N., Jelasity, M, Montemanni, 
R., & Montresor, A. (2006). Design patterns from biology 
for distributed computing. Association for Computing 
Machinery Transactions on Autonomous and Adaptive 
Systems, 1(1), 26–66. 

Behe, M. J. (1996). Darwin’s black box: The biochemical 
challenge to evolution. New York: Free Press.

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & 
Wheeler, D. L. (2007). GenBank. Nucleic Acids Research, 
35(Database issue), D21–D25.

Bertalanffy, L. (1968). General systems theory: foundations, 
development, applications. New York, New York: George 
Braziller.

Bhat, P. J., & Murthy, T. V. S. (2001). Transcriptional control of 
the GAL/MEL regulon of yeast Saccharomyces cerevisiae: 
mechanism of galactose-mediated signal transduction. 
Mol. Microbiology, 40(5), 1059–1066.

Block, S. M. (2001). The growing threat of biological weapons. 
American Scientist, 89(1), 28–37.

Bos, J. L. (1989). ras oncogenes in human cancer: A review. 
Cancer Research, 49(17), 4682–4689.

Carroll, S. B. (2005). Endless forms most beautiful: The new 
science of evo devo and the making of the animal kingdom 
(1st ed.). New York: Norton.

Cherry, J. M., Adler, C., Ball, C., Chervitz, S. A., Dwight, S. S., 
Hester, E. T., Jia, Y., Juvik, G., Roe, T. Y., Schroeder, M., 
Weng, S., & Botstein, D. (1998). SGD: Saccharomyces 
genome database. Nucleic Acids Research, 26(1), 73–79.

Chopra, P., & Kamma, A. (2006). Engineering life through 
synthetic biology. In Silico Biology, 6(5), 401–410. 

Coffey, M. C., Strong, J. E., Forsyth, P. A., & Lee, P. W. (1998).
Reovirus therapy of tumors with activated Ras pathway. 
Science, 282(5392), 1332–1334.

Cooper, G. M. (1997). The cell :A molecular approach (1st ed.). 
Washington, D.C.: ASM Press.

Cordero, O. X., & Hogeweg, P. (2006). Feed-forward loop 
circuits as a side effect of genome evolution. Molecular 
Biology and Evolution, 23(10), 1931–1936.

Csete, M. E., & Doyle, J. C. (2002). Reverse engineering of 
biological complexity. Science, 295(5560), 1664–1669.

de Atauri, P., Orrell, D., Ramsey, S., & Bolouri, H. (2004). 
Evolution of “design” principles in biochemical networks. 
Systems Biology, 1(1), 28–40. 

Dembski, W. A. (1998). The design inference: Eliminating 
chance through small probabilities. Cambridge, New York: 
Cambridge University Press.

Dembski, W. A. (2001). In intelligent design a form of 
natural theology? Retrieved June, 2007, from http://www.
designinference.com/documents/2001.03.ID_as_nat_theol.
htm 

Emerald, B. S., & Cohen, S. M. (2004). Spatial and temporal 
regulation of the homeotic selector gene Antennapedia is 
required for the establishment of leg identity in Drosophila. 
Developmental Biology, 267(2), 462–472.

Feldmann, H. (2000). Gene function and expression: Four 
years of the post-genomic era of yeast. Food Technology and 
Biotechnology, 38(4), 237–252. 

Feldmann, H. (2005). Yeast molecular biology: A short 
compendium on basic features and novel aspects (chapter 



147Modeling Biochemical Processes as Designed Systems

4: Yeast molecular techniques). Retrieved June, 2007, from 
http://biochemie.web.med.uni-muenchen.de/Yeast_Biol/
04%20Yeast%20Molecular%20Techniques.pdf 

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (c1995). 
In Gamma E. (Ed.), Design patterns: Elements of reusable 
object-oriented software. Reading, Massachusetts: Addison-
Wesley.

Gibbs, W. W. (2004). Synthetic life. Scientific American, 290, 
74–81. 

Hartwell, L. H., Hopfield, J. J., Leibler, S., & Murray, W. M. 
(1999). From molecular to modular cell biology. Nature, 
402(S2), C47–C52.

Herrgard, M. J., Covert, M. W., & Palsson B. O. (2003).
Reconciling gene expression data with known genome-
scale regulatory network structures. Genome Research, 
13(11), 2423–2434.

Hieronymus, H., & Silver, P. A. (2004). A systems view 
of mRNP biology. Genes & Development, 18(23),  
2845–2860.

Hittinger, C. T., Rokas, A., & Carroll, S. B. (2004). Parallel 
inactivation of multiple GAL pathway genes and ecological 
diversification in yeasts. Proceedings of the National 
Academy of Sciences, 101(39), 14144–14149. 

Hodges, P. E., McKee, A. H. Z., Davis, B. P., Payne, W. E., & 
Garrels, J. I. (1999). The yeast proteome database (YPD): A 
model for the organization and presentation of genome-wide 
functional data. Nucleic Acids Research, 27(1), 69–73.

Institute for Systems Biology. (2006). Systems biology—the 
21st century science. Retrieved June, 2007, from http://
www.systemsbiology.org/Intro_to_ISB_and_Systems_
Biology/Systems_Biology_--_the_21st_Century_Science 

Johnston, R. J., Chang, S., Etchberger, J. F., Ortiz, C. O., & 
Hobert, O. (2005). MicroRNAs acting in a double-negative 
feedback loop to control a neuronal cell fate decision. 
Proceedings of the National Academy of Sciences, 102(35), 
12449–12454.

Joy, B. (1999). What’s ahead for the Java language and Java 
technology? Panel discussion JavaOneSM Conference.

Joy, B. (2000). Why the future doesn’t need us. Wired, 8(4), 
1–11.

Kashtan, N., & Alon, U. (2005). Spontaneous evolution of 
modularity and network motifs. Proceedings of the National 
Academy of Sciences, 102(39), 13773–13778.

Kim, L. (2007). Accumulation of mutations: cancer or molecule-
to-man evolution? Journal of Creation, 21(2), 77–81.

Kim, M., Chung, Y. H., & Johnston, R. N. (2007). Reovirus and 
tumor oncolysis. Journal of Microbiology, 45(3), 187–192.

Li, F., Long, T., Lu, Y., Ouyang, Q., & Tang, C. (2004). The 
yeast cell-cycle network is robustly designed. Proceedings of 
the National Academy of Sciences, 101(14), 4781–4786.

Liu, X., & Clarke, N. D. (2002). Rationalization of gene 
regulation by a eukaryotic transcription factor: calculation 
of regulatory region occupancy from predicted binding 
affinities. Journal of Molecular Biology, 323(1), 1–8.

Lopez, P. J., & Seraphin, B. (2000). YIDB: The yeast intron 
database. Nucleic Acids Research, 28(1), 85–86.

Mak, H. C., Daly, M., Gruebel, B., & Ideker, T. (2007).
CellCircuits: A database of protein network models. Nucleic 
Acids Research, 35(Database issue), D538–D545.

Mangan, S., & Alon, U. (2003). Structure and function of 
the feed-forward loop network motif. Proceedings of the 
National Academy of Sciences, 100(21), 11980–11985.

Marsh, F. L. (1983). Genetic variation, limitless or limited? 
Creation Research Society Quarterly, 19(4), 204–206.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, 
D., & Alon, U. (2002). Network Motifs: simple building 
blocks of complex networks. Science, 298, 824–827.

Mundodi, V., Kucknoor, A. S., & Gedamu, L. (2005). Role 
of Leishmania chagasi amastigote cysteine protease in 
intracellular parasite survival: Studies by gene disruption 
and antissense mRNA inhibition. BioMed Central (BMC) 
Molecular Biology, 6(3).

The new king james bible: New testament (1979). Nashville: 
T. Nelson.

Orrell, D., & Bolouri, H. (2004). Control of internal and 
external noise in genetic regulatory networks. Journal of 
Theoretical Biology, 230(3), 301–312.

Paley, W. (1743–1805). ([1850?]). Natural theology/by William 
Paley (From a late London edition ed.). New York :American 
Tract Society,.

Powell, K. (2004). All systems go. Journal of Cell Biology, 
165(3), 299–303. 

Pritsker, M., Liu, Y. C., Beer, M. A., & Tavazoie, S. (2004).
Whole-genome discovery of transcription factor binding 
sites by network-level conversation. Genome Research, 
14(1), 1–9.

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & 
Barabasi, A. L. (2002). Hierarchical organization of 
modularity in metabolic networks. Science, 297(5586), 
1551–1555.

Ray, J. (1979). The wisdom of god manifested in the works of 
the creation:1691. New York: Garland Pub.

Rives, A. W., & Galitski, T. (2003). Modular organization of 
cellular networks. Proceedings of the National Academy of 
Sciences, 100(3), 1128–1133. 

Rønnow, B., Olsson, L., Nielson, J., & Mikkelsen, J. D. (1999). 
Derepression of galactose metabolism in melibiase producing 
baker’s and distillers’ yeast. Journal of Biotechnology, 
72(3), 213–228.

Ruse, M. (1999). The Darwinian revolution: Science red in 
tooth and claw. Chicago, Illinois: University of Chicago 
Press.

Saccharomyces Genome Database. (2007). Saccharomyces 
cerevisiae genome Snapshot/Overview. Retrieved 
June, 2007, from http://www.yeastgenome.org/cache/
genomeSnapshot.html 

Schwartz, S., Zhang, Z., Frazer, K. A., Smit, A., Riemer, C., 
Bouck, J., Gibbs, R., Hardison, R., & Miller, W. (2000). 
PipMaker—a web server for aligning two genomic DNA 
sequences. Genome Research, 10(4), 577–586.

Shalloway, A., & Trott, J. (2005). Design patterns explained: A 
new perspective on object-oriented design (2nd ed.). Boston, 
Massachusetts: Addison-Wesley.

Skyttner, L. (1996). General systems theory: An introduction. 
Basingstoke: Macmillan Press.

Snel, B., & Huynen, M. A. (2004). Quantifying modularity in 
the evolution of biomolecular systems. Genome Research, 
14, 391–397. 

Travern, A., Jelicic, B. & Sopta, M. (2006). Yeast Gal4: A 
transcriptional paradigm revisited. EMBO Reports, 7(5), 
496–499.

Turner, J. M., Graziano, J., Spraggon, G., & Schultz, P. G. 
(2006). Structural plasticity of an aminoacyl-tRNA 
synthetase active site. Proceedings of the National Academy 



S. M. Gollmer 148

of Sciences, 103(17), 6483–6488. 
Vazquez, A., Dobrin, R., Sergi, D., Eckmann, J. P., Oltvai, Z. 

N., & Barabasi, A. L. (2004). The topological relationship 
between the large-scale attributes and local interaction 
patterns of complex networks. Proceedings of the National 
Academy of Sciences, 101(52), 17940–17945.

Velculescu, V., Zhang, L., Zhou, W., Vogelstein, J., Basrai, M. 
A., Bassett, D. E., Hieter, P., Vogelstein, B., & Kinzler, K. W. 
(1997). Characterization of the yeast transcriptome. Cell, 
88(2), 243–251.

Ventura, A., Kirsch, D. G., McLaughlin, M. E., Tuveson, 
D. A., Grimm, J., Lintault, L., Newman, J., Reczek, 
E. E., Weissleder, R., & Jacks, T. (2007). Restoration of 
p53 function leads to tumour regression in vivo. Nature, 
445(7128), 661–665.

Waters, B. (2006) From human to posthuman: Christian 
theology and technology in a postmodern world. Burlington, 
Vermont: Ashgate Publishing Ltd.

Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., & 
Losick, R. (2004). Molecular biology of the gene (5th ed.). 
San Francisco: Pearson/Benjamin Cummings.

Wood, T. C. (2003). Perspectives on ageing, a young-earth 
creation diversification model. In R. L. Ivey Jr. (Ed.), 
Proceedings of the fifth international conference on 
creationism (pp. 479–489). Pittsburgh, Pennsylvania: 
Creation Science Fellowship.

Wood, T. C., Wise, K. P., Sanders, R., & Doran, N. (2003). A 
refined baramin concept. Occasional Papers of the Biology 
Study Group, 3, 1–14.

Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, 
R., Pinter, R. Y., Alon, U., & Margalit, H. (2004). Network 
motifs in integrated cellular networks of transcription-
regulation and protein-protein interaction. Proceedings of 
the National Academy of Sciences, 101(16), 5934–5939.

Zhu, X., Gerstein, M., & Snyder, M. (2007). Getting connected: 
Analysis and principles of biological networks. Genes & 
Development, 21, 1010–1024.


	Cedarville University
	DigitalCommons@Cedarville
	2008

	Modeling Biochemical Processes as Designed Systems
	Steven M. Gollmer
	Recommended Citation


	Gollmer ICC.indd

