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CHAPTER 9

ON INFS AND SUPS IN THE WEAK ORDER LATTICE

Finally, we focus on the proof of Theorem 1.4.2. Before we prove what was stated

there, we have a good deal in the way of preliminaries to take care of. The discussion

below is inspired almost exclusively by material contained in the work [3].

9.1 A Connection with Complete, Directed, Acyclic Graphs

Given ω ∈ Sn, recall the set of non-inversions of ω,

E(ω) :=
{
(i, j) : i < j, ω−1(i) < ω−1(j)

}
,

and the set of inversions of ω,

E∗(ω) :=
{
(i, j) : i > j, ω−1(i) < ω−1(j)

}
.

Note that ω is uniquely determined by its E(ω) (equivalently, by its E∗(ω)). We have

seen that, given permutations π, σ ∈ Sn, we have π ≤ σ in the weak order (written

π � σ) if and only if E(π) ⊇ E(σ) (equivalently E∗(π) ⊆ E∗(σ)). It is beneficial to

consider the sets E(ω) and E∗(ω) as directed edges in a complete, simple, labelled

digraph. Namely, we define
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G(ω) = ([n], E(ω) t E∗(ω))

by joining i and j with an arc directed from i to j if (i, j) ∈ E(ω) ((i, j) ∈ E∗(ω)

resp.). Note that G(ω) is acyclic, where we are considering paths (hence cycles) in

the sense of directed graphs, always moving in the direction specified by arcs.

Now consider an arbitrary complete, simple, labelled digraph G = ([n], EtE∗), where

E := {(i, j) : i < j},

E∗ := {(i, j) : i > j}.

Given a subset A ⊆ E t E∗ of edges, we define the transitive closure A of A in G to

be the set of ordered pairs (i, j) of vertices which are joined by a path consisting of

A-edges in G directed from i to j. The transitive part of this closure A is defined to

be

T (A) := A\A

so that

A = A t T (A).

In particular, E and E∗ are subsets of edges of G so we may consider their transitive

closure in G. Note that E and E∗ (equivalently G) coming from a permutation will

be unchanged by this transitive closure operation, i.e. in this case we would have
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T (E) = ∅ = T (E∗). The following is a trivial, but important, observation about

taking transitive closures:

Lemma 9.1.1. Given a subset A of edges of G, we have A = A. Equivalently,

T
(
A
)

= ∅.

Proof. Evidently A ⊇ A. For the opposite containment, let (i, j) ∈ A. This means

there is a path P consisting of edges e1, . . . , ek ∈ A directed from i to j (if k = 1, this

means (i, j) = e1 ∈ A). Here, we have indexed the edges e1, . . . , ek in the order they

appear in P . Namely, e1 has initial vertex i and terminal vertex equal to the initial

vertex of e2, and so on. Of course, ek has terminal vertex j.

Note that each ei is either an original edge of A, or else comes from a directed path

Pi consisting of edges from A directed from the initial end to the terminal end of ei.

Hence, we can construct from P a path P ′ consisting only of A-edges in the following

way: if ei ∈ A, keep it; otherwise, replace ei with the directed path Pi. Then P ′ is a

directed path of A-edges from i to j, so (i, j) ∈ A.

In other words, Lemma 9.1.1 says that taking the transitive closure of a set of edges

produces a set of edges which is transitively closed. We are ready to give some

equivalent criteria which guarantee that G is induced by a permutation:

Lemma 9.1.2. The following are equivalent:

(i) G = G(ω) for some unique permutation ω ∈ Sn.

(ii) G is acyclic.
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(iii) E = E and E∗ = E∗ (equivalently T (E) = ∅ = T (E∗)).

Proof. (i)⇒(ii). This is obvious, as all edges of G(ω) are directed from ω(i) to ω(j)

for each 1 ≤ i < j ≤ n.

(ii)⇒(i). Suppose G is acyclic. We claim that there exists a unique vertex v1 ∈ [n]

such that all edges incident there are inwardly-directed. Indeed, if there were no such

vertex then we could enter and leave every vertex, eventually constructing a cycle as

G is finite; contradiction. We get uniqueness of v1 since, for any other vertex v 6= v1,

G complete implies there is an edge directed from v to v1 (v1 has all inwardly-directed

incident edges) so that v has an outwardly-directed incident edge.

Define ω(n) = v1, and delete v1 from G, giving a new labelled, complete, simple

digraph G−{v1} with vertex set [n]\{v1}. Of course G−{v1} is still acyclic, so we may

repeat the above argument on this new digraph, giving a unique vertex v2 ∈ [n]\{v1}

such that all edges incident there are inwardly-directed. We put ω(n − 1) = v2 and

continue in this way, finally arriving at a unique permutation ω ∈ Sn such that

G = G(ω).

(ii)⇒(iii). Suppose, say, E 6= E. Then there exists (i, j) ∈ E\E. Hence, we can find

edges e1, . . . , ek ∈ E, k > 1, that form a directed path from i to j in G (i.e., the

terminal end of et is the initial end of et+1 for each 1 ≤ t ≤ k − 1). Since (i, j) /∈ E

and G is complete, we have (j, i) ∈ E∗. Therefore C := (e1, . . . , ek, (j, i)) forms a

cycle in G. By a similar argument we can show that E∗ 6= E∗ implies G contains a

cycle.

(iii)⇒(ii). Suppose G contains a cycle. Since G is both antisymmetric and complete,

it contains a cycle of length 3. Let a, b and c be the distinct vertices in [n] that form
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this cycle. Re-labelling if necessary, we may assume a < b < c. If the cycle is (a, b, c),

then

(a, b), (b, c) ∈ E; (c, a) ∈ E∗

so that (a, c) ∈ E\E, i.e., E 6= E. On the other hand, if (a, c, b) is the cycle, then

(a, c) ∈ E; (c, b), (b, a) ∈ E∗

so that (c, a) ∈ E∗\E∗, i.e., E∗ 6= E∗. This completes the proof of Lemma 9.1.2.

9.2 Computing Infs and Sups in the Weak Order Lattice

With this machinery, we now show that the poset (Sn,�) is a lattice. What’s more,

we can say precisely how to compute inf{π1, . . . , πr} (sup{π1, . . . , πr} resp.), where

π1, . . . , πr ∈ Sn.

Lemma 9.2.1. (Sn,�) is a lattice with

E(inf{π1, . . . , πr}) = ∪r
i=1E(πi)

and

E∗(sup{π1, . . . , πr}) = ∪r
i=1E

∗(πi).
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Proof. We will prove this only for infimums; the proof for supremums is completely

analogous. By Lemma 9.1.2, it is sufficient to prove that the complete, simple, labelled

digraph G = ([n], E t E∗), where E = ∪r
i=1E(πi), contains no cycle.

Suppose G does contain a cycle. Then, since G is both antisymmetric and complete,

it contains a cycle of length 3, passing through the vertices a, b and c, say. We may

assume a < b < c; otherwise just re-label the vertices. If the cycle is (a, b, c), then

(a, b), (b, c) ∈ E; (c, a) ∈ E∗,

which violates the transitivity of E (note that E is transitively closed by Lemma

9.1.1). So this is impossible.

On the other hand, suppose the cycle is (a, c, b). Then

(a, c) ∈ E; (c, b), (b, a) ∈ E∗.

Therefore (a, b), (b, c) /∈ ∪r
i=1E(πi), and hence

(c, b), (b, a) ∈ ∩r
i=1E

∗(πi).

From transitivity, (c, a) ∈ ∩r
i=1E

∗(πi), and therefore

(a, c) /∈ ∪r
i=1E(πi).

So, as (a, c) ∈ E, there exist indices i1, . . . , ik and vertices a = x1, x2, . . . , xk, xk+1 = c

with xj < xj+1, xj 6= b and
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(xj, xj+1) ∈ E(πij), ∀ j ≤ k.

Let 1 ≤ ` ≤ k be the index such that x` < b < x`+1. If it happens that (b, x`) ∈

E∗(πi`), then as (x`, x`+1) ∈ E(πi`) we must have (b, x`+1) ∈ E(πi`) by transitivity

of the permutation πi` . Hence (b, x`+1) ∈ E, and since (x`+1, x`+2) ∈ E we get

(b, x`+2) ∈ E by transitivity of E. Using repeatedly the transitivity of E in this way,

we eventually obtain (b, c) ∈ E, contradicting (c, b) ∈ E∗.

Hence, it must be that (x`, b) ∈ E(πi`). So (x`, b) ∈ E, and by the transitivity of E we

have (a, x`) ∈ E. Therefore, using transitivity once more, (a, b) ∈ E, contradicting

(b, a) ∈ E∗. Therefore G must be acyclic, and hence (Lemma 9.1.2) G = G(π) for

some unique permutation π ∈ Sn. Finally, any permutation ω ∈ Sn that is a lower

bound for all of π1, . . . , πr will have

E(ω) ⊇ ∪r
i=1E(πi)

by definition of the weak order. Hence, since E(ω) is transitively closed, we have

E(ω) ⊇ E. We have just shown E = E(π), and hence

E(ω) ⊇ E(π) ⊇ ∪r
i=1E(πi)

so that ω � π � πi, 1 ≤ i ≤ r. That is, π = inf{π1, . . . , πr} and we are done.
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9.3 Some Equivalent Criteria for inf{π1, . . . , πr} = 12 · · ·n

Let T (Er) denote the transitive part of the closure of Er := ∪r
`=1E(π`). Note that

any pair (i, k) ∈ T (Er) has k ≥ i + 2 since we must be able to find j with i < j < k.

Hence, no pair (i, i + 1), 1 ≤ i ≤ n − 1, could possibly belong to T (Er). By Lemma

9.2.1,

E(inf{π1, . . . , πr}) = Er = Er t T (Er).

So, if inf{π1, . . . , πr} = 12 · · ·n, the unique minimum in this lattice, then every

pair (i, j) with i < j belongs to E(inf{π1, . . . , πr}) and hence every pair (i, i + 1),

1 ≤ i ≤ n− 1, must belong to Er. Thus, choosing π1, . . . , πr ∈ Sn independently and

uniformly at random, we have proved the containment of events

{inf{π1, . . . , πr} = 12 · · ·n} ⊆
n−1⋂
i=1

{(i, i + 1) ∈ ∪r
`=1E(π`)} .

But the event on the right is also sufficient for {inf{π1, . . . , πr} = 12 · · ·n}! Indeed,

if every pair (i, i + 1), 1 ≤ i ≤ n− 1, belongs to Er, then taking the transitive closure

of this set gives us every pair (i, j) with i < j! We have therefore proved

{inf{π1, . . . , πr} = 12 · · ·n} =
n−1⋂
i=1

{(i, i + 1) ∈ ∪r
`=1E(π`)} . (9.1)

We can take this a step further. Given ω ∈ Sn, introduce the set of descents of ω:

D(ω) := {i : ω(i) > ω(i + 1)}.

Consider the event on the right-hand side of (9.1). We have
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(i, i + 1) ∈ ∪r
`=1E(π`)∀ i ∈ [n− 1] ⇐⇒ ∀ i ∈ [n− 1], ∃` ∈ [r], (i, i + 1) ∈ E(π`)

⇐⇒ ∀ i ∈ [n− 1], ∃` ∈ [r], i /∈ D(π−1
` )

⇐⇒
r⋂

`=1

D(π−1
` ) = ∅.

(9.2)

Moreover, observe that

i ∈ D
(
inf{π1, . . . , πr}−1

)
⇐⇒ (i + 1, i) ∈ E∗ (inf{π1, . . . , πr})

⇐⇒ (i, i + 1) /∈ E (inf{π1, . . . , πr})

⇐⇒ (i, i + 1) /∈ E (πj) ∀ j

⇐⇒ (i + 1, i) ∈ E∗ (πj) ∀ j

⇐⇒ i ∈ D(π−1
j )∀ j.

This shows that D (inf{π1, . . . , πr}−1) =
⋂r

`=1 D(π−1
` ). Combining this with (9.1) and

(9.2), we have therefore proved:

Lemma 9.3.1. Let π1, . . . , πr ∈ Sn be selected independently and uniformly at ran-

dom, and let P
(r)
n := P (inf{π1, . . . , πr} = 12 · · ·n). Then

P (r)
n

(a)
= P

(
n−1⋂
i=1

{(i, i + 1) ∈ ∪r
`=1E(π`)}

)
(b)
= P

(
D
(
inf{π1, . . . , πr}−1

)
=

r⋂
`=1

D(π−1
` ) = ∅

)
.
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This allows us to instead study the probabilities (a) and (b), whichever happens to

be convenient for us.

Given ω ∈ Sn, let ω′ denote ω = ω(1) · · ·ω(n) reversed in order, so that ω′ =

ω(n) · · ·ω(1), i.e. ω′(j) = ω(n − j + 1), 1 ≤ j ≤ n. For example, if ω = 45123 then

ω′ = 32154. It is trivial to check that

inf{π1, . . . , πr} = τ ⇐⇒ sup{π′1, . . . , π′r} = τ ′.

Indeed, this only requires the observation

∪r
`=1E

∗(π′`) = {(j, i) : (i, j) ∈ ∪r
`=1E(π`)}

followed by an application of Lemma 9.2.1. So we have

Lemma 9.3.2. Let π1, . . . , πr ∈ Sn be selected independently and uniformly at ran-

dom. Then

P (r)
n = P (inf{π1, . . . , πr} = 12 · · ·n) = P (sup{π1, . . . , πr} = n(n− 1) · · · 1).

Proof. We need only observe that π1, . . . , πr ∈ Sn independent and uniformly ran-

dom implies that the permutations π′1, . . . , π
′
r are as well.

Hence, when answering the question “How likely is it that r independent and uni-

formly random permutations have infimum (supremum resp.) equal to the unique

minimum (maximum resp.)?”, Lemma 9.3.2 allows us to restrict our attention to

infimums. We are now in a position to prove Theorem 1.4.2, part 1.
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9.4 Submultiplicativity Again

We wish to prove the submultiplicativity of P
(r)
n as a function of n, thus proving

existence of

lim
n→∞

n

√
P

(r)
n = inf

n≥1

n

√
P

(r)
n

([43, p. 23, ex. 98] again). For this, we make use of Lemma 9.3.1.

Let π1, . . . , πr be independent and uniformly random permutations of [n1 + n2]. In-

troduce

πi[1, 2, . . . , n1], 1 ≤ i ≤ r,

the permutation of [n1] left after deletion of the elements n1 + 1, n1 + 2, . . . , n1 + n2

from πi. Similarly

πi[n1 + 1, n1 + 2, . . . , n1 + n2], 1 ≤ i ≤ r,

is the permutation of {n1 + 1, n1 + 2, . . . , n1 + n2} left after deletion of the elements

1, 2, . . . , n1 from πi. Then the permutations

π1[1, . . . , n1], . . . , πr[1, . . . , n1], π1[n1 + 1, . . . , n1 + n2], . . . , πr[n1 + 1, . . . , n1 + n2]

are all uniform on their respective sets of permutations, and are mutually independent.

By Lemma 9.3.1,
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inf{π1, . . . , πr} = 12 · · · (n1 + n2) ⇐⇒ (i, i + 1) ∈ ∪r
`=1E(π`), 1 ≤ i ≤ n1 + n2 − 1,

and hence

inf{π1, . . . , πr} = 12 · · · (n1 + n2)

=⇒ (i, i + 1) ∈ ∪r
`=1E(π`[1, . . . , n1]), 1 ≤ i ≤ n1 − 1

⇐⇒ inf{π1[1, . . . , n1], . . . , πr[1, . . . , n1]} = 12 · · ·n1.

Denote this first event by En1+n2 , and the last by En1 . Thus we have proved the

containment of events En1+n2 ⊆ En1 . Similarly, we have

inf{π1, . . . , πr} = 12 · · · (n1 + n2)

=⇒ (i, i + 1) ∈ ∪r
`=1E(π`[n1 + 1, . . . , n1 + n2]), n1 + 1 ≤ i ≤ n1 + n2 − 1

⇐⇒ inf{π1[n1 + 1, . . . , n1 + n2], . . . , πr[n1 + 1, . . . , n1 + n2]}

= (n1 + 1)(n1 + 2) · · · (n1 + n2).

Denote the last event by E∗n2
, so that we have the containment En1+n2 ⊆ E∗n2

. Conse-

quently

En1+n2 ⊆ En1 ∩ E∗n2
,

and since the events on the right are independent, this implies P
(r)
n1+n2

≤ P
(r)
n1 P

(r)
n2 . Of

course, the rest of the statement follows from the (by now familiar) classical Fekete

lemma concerning sub(super)multiplicative sequences [43, p. 23, ex. 98].
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9.5 Sharp Asymptotics of P
(r)
n

We are now ready to finish the proof of Theorem 1.4.2. The proof divides naturally

into three steps. First, we will establish the exact formula

P (r)
n =

n−1∑
k=0

(−1)k
∑

b1,...,bn−k≥1
b1+···+bn−k=n

1

(b1!)r · · · (bn−k!)r
. (9.3)

which in turn facilitates computation of a bivariate generating function related to

P
(r)
n . Finally, analytical techniques applied to a special case of this generating function

yields the asymptotic result stated in Theorem 1.4.2:

P (r)
n ∼ − 1

z∗h′r(z
∗)

1

(z∗)n
, r ≥ 2, n →∞,

where z∗ = z∗(r) ∈ (1, 2) is the unique (positive) root of the equation

hr(z) :=
∑
j≥0

(−1)j

(j!)r
zj = 0

within the disk |z| ≤ 2.

Specifically, we will use this exact formula for P
(r)
n to show that

P (r)
n = [zn]

1

hr(z)
, r ≥ 1, (9.4)

followed by some asymptotic analysis. As a partial check, for r = 1 we obtain

P (1)
n = [zn]

1

e−z
=

1

n!
,
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as we should! Also, we immediately see that for r ≥ 2, the limit limn→∞
n

√
P

(r)
n ,

whose existence we established last section, equals 1/z∗.

9.5.1 Step 1: An Exact Formula for P
(r)
n

Here, we establish formula (9.3). Notice that, if π1, . . . , πr ∈ Sn are independent

and uniformly random, then so are the n-permutations π−1
1 , . . . , π−1

r . Hence, the

probability (b) in Lemma 9.3.1 is the same as

P

(
r⋂

i=1

D(ωi) = ∅

)
,

where ω1, . . . , ωr ∈ Sn are independent and uniformly random. That is, we need

to compute the probability that r independent and uniformly random permutations

have no common descents.

Now, given I ⊆ [n− 1], let EI denote the event “I belongs to D(ωj), 1 ≤ j ≤ r”. So

EI is the event that I is common to all of the D(ωj)’s. Then, by Lemma 9.3.1,

1− P (r)
n = P

 ⋃
i∈[n−1]

E{i}

 .

By the principle of inclusion-exclusion,

P

 ⋃
i∈[n−1]

E{i}

 =
n−1∑
k=1

(−1)k−1
∑

I⊆[n−1]
|I|=k

P

(⋂
i∈I

E{i}

)
. (9.5)

But notice that, given I ⊆ [n− 1],
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⋂
i∈I

E{i} = EI .

Hence, (9.5) becomes

P

 ⋃
i∈[n−1]

E{i}

 =
n−1∑
k=1

(−1)k−1
∑

I⊆[n−1]
|I|=k

P (EI) . (9.6)

So it only remains to compute P (EI) for a fixed I ⊆ [n−1], |I| = k, k ∈ [n−1]. This

computation is an r-analog of the formula in Boná’s book [11, pg. 4]. We present a

modification of his argument.

Observe that

P (EI) =
|EI |
(n!)r

,

so we need to count the number of r-tuples (ω1, . . . , ωr) ∈ EI .

Write I = {i1 < · · · < ik}, and J := [n − 1]\I = {j1 < · · · < j(n−1)−k}. For

ω ∈ Sn, let ω̄ denote ω reversed in rank. So if ω = 45123, then ω̄ = 21543. Formally,

ω̄(j) = n− ω(j) + 1, 1 ≤ j ≤ n. Notice that D(ω) tD(ω̄) = [n− 1]. Hence

D(ωj) ⊇ I, 1 ≤ j ≤ r ⇐⇒ D(ω̄j) ⊆ J, 1 ≤ j ≤ r.

Again, ω1, . . . , ωr independent and uniformly random implies that so are the permuta-

tions ω̄1, . . . , ω̄r, so our task becomes to count the number of r-tuples of permutations

(τ1, . . . , τr) such that D(τj) ⊆ J for every j. As the τj are independent, this is just

103



|{ω ∈ Sn : D(ω) ⊆ J}|r.

To count |{ω ∈ Sn : D(ω) ⊆ J}|, we arrange the n entries of ω into n− k segments

so that the first i segments together have ji entries for each i. Then, within each

segment, we put the entries into increasing order. Then the only places where the

resulting ω could possibly have a descent is where two segments meet, i.e., at entries

j1, . . . , j(n−1)−k, and hence D(ω) ⊆ J .

The first segment of ω has to have length j1, and therefore can be chosen in
(

n
j1

)
ways.

The second segment has to be of length j2 − j1, and must be disjoint from the first

one, so may be chosen in
(

n−j1
j2−j1

)
ways. In general, segment i must have length ji−ji−1

if 1 < i < n−k, and has to be chosen from the remaining n− ji−1 entries, in
(

n−ji−1

ji−ji−1

)
ways. There is only one choice for the last segment, as all remaining n − j(n−1)−k

entries must go there. Therefore

|{ω ∈ Sn : D(ω) ⊆ J}| =
(

n

j1

)(
n− j1

j2 − j1

)(
n− j2

j3 − j2

)
· · ·
(

n− j(n−1)−k

n− j(n−1)−k

)
=

n!

j1!(j2 − j1)! · · · (n− j(n−1)−k)!
,

and consequently

P (EI) =
|EI |
(n!)r

=
1

j1!r(j2 − j1)!r · · · (n− j(n−1)−k)!r
.

Putting this into (9.6), we obtain
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1− P (r)
n = P

 ⋃
i∈[n−1]

E{i}


=

n−1∑
k=1

(−1)k−1
∑

I⊆[n−1]
|I|=k

1

j1!r(j2 − j1)!r · · · (n− j(n−1)−k)!r

=
n−1∑
k=1

(−1)k−1
∑

b1,...,bn−k≥1
b1+···+bn−k=n

1

(b1!)r · · · (bn−k!)r
,

where b1 = j1, bi = ji − ji−1, 1 < i < n − k, and bn−k = n − j(n−1)−k. This is clearly

equivalent to (9.3).

9.5.2 Step 2: A Generating Function for P
(r)
n

Let us next use the formula (9.3) to establish the relation (9.4). Recall that we have

defined E{i} as the event “i belongs to every D(π−1
j ), 1 ≤ j ≤ n− 1”, and that

1− P (r)
n = P

(
n−1⋃
i=1

E{i}

)
.

Introduce the random variable S
(r)
n = S

(r)
n (π1, . . . , πr), the number of events E{i} that

are satisfied. As we have seen (Lemma 9.3.1), S
(r)
n is also the number of descents in

inf{π1, . . . , πr}−1. Formally, S
(r)
n is the sum of indicators

S(r)
n =

n−1∑
i=1

IE{i} .

Observe that
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P (r)
n = P

(
S(r)

n = 0
)
,

so the formula (9.3) gives the probability P
(
S

(r)
n = 0

)
. But, in fact, this formula tells

us even more about S
(r)
n . Indeed, consider the k-th (unsigned) term in this expression

∑
I⊆[n−1]
|I|=k

P

(⋂
i∈I

E{i}

)
=

∑
b1,...,bn−k≥1

b1+···+bn−k=n

1

(b1!)r · · · (bn−k!)r
.

This is the expected number of k-sets of the events E{i} that occur simultaneously.

That is,

E

[(
S

(r)
n

k

)]
=

∑
b1,...,bn−k≥1

b1+···+bn−k=n

1

(b1!)r · · · (bn−k!)r
, 0 ≤ k ≤ n− 1. (9.7)

This produces the simple expression

P (r)
n =

n−1∑
k=0

(−1)kE

[(
S

(r)
n

k

)]
.

We could have seen this another way, by observing that

P (r)
n = P

(
S(r)

n = 0
)

= E
[
(1− 1)S

(r)
n

]
= E

[
n−1∑
k=0

(−1)k

(
S

(r)
n

k

)]
,

and using the linearity of expectation.

We will use these observations about S
(r)
n to get a compact generating function re-

lated to this random variable, which happens to be amenable to asymptotic analysis.

Introduce the bivariate generating function
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Fr(x, y) :=
∑
n≥1

xnE
[
(1 + y)S

(r)
n

]
,

and let

fr(z) :=
∑
β≥0

zβ

(β + 1)!r
.

Using what we know about S
(r)
n , we can simplify Fr(x, y):

Fr(x, y) =
∑
n≥1

xnE
[
(1 + y)S

(r)
n

]
=
∑
n≥1

xn

n−1∑
k=0

ykE

[(
S

(r)
n

k

)]

=
∑
n≥1

xn

n−1∑
k=0

yk
∑

b1,...,bn−k≥1
b1+···+bn−k=n

1

(b1!)r · · · (bn−k!)r

=
∑
k≥0

(xy)k
∑
n>k

xn−k
∑

b1,...,bn−k≥1
b1+···+bn−k=n

1

(b1!)r · · · (bn−k!)r

=
∑
k≥0

(xy)k
∑
ν≥1

xν
∑

b1,...,bν≥1
b1+···+bν=ν+k

1

(b1!)r · · · (bν !)r

=
∑
k≥0

(xy)k
∑
ν≥1

xν
∑

β1,...,βν≥0
β1+···+βν=k

1

(β1 + 1)!r · · · (βν + 1)!r
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=
∑
k≥0

(xy)k[zk]
∑
ν≥1

(xfr(z))ν

=
∑
k≥0

(xy)k[zk]
xfr(z)

1− xfr(z)

=
xfr(xy)

1− xfr(xy)

=
1

1− xfr(xy)
− 1.

Therefore

E
[
(1 + y)S

(r)
n

]
= [xn]

1

1− xfr(xy)
, n ≥ 1. (9.8)

Plugging y = −1 into this expression, we obtain

P (r)
n = P

(
S(r)

n = 0
)

= E
[
(1− 1)S

(r)
n

]
= [xn]

1

1− xfr(−x)

= [xn]
1

hr(x)
, n ≥ 1,

(9.9)

where hr(x) =
∑

j≥0 ((−1)j/(j!)r) xj, and this is (9.4). It should be duly noted that

this generating function is a special case of one found by Richard Stanley [45], but it

is probably safe to say that he was unaware of any connection with the weak ordering.

9.5.3 Step 3: Asymptotics

We are about to finish the proof; all of the combinatorial insights are behind us, and

only some asymptotic analysis remains. Armed with formula (9.9), our goal is to use

Darboux’s theorem [2] to estimate
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[zn]
1

hr(z)
, hr(z) =

∑
j≥0

(−1)j

(j!)r
zj, r ≥ 2.

First of all, notice that for z > 0 we have

1− z < hr(z) < 1− z + z2/(2!)r.

Hence, we get

0 = 1− (1) < hr(1); hr(2) < 1− (2) + (2)2/(2!)r ≤ 0, r ≥ 2.

So hr(z) = 0 has a root in (1, 2) by the intermediate value theorem.

Now, consider the circle |z| = u, where u > 1 will be specified later. Let

g(z) = 1− z, G(z) =
∑
j≥2

(−1)j

(j!)r
zj.

g(z) = 0 has a single root, of multiplicity 1, within the circle |z| = u. For |z| = u,

|g(z)| ≥ min
t∈[0,2π)

|1− ueit| = u− 1,

and

|G(z)| ≤ u2

2r

(
1 +

u

3r
+

u

3r

u

4r
+ · · ·

)
≤ u2

2r
· 1

1− u
3r

, u < 3r.

If we can find u ∈ (1, 3r) such that
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u− 1 >
u2

2r

1− u
3r

, (9.10)

then, by Rouché’s theorem [48], hr(z) = g(z) + G(z) also has a unique, whence real

positive, root z∗ within the circle |z| = u. The inequality (9.10) is equivalent to

F (u) := u2(2−r + 3−r)− u(1 + 3−r) + 1 < 0.

F (u) attains its minimum at

ū =
1 + 3−r

2(2−r + 3−r)
∈ (1, 3r),

and

F (ū) = 1− (1 + 3−r)2

4(2−r + 3−r)
.

For r > 2,

4(2−r + 3−r) ≤ 8 · 2−3 = 1,

and so F (ū) < 0 in this case, and we are done. Actually, notice that our choice of

circle radius

|z| = ū =
1 + 3−r

2(2−r + 3−r)
∈ (2, 3r), r > 2.

So we have proved hr(z) = 0 has a unique (positive) root z∗ = z∗(r) ∈ (1, 2) within

the disk |z| ≤ 2, r > 2, which is what we wanted.
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On the other hand, for r = 2,

F (ū) = 1− (1 + 1/9)2

1 + 4/9
> 0,

so this case requires a bit more attention. Instead, consider

g(z) = 1− z +
z2

(2!)2
− z3

(3!)2
, G(z) =

∑
j≥4

(−1)j

(j!)2
zj,

and our strategy will be analogous to the above. First,

g′(z) = −1 + z/2− z2/12 = −(z − 3)2 + 3

12
< 0, z ∈ R,

so g(z) = 0 has one real root, z1. Since g(1) = 2/9 > 0 and g(2) = −2/9 < 0, we

have z1 ∈ (1, 2).

Let z2 = a + ib, z̄2 = a− ib denote the two complex roots of g(z) = 0. Then (Vieta’s

relations [48])

2a + z1 = 9, (a2 + b2)z1 = 36.

In particular

a =
9− z1

2
> 3.5,

hence |z2| = |z̄2| > 3.5. So, if we can find u ∈ (z1, 3.5) with

|g(z)| > |G(z)|, |z| = u,
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we will be done once again by Rouché’s theorem. For |z| = u,

|G(z)| ≤ u4

(4!)2

(
1 +

u

52
+

u

52

u

62
+ · · ·

)
≤ u4

(4!)2
· 1

1− u
52

, u < 52.

(9.11)

Take u = 2. Let us show that

min
|z|=2

|g(z)| = |g(2)| = 2

9
.

To this end, we bound

|g(z)| = 1

36
|(z − z1)(z − z2)(z − z̄2)|

≥ 1

36
(2− z1) min

|z|=2
|z − z2||z − z̄2|.

Setting z = 2eit, we obtain

|z − z2|2|z − z̄2|2 =
[
(2 cos t− a)2 + (2 sin t− b)2

]
·
[
(2 cos t− a)2 + (2 sin t + b)2

]
= (4− 4a cos t + a2 + b2 − 4b sin t)(4− 4a cos t + a2 + b2 + 4b sin t)

= (4− 4a cos t + a2 + b2)2 − 16b2 sin2 t

:= F (t).

Then

F ′(t) = 8a sin t(4− 4a cos t + a2 + b2)− 32b2 sin t cos t

= 8 sin t
[
a(4 + a2 + b2)− 4(a2 + b2) cos t

]
.
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So F ′(t) = 0 if and only if t = 0, π, since

a(4 + a2 + b2)

4(a2 + b2)
=

a

4
+

a

a2 + b2

=
9− z1

8
+

z1(9− z1)

72

=
81− z2

1

72
>

77

72
> 1.

This inequality also shows that F ′(t) always has the same sign as sin t, hence F ′(t) > 0

for t ∈ (0, π) and F ′(t) < 0 for t ∈ (π, 2π). So F (t) attains its minimum at t = 0,

and consequently on |z| = 2

|g(z)| ≥ (2− z1)
√

F (0) = (2− z1)(4− 4a + a2 + b2)

= (2− z1)(2− z2)(2− z̄2)

= g(2) =
2

9
.

Combining this with (9.11), we are done since

|g(z)| ≥ 2

9
>

24

(4!)2

1− 2
52

≥ |G(z)|, |z| = 2.
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