Meet and Join in the Weak Order Lattice

Adam J. Hammett
Cedarville University, ahammett@cedarville.edu

Boris Pittel
The Ohio State University

Follow this and additional works at: http:/ /digitalcommons.cedarville.edu/
science_and_mathematics_publications
Part of the Mathematics Commons

Recommended Citation

Hammett, Adam J. and Pittel, Boris, "Meet and Join in the Weak Order Lattice" (2007). Science and Mathematics Faculty Publications. 319.
http://digitalcommons.cedarville.edu/science_and_mathematics_publications/319

CHAPTER 9

ON INFS AND SUPS IN THE WEAK ORDER LATTICE

Finally, we focus on the proof of Theorem 1.4.2. Before we prove what was stated there, we have a good deal in the way of preliminaries to take care of. The discussion below is inspired almost exclusively by material contained in the work [3].

9.1 A Connection with Complete, Directed, Acyclic Graphs

Given $\omega \in S_{n}$, recall the set of non-inversions of ω,

$$
E(\omega):=\left\{(i, j): i<j, \omega^{-1}(i)<\omega^{-1}(j)\right\},
$$

and the set of inversions of ω,

$$
E^{*}(\omega):=\left\{(i, j): i>j, \omega^{-1}(i)<\omega^{-1}(j)\right\} .
$$

Note that ω is uniquely determined by its $E(\omega)$ (equivalently, by its $E^{*}(\omega)$). We have seen that, given permutations $\pi, \sigma \in S_{n}$, we have $\pi \leq \sigma$ in the weak order (written $\pi \preceq \sigma)$ if and only if $E(\pi) \supseteq E(\sigma)$ (equivalently $E^{*}(\pi) \subseteq E^{*}(\sigma)$). It is beneficial to consider the sets $E(\omega)$ and $E^{*}(\omega)$ as directed edges in a complete, simple, labelled digraph. Namely, we define

$$
G(\omega)=\left([n], E(\omega) \sqcup E^{*}(\omega)\right)
$$

by joining i and j with an arc directed from i to j if $(i, j) \in E(\omega)\left((i, j) \in E^{*}(\omega)\right.$ resp.). Note that $G(\omega)$ is acyclic, where we are considering paths (hence cycles) in the sense of directed graphs, always moving in the direction specified by arcs. Now consider an arbitrary complete, simple, labelled digraph $G=\left([n], E \sqcup E^{*}\right)$, where

$$
\begin{aligned}
E & :=\{(i, j): i<j\} \\
E^{*} & :=\{(i, j): i>j\} .
\end{aligned}
$$

Given a subset $A \subseteq E \sqcup E^{*}$ of edges, we define the transitive closure \bar{A} of A in G to be the set of ordered pairs (i, j) of vertices which are joined by a path consisting of A-edges in G directed from i to j. The transitive part of this closure \bar{A} is defined to be

$$
\mathcal{T}(A):=\bar{A} \backslash A
$$

so that

$$
\bar{A}=A \sqcup \mathcal{T}(A)
$$

In particular, E and E^{*} are subsets of edges of G so we may consider their transitive closure in G. Note that E and E^{*} (equivalently G) coming from a permutation will be unchanged by this transitive closure operation, i.e. in this case we would have
$\mathcal{T}(E)=\emptyset=\mathcal{T}\left(E^{*}\right)$. The following is a trivial, but important, observation about taking transitive closures:

Lemma 9.1.1. Given a subset A of edges of G, we have $\overline{\bar{A}}=\bar{A}$. Equivalently, $\mathcal{T}(\bar{A})=\emptyset$.

Proof. Evidently $\overline{\bar{A}} \supseteq \bar{A}$. For the opposite containment, let $(i, j) \in \overline{\bar{A}}$. This means there is a path P consisting of edges $e_{1}, \ldots, e_{k} \in \bar{A}$ directed from i to j (if $k=1$, this means $\left.(i, j)=e_{1} \in \bar{A}\right)$. Here, we have indexed the edges e_{1}, \ldots, e_{k} in the order they appear in P. Namely, e_{1} has initial vertex i and terminal vertex equal to the initial vertex of e_{2}, and so on. Of course, e_{k} has terminal vertex j.

Note that each e_{i} is either an original edge of A, or else comes from a directed path P_{i} consisting of edges from A directed from the initial end to the terminal end of e_{i}. Hence, we can construct from P a path P^{\prime} consisting only of A-edges in the following way: if $e_{i} \in A$, keep it; otherwise, replace e_{i} with the directed path P_{i}. Then P^{\prime} is a directed path of A-edges from i to j, so $(i, j) \in \bar{A}$.

In other words, Lemma 9.1.1 says that taking the transitive closure of a set of edges produces a set of edges which is transitively closed. We are ready to give some equivalent criteria which guarantee that G is induced by a permutation:

Lemma 9.1.2. The following are equivalent:
(i) $G=G(\omega)$ for some unique permutation $\omega \in S_{n}$.
(ii) G is acyclic.
(iii) $E=\bar{E}$ and $E^{*}=\overline{E^{*}}$ (equivalently $\mathcal{T}(E)=\emptyset=\mathcal{T}\left(E^{*}\right)$).

Proof. (i) \Rightarrow (ii). This is obvious, as all edges of $G(\omega)$ are directed from $\omega(i)$ to $\omega(j)$ for each $1 \leq i<j \leq n$.
$(\mathrm{ii}) \Rightarrow(\mathrm{i})$. Suppose G is acyclic. We claim that there exists a unique vertex $v_{1} \in[n]$ such that all edges incident there are inwardly-directed. Indeed, if there were no such vertex then we could enter and leave every vertex, eventually constructing a cycle as G is finite; contradiction. We get uniqueness of v_{1} since, for any other vertex $v \neq v_{1}$, G complete implies there is an edge directed from v to v_{1} (v_{1} has all inwardly-directed incident edges) so that v has an outwardly-directed incident edge.

Define $\omega(n)=v_{1}$, and delete v_{1} from G, giving a new labelled, complete, simple digraph $G-\left\{v_{1}\right\}$ with vertex set $[n] \backslash\left\{v_{1}\right\}$. Of course $G-\left\{v_{1}\right\}$ is still acyclic, so we may repeat the above argument on this new digraph, giving a unique vertex $v_{2} \in[n] \backslash\left\{v_{1}\right\}$ such that all edges incident there are inwardly-directed. We put $\omega(n-1)=v_{2}$ and continue in this way, finally arriving at a unique permutation $\omega \in S_{n}$ such that $G=G(\omega)$.
$($ ii $) \Rightarrow$ (iii). Suppose, say, $E \neq \bar{E}$. Then there exists $(i, j) \in \bar{E} \backslash E$. Hence, we can find edges $e_{1}, \ldots, e_{k} \in E, k>1$, that form a directed path from i to j in G (i.e., the terminal end of e_{t} is the initial end of e_{t+1} for each $\left.1 \leq t \leq k-1\right)$. Since $(i, j) \notin E$ and G is complete, we have $(j, i) \in E^{*}$. Therefore $C:=\left(e_{1}, \ldots, e_{k},(j, i)\right)$ forms a cycle in G. By a similar argument we can show that $E^{*} \neq \overline{E^{*}}$ implies G contains a cycle.
$($ iii $) \Rightarrow($ ii $)$. Suppose G contains a cycle. Since G is both antisymmetric and complete, it contains a cycle of length 3 . Let a, b and c be the distinct vertices in $[n]$ that form
this cycle. Re-labelling if necessary, we may assume $a<b<c$. If the cycle is (a, b, c), then

$$
(a, b),(b, c) \in E ; \quad(c, a) \in E^{*}
$$

so that $(a, c) \in \bar{E} \backslash E$, i.e., $E \neq \bar{E}$. On the other hand, if (a, c, b) is the cycle, then

$$
(a, c) \in E ; \quad(c, b),(b, a) \in E^{*}
$$

so that $(c, a) \in \overline{E^{*}} \backslash E^{*}$, i.e., $E^{*} \neq \overline{E^{*}}$. This completes the proof of Lemma 9.1.2.

9.2 Computing Infs and Sups in the Weak Order Lattice

With this machinery, we now show that the poset $\left(S_{n}, \preceq\right)$ is a lattice. What's more, we can say precisely how to compute $\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}\left(\sup \left\{\pi_{1}, \ldots, \pi_{r}\right\}\right.$ resp.), where $\pi_{1}, \ldots, \pi_{r} \in S_{n}$.

Lemma 9.2.1. $\left(S_{n}, \preceq\right)$ is a lattice with

$$
E\left(\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}\right)=\overline{\cup_{i=1}^{r} E\left(\pi_{i}\right)}
$$

and

$$
E^{*}\left(\sup \left\{\pi_{1}, \ldots, \pi_{r}\right\}\right)=\overline{\cup_{i=1}^{r} E^{*}\left(\pi_{i}\right)} .
$$

Proof. We will prove this only for infimums; the proof for supremums is completely analogous. By Lemma 9.1.2, it is sufficient to prove that the complete, simple, labelled digraph $G=\left([n], E \sqcup E^{*}\right)$, where $E=\overline{\cup_{i=1}^{r} E\left(\pi_{i}\right)}$, contains no cycle.

Suppose G does contain a cycle. Then, since G is both antisymmetric and complete, it contains a cycle of length 3 , passing through the vertices a, b and c, say. We may assume $a<b<c$; otherwise just re-label the vertices. If the cycle is (a, b, c), then

$$
(a, b),(b, c) \in E ; \quad(c, a) \in E^{*}
$$

which violates the transitivity of E (note that E is transitively closed by Lemma 9.1.1). So this is impossible.

On the other hand, suppose the cycle is (a, c, b). Then

$$
(a, c) \in E ; \quad(c, b),(b, a) \in E^{*}
$$

Therefore $(a, b),(b, c) \notin \cup_{i=1}^{r} E\left(\pi_{i}\right)$, and hence

$$
(c, b),(b, a) \in \cap_{i=1}^{r} E^{*}\left(\pi_{i}\right)
$$

From transitivity, $(c, a) \in \cap_{i=1}^{r} E^{*}\left(\pi_{i}\right)$, and therefore

$$
(a, c) \notin \cup_{i=1}^{r} E\left(\pi_{i}\right) .
$$

So, as $(a, c) \in E$, there exist indices i_{1}, \ldots, i_{k} and vertices $a=x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}=c$ with $x_{j}<x_{j+1}, x_{j} \neq b$ and

$$
\left(x_{j}, x_{j+1}\right) \in E\left(\pi_{i_{j}}\right), \quad \forall j \leq k .
$$

Let $1 \leq \ell \leq k$ be the index such that $x_{\ell}<b<x_{\ell+1}$. If it happens that $\left(b, x_{\ell}\right) \in$ $E^{*}\left(\pi_{i_{\ell}}\right)$, then as $\left(x_{\ell}, x_{\ell+1}\right) \in E\left(\pi_{i_{\ell}}\right)$ we must have $\left(b, x_{\ell+1}\right) \in E\left(\pi_{i_{\ell}}\right)$ by transitivity of the permutation $\pi_{i_{\ell}}$. Hence $\left(b, x_{\ell+1}\right) \in E$, and since $\left(x_{\ell+1}, x_{\ell+2}\right) \in E$ we get $\left(b, x_{\ell+2}\right) \in E$ by transitivity of E. Using repeatedly the transitivity of E in this way, we eventually obtain $(b, c) \in E$, contradicting $(c, b) \in E^{*}$.

Hence, it must be that $\left(x_{\ell}, b\right) \in E\left(\pi_{i_{\ell}}\right)$. So $\left(x_{\ell}, b\right) \in E$, and by the transitivity of E we have $\left(a, x_{\ell}\right) \in E$. Therefore, using transitivity once more, $(a, b) \in E$, contradicting $(b, a) \in E^{*}$. Therefore G must be acyclic, and hence (Lemma 9.1.2) $G=G(\pi)$ for some unique permutation $\pi \in S_{n}$. Finally, any permutation $\omega \in S_{n}$ that is a lower bound for all of π_{1}, \ldots, π_{r} will have

$$
E(\omega) \supseteq \cup_{i=1}^{r} E\left(\pi_{i}\right)
$$

by definition of the weak order. Hence, since $E(\omega)$ is transitively closed, we have $E(\omega) \supseteq E$. We have just shown $E=E(\pi)$, and hence

$$
E(\omega) \supseteq E(\pi) \supseteq \cup_{i=1}^{r} E\left(\pi_{i}\right)
$$

so that $\omega \preceq \pi \preceq \pi_{i}, 1 \leq i \leq r$. That is, $\pi=\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}$ and we are done.

9.3 Some Equivalent Criteria for $\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}=12 \cdots n$

Let $\mathcal{T}\left(\mathcal{E}_{r}\right)$ denote the transitive part of the closure of $\mathcal{E}_{r}:=\cup_{\ell=1}^{r} E\left(\pi_{\ell}\right)$. Note that any pair $(i, k) \in \mathcal{T}\left(\mathcal{E}_{r}\right)$ has $k \geq i+2$ since we must be able to find j with $i<j<k$. Hence, no pair $(i, i+1), 1 \leq i \leq n-1$, could possibly belong to $\mathcal{T}\left(\mathcal{E}_{r}\right)$. By Lemma 9.2.1,

$$
E\left(\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}\right)=\overline{\mathcal{E}_{r}}=\mathcal{E}_{r} \sqcup \mathcal{T}\left(\mathcal{E}_{r}\right)
$$

So, if $\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}=12 \cdots n$, the unique minimum in this lattice, then every pair (i, j) with $i<j$ belongs to $E\left(\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}\right)$ and hence every pair $(i, i+1)$, $1 \leq i \leq n-1$, must belong to \mathcal{E}_{r}. Thus, choosing $\pi_{1}, \ldots, \pi_{r} \in S_{n}$ independently and uniformly at random, we have proved the containment of events

$$
\left\{\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}=12 \cdots n\right\} \subseteq \bigcap_{i=1}^{n-1}\left\{(i, i+1) \in \cup_{\ell=1}^{r} E\left(\pi_{\ell}\right)\right\}
$$

But the event on the right is also sufficient for $\left\{\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}=12 \cdots n\right\}$! Indeed, if every pair $(i, i+1), 1 \leq i \leq n-1$, belongs to \mathcal{E}_{r}, then taking the transitive closure of this set gives us every pair (i, j) with $i<j$! We have therefore proved

$$
\begin{equation*}
\left\{\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}=12 \cdots n\right\}=\bigcap_{i=1}^{n-1}\left\{(i, i+1) \in \cup_{\ell=1}^{r} E\left(\pi_{\ell}\right)\right\} \tag{9.1}
\end{equation*}
$$

We can take this a step further. Given $\omega \in S_{n}$, introduce the set of descents of ω :

$$
D(\omega):=\{i: \omega(i)>\omega(i+1)\} .
$$

Consider the event on the right-hand side of (9.1). We have

$$
\begin{align*}
(i, i+1) \in \cup_{\ell=1}^{r} E\left(\pi_{\ell}\right) \forall i \in[n-1] & \Longleftrightarrow \forall i \in[n-1], \exists \ell \in[r],(i, i+1) \in E\left(\pi_{\ell}\right) \\
& \Longleftrightarrow \forall i \in[n-1], \exists \ell \in[r], i \notin D\left(\pi_{\ell}^{-1}\right) \\
& \Longleftrightarrow \bigcap_{\ell=1}^{r} D\left(\pi_{\ell}^{-1}\right)=\emptyset . \tag{9.2}
\end{align*}
$$

Moreover, observe that

$$
\begin{aligned}
i \in D\left(\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}^{-1}\right) & \Longleftrightarrow(i+1, i) \in E^{*}\left(\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}\right) \\
& \Longleftrightarrow(i, i+1) \notin E\left(\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}\right) \\
& \Longleftrightarrow(i, i+1) \notin E\left(\pi_{j}\right) \forall j \\
& \Longleftrightarrow(i+1, i) \in E^{*}\left(\pi_{j}\right) \forall j \\
& \Longleftrightarrow i \in D\left(\pi_{j}^{-1}\right) \forall j .
\end{aligned}
$$

This shows that $D\left(\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}^{-1}\right)=\bigcap_{\ell=1}^{r} D\left(\pi_{\ell}^{-1}\right)$. Combining this with (9.1) and (9.2), we have therefore proved:

Lemma 9.3.1. Let $\pi_{1}, \ldots, \pi_{r} \in S_{n}$ be selected independently and uniformly at random, and let $P_{n}^{(r)}:=P\left(\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}=12 \cdots n\right)$. Then

$$
\begin{aligned}
P_{n}^{(r)} & \stackrel{(\mathrm{a})}{=} P\left(\bigcap_{i=1}^{n-1}\left\{(i, i+1) \in \cup_{\ell=1}^{r} E\left(\pi_{\ell}\right)\right\}\right) \\
& \stackrel{(\mathrm{b})}{=} P\left(D\left(\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}^{-1}\right)=\bigcap_{\ell=1}^{r} D\left(\pi_{\ell}^{-1}\right)=\emptyset\right) .
\end{aligned}
$$

This allows us to instead study the probabilities (a) and (b), whichever happens to be convenient for us.

Given $\omega \in S_{n}$, let ω^{\prime} denote $\omega=\omega(1) \cdots \omega(n)$ reversed in order, so that $\omega^{\prime}=$ $\omega(n) \cdots \omega(1)$, i.e. $\omega^{\prime}(j)=\omega(n-j+1), 1 \leq j \leq n$. For example, if $\omega=45123$ then $\omega^{\prime}=32154$. It is trivial to check that

$$
\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}=\tau \quad \Longleftrightarrow \quad \sup \left\{\pi_{1}^{\prime}, \ldots, \pi_{r}^{\prime}\right\}=\tau^{\prime}
$$

Indeed, this only requires the observation

$$
\cup_{\ell=1}^{r} E^{*}\left(\pi_{\ell}^{\prime}\right)=\left\{(j, i):(i, j) \in \cup_{\ell=1}^{r} E\left(\pi_{\ell}\right)\right\}
$$

followed by an application of Lemma 9.2.1. So we have

Lemma 9.3.2. Let $\pi_{1}, \ldots, \pi_{r} \in S_{n}$ be selected independently and uniformly at random. Then

$$
P_{n}^{(r)}=P\left(\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}=12 \cdots n\right)=P\left(\sup \left\{\pi_{1}, \ldots, \pi_{r}\right\}=n(n-1) \cdots 1\right)
$$

Proof. We need only observe that $\pi_{1}, \ldots, \pi_{r} \in S_{n}$ independent and uniformly random implies that the permutations $\pi_{1}^{\prime}, \ldots, \pi_{r}^{\prime}$ are as well.

Hence, when answering the question "How likely is it that r independent and uniformly random permutations have infimum (supremum resp.) equal to the unique minimum (maximum resp.)?", Lemma 9.3.2 allows us to restrict our attention to infimums. We are now in a position to prove Theorem 1.4.2, part 1.

9.4 Submultiplicativity Again

We wish to prove the submultiplicativity of $P_{n}^{(r)}$ as a function of n, thus proving existence of

$$
\lim _{n \rightarrow \infty} \sqrt[n]{P_{n}^{(r)}}=\inf _{n \geq 1} \sqrt[n]{P_{n}^{(r)}}
$$

([43, p. 23, ex. 98] again). For this, we make use of Lemma 9.3.1.
Let π_{1}, \ldots, π_{r} be independent and uniformly random permutations of $\left[n_{1}+n_{2}\right]$. Introduce

$$
\pi_{i}\left[1,2, \ldots, n_{1}\right], \quad 1 \leq i \leq r
$$

the permutation of $\left[n_{1}\right]$ left after deletion of the elements $n_{1}+1, n_{1}+2, \ldots, n_{1}+n_{2}$ from π_{i}. Similarly

$$
\pi_{i}\left[n_{1}+1, n_{1}+2, \ldots, n_{1}+n_{2}\right], \quad 1 \leq i \leq r
$$

is the permutation of $\left\{n_{1}+1, n_{1}+2, \ldots, n_{1}+n_{2}\right\}$ left after deletion of the elements $1,2, \ldots, n_{1}$ from π_{i}. Then the permutations

$$
\pi_{1}\left[1, \ldots, n_{1}\right], \ldots, \pi_{r}\left[1, \ldots, n_{1}\right], \pi_{1}\left[n_{1}+1, \ldots, n_{1}+n_{2}\right], \ldots, \pi_{r}\left[n_{1}+1, \ldots, n_{1}+n_{2}\right]
$$

are all uniform on their respective sets of permutations, and are mutually independent. By Lemma 9.3.1,

$$
\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}=12 \cdots\left(n_{1}+n_{2}\right) \Longleftrightarrow(i, i+1) \in \cup_{\ell=1}^{r} E\left(\pi_{\ell}\right), \quad 1 \leq i \leq n_{1}+n_{2}-1
$$ and hence

$$
\begin{aligned}
\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\} & =12 \cdots\left(n_{1}+n_{2}\right) \\
& \Longrightarrow(i, i+1) \in \cup_{\ell=1}^{r} E\left(\pi_{\ell}\left[1, \ldots, n_{1}\right]\right), \quad 1 \leq i \leq n_{1}-1 \\
& \Longleftrightarrow \inf \left\{\pi_{1}\left[1, \ldots, n_{1}\right], \ldots, \pi_{r}\left[1, \ldots, n_{1}\right]\right\}=12 \cdots n_{1}
\end{aligned}
$$

Denote this first event by $\mathcal{E}_{n_{1}+n_{2}}$, and the last by $\mathcal{E}_{n_{1}}$. Thus we have proved the containment of events $\mathcal{E}_{n_{1}+n_{2}} \subseteq \mathcal{E}_{n_{1}}$. Similarly, we have

$$
\begin{aligned}
& \inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}=12 \cdots\left(n_{1}+n_{2}\right) \\
& \qquad \begin{aligned}
& \Longrightarrow(i, i+1) \in \cup_{\ell=1}^{r} E\left(\pi_{\ell}\left[n_{1}+1, \ldots, n_{1}+n_{2}\right]\right), \quad n_{1}+1 \leq i \leq n_{1}+n_{2}-1 \\
& \Longleftrightarrow \inf \left\{\pi_{1}\left[n_{1}+1, \ldots, n_{1}+n_{2}\right], \ldots, \pi_{r}\left[n_{1}+1, \ldots, n_{1}+n_{2}\right]\right\} \\
&=\left(n_{1}+1\right)\left(n_{1}+2\right) \cdots\left(n_{1}+n_{2}\right) .
\end{aligned}
\end{aligned}
$$

Denote the last event by $\mathcal{E}_{n_{2}}^{*}$, so that we have the containment $\mathcal{E}_{n_{1}+n_{2}} \subseteq \mathcal{E}_{n_{2}}^{*}$. Consequently

$$
\mathcal{E}_{n_{1}+n_{2}} \subseteq \mathcal{E}_{n_{1}} \cap \mathcal{E}_{n_{2}}^{*},
$$

and since the events on the right are independent, this implies $P_{n_{1}+n_{2}}^{(r)} \leq P_{n_{1}}^{(r)} P_{n_{2}}^{(r)}$. Of course, the rest of the statement follows from the (by now familiar) classical Fekete lemma concerning sub(super)multiplicative sequences [43, p. 23, ex. 98].

9.5 Sharp Asymptotics of $P_{n}^{(r)}$

We are now ready to finish the proof of Theorem 1.4.2. The proof divides naturally into three steps. First, we will establish the exact formula

$$
\begin{equation*}
P_{n}^{(r)}=\sum_{k=0}^{n-1}(-1)^{k} \sum_{\substack{b_{1}, \ldots, b_{n-k} \geq 1 \\ b_{1}+\cdots+b_{n-k}=n}} \frac{1}{\left(b_{1}!\right)^{r} \cdots\left(b_{n-k}!\right)^{r}} \tag{9.3}
\end{equation*}
$$

which in turn facilitates computation of a bivariate generating function related to $P_{n}^{(r)}$. Finally, analytical techniques applied to a special case of this generating function yields the asymptotic result stated in Theorem 1.4.2:

$$
P_{n}^{(r)} \sim-\frac{1}{z^{*} h_{r}^{\prime}\left(z^{*}\right)} \frac{1}{\left(z^{*}\right)^{n}}, \quad r \geq 2, \quad n \rightarrow \infty
$$

where $z^{*}=z^{*}(r) \in(1,2)$ is the unique (positive) root of the equation

$$
h_{r}(z):=\sum_{j \geq 0} \frac{(-1)^{j}}{(j!)^{r}} z^{j}=0
$$

within the disk $|z| \leq 2$.
Specifically, we will use this exact formula for $P_{n}^{(r)}$ to show that

$$
\begin{equation*}
P_{n}^{(r)}=\left[z^{n}\right] \frac{1}{h_{r}(z)}, \quad r \geq 1 \tag{9.4}
\end{equation*}
$$

followed by some asymptotic analysis. As a partial check, for $r=1$ we obtain

$$
P_{n}^{(1)}=\left[z^{n}\right] \frac{1}{e^{-z}}=\frac{1}{n!},
$$

as we should! Also, we immediately see that for $r \geq 2$, the $\operatorname{limit}^{\lim _{n \rightarrow \infty}} \sqrt[n]{P_{n}^{(r)}}$, whose existence we established last section, equals $1 / z^{*}$.

9.5.1 Step 1: An Exact Formula for $P_{n}^{(r)}$

Here, we establish formula (9.3). Notice that, if $\pi_{1}, \ldots, \pi_{r} \in S_{n}$ are independent and uniformly random, then so are the n-permutations $\pi_{1}^{-1}, \ldots, \pi_{r}^{-1}$. Hence, the probability (b) in Lemma 9.3.1 is the same as

$$
P\left(\bigcap_{i=1}^{r} D\left(\omega_{i}\right)=\emptyset\right)
$$

where $\omega_{1}, \ldots, \omega_{r} \in S_{n}$ are independent and uniformly random. That is, we need to compute the probability that r independent and uniformly random permutations have no common descents.

Now, given $I \subseteq[n-1]$, let \mathcal{E}_{I} denote the event " I belongs to $D\left(\omega_{j}\right), 1 \leq j \leq r$ ". So \mathcal{E}_{I} is the event that I is common to all of the $D\left(\omega_{j}\right)$'s. Then, by Lemma 9.3.1,

$$
1-P_{n}^{(r)}=P\left(\bigcup_{i \in[n-1]} \mathcal{E}_{\{i\}}\right)
$$

By the principle of inclusion-exclusion,

$$
\begin{equation*}
P\left(\bigcup_{i \in[n-1]} \mathcal{E}_{\{i\}}\right)=\sum_{k=1}^{n-1}(-1)^{k-1} \sum_{\substack{I \subseteq[n-1] \\|I|=k}} P\left(\bigcap_{i \in I} \mathcal{E}_{\{i\}}\right) \tag{9.5}
\end{equation*}
$$

But notice that, given $I \subseteq[n-1]$,

$$
\bigcap_{i \in I} \mathcal{E}_{\{i\}}=\mathcal{E}_{I} .
$$

Hence, (9.5) becomes

$$
\begin{equation*}
P\left(\bigcup_{i \in[n-1]} \mathcal{E}_{\{i\}}\right)=\sum_{k=1}^{n-1}(-1)^{k-1} \sum_{\substack{I \subseteq[n-1] \\|I|=k}} P\left(\mathcal{E}_{I}\right) \tag{9.6}
\end{equation*}
$$

So it only remains to compute $P\left(\mathcal{E}_{I}\right)$ for a fixed $I \subseteq[n-1],|I|=k, k \in[n-1]$. This computation is an r-analog of the formula in Boná's book [11, pg. 4]. We present a modification of his argument.

Observe that

$$
P\left(\mathcal{E}_{I}\right)=\frac{\left|\mathcal{E}_{I}\right|}{(n!)^{r}},
$$

so we need to count the number of r-tuples $\left(\omega_{1}, \ldots, \omega_{r}\right) \in \mathcal{E}_{I}$.
Write $I=\left\{i_{1}<\cdots<i_{k}\right\}$, and $J:=[n-1] \backslash I=\left\{j_{1}<\cdots<j_{(n-1)-k}\right\}$. For $\omega \in S_{n}$, let $\bar{\omega}$ denote ω reversed in rank. So if $\omega=45123$, then $\bar{\omega}=21543$. Formally, $\bar{\omega}(j)=n-\omega(j)+1,1 \leq j \leq n$. Notice that $D(\omega) \sqcup D(\bar{\omega})=[n-1]$. Hence

$$
D\left(\omega_{j}\right) \supseteq I, \quad 1 \leq j \leq r \quad \Longleftrightarrow \quad D\left(\bar{\omega}_{j}\right) \subseteq J, \quad 1 \leq j \leq r
$$

Again, $\omega_{1}, \ldots, \omega_{r}$ independent and uniformly random implies that so are the permutations $\overline{\omega_{1}}, \ldots, \bar{\omega}_{r}$, so our task becomes to count the number of r-tuples of permutations $\left(\tau_{1}, \ldots, \tau_{r}\right)$ such that $D\left(\tau_{j}\right) \subseteq J$ for every j. As the τ_{j} are independent, this is just

$$
\left|\left\{\omega \in S_{n}: D(\omega) \subseteq J\right\}\right|^{r} .
$$

To count $\left|\left\{\omega \in S_{n}: D(\omega) \subseteq J\right\}\right|$, we arrange the n entries of ω into $n-k$ segments so that the first i segments together have j_{i} entries for each i. Then, within each segment, we put the entries into increasing order. Then the only places where the resulting ω could possibly have a descent is where two segments meet, i.e., at entries $j_{1}, \ldots, j_{(n-1)-k}$, and hence $D(\omega) \subseteq J$.

The first segment of ω has to have length j_{1}, and therefore can be chosen in $\binom{n}{j_{1}}$ ways. The second segment has to be of length $j_{2}-j_{1}$, and must be disjoint from the first one, so may be chosen in $\binom{n-j_{1}}{j_{2}-j_{1}}$ ways. In general, segment i must have length $j_{i}-j_{i-1}$ if $1<i<n-k$, and has to be chosen from the remaining $n-j_{i-1}$ entries, in $\binom{n-j_{i-1}}{j_{i}-j_{i-1}}$ ways. There is only one choice for the last segment, as all remaining $n-j_{(n-1)-k}$ entries must go there. Therefore

$$
\begin{aligned}
\left|\left\{\omega \in S_{n}: D(\omega) \subseteq J\right\}\right| & =\binom{n}{j_{1}}\binom{n-j_{1}}{j_{2}-j_{1}}\binom{n-j_{2}}{j_{3}-j_{2}} \cdots\binom{n-j_{(n-1)-k}}{n-j_{(n-1)-k}} \\
& =\frac{n!}{j_{1}!\left(j_{2}-j_{1}\right)!\cdots\left(n-j_{(n-1)-k}\right)!},
\end{aligned}
$$

and consequently

$$
P\left(\mathcal{E}_{I}\right)=\frac{\left|\mathcal{E}_{I}\right|}{(n!)^{r}}=\frac{1}{j_{1}!^{r}\left(j_{2}-j_{1}\right)!^{r} \cdots\left(n-j_{(n-1)-k}\right)!^{r}} .
$$

Putting this into (9.6), we obtain

$$
\begin{aligned}
1-P_{n}^{(r)} & =P\left(\bigcup_{i \in[n-1]} \mathcal{E}_{\{i\}}\right) \\
& =\sum_{k=1}^{n-1}(-1)^{k-1} \sum_{\substack{I \subseteq[n-1] \\
|I|=k}} \frac{1}{j_{1}!^{r}\left(j_{2}-j_{1}\right)!^{r} \cdots\left(n-j_{(n-1)-k}\right)!^{r}} \\
& =\sum_{k=1}^{n-1}(-1)^{k-1} \sum_{\substack{b_{1}, \ldots, b_{n-k} \geq 1 \\
b_{1}+\cdots+b_{n-k}=n}} \frac{1}{\left(b_{1}!\right)^{r} \cdots\left(b_{n-k}!\right)^{r}}
\end{aligned}
$$

where $b_{1}=j_{1}, b_{i}=j_{i}-j_{i-1}, 1<i<n-k$, and $b_{n-k}=n-j_{(n-1)-k}$. This is clearly equivalent to (9.3).

9.5.2 Step 2: A Generating Function for $P_{n}^{(r)}$

Let us next use the formula (9.3) to establish the relation (9.4). Recall that we have defined $\mathcal{E}_{\{i\}}$ as the event " i belongs to every $D\left(\pi_{j}^{-1}\right), 1 \leq j \leq n-1$ ", and that

$$
1-P_{n}^{(r)}=P\left(\bigcup_{i=1}^{n-1} \mathcal{E}_{\{i\}}\right)
$$

Introduce the random variable $S_{n}^{(r)}=S_{n}^{(r)}\left(\pi_{1}, \ldots, \pi_{r}\right)$, the number of events $\mathcal{E}_{\{i\}}$ that are satisfied. As we have seen (Lemma 9.3.1), $S_{n}^{(r)}$ is also the number of descents in $\inf \left\{\pi_{1}, \ldots, \pi_{r}\right\}^{-1}$. Formally, $S_{n}^{(r)}$ is the sum of indicators

$$
S_{n}^{(r)}=\sum_{i=1}^{n-1} I_{\mathcal{E}_{\{i\}}}
$$

Observe that

$$
P_{n}^{(r)}=P\left(S_{n}^{(r)}=0\right),
$$

so the formula (9.3) gives the probability $P\left(S_{n}^{(r)}=0\right)$. But, in fact, this formula tells us even more about $S_{n}^{(r)}$. Indeed, consider the k-th (unsigned) term in this expression

$$
\sum_{\substack{I \subseteq[n-1] \\|I|=k}} P\left(\bigcap_{i \in I} \mathcal{E}_{\{i\}}\right)=\sum_{\substack{b_{1}, \ldots, b_{n-k} \geq 1 \\ b_{1}+\cdots+b_{n-k}=n}} \frac{1}{\left(b_{1}!\right)^{r} \cdots\left(b_{n-k}!\right)^{r}} .
$$

This is the expected number of k-sets of the events $\mathcal{E}_{\{i\}}$ that occur simultaneously. That is,

$$
\begin{equation*}
E\left[\binom{S_{n}^{(r)}}{k}\right]=\sum_{\substack{b_{1}, \ldots, b_{n-k} \geq 1 \\ b_{1}+\cdots+b_{n-k}=n}} \frac{1}{\left(b_{1}!\right)^{r} \cdots\left(b_{n-k}!\right)^{r}}, \quad 0 \leq k \leq n-1 . \tag{9.7}
\end{equation*}
$$

This produces the simple expression

$$
P_{n}^{(r)}=\sum_{k=0}^{n-1}(-1)^{k} E\left[\binom{S_{n}^{(r)}}{k}\right] .
$$

We could have seen this another way, by observing that

$$
P_{n}^{(r)}=P\left(S_{n}^{(r)}=0\right)=E\left[(1-1)^{S_{n}^{(r)}}\right]=E\left[\sum_{k=0}^{n-1}(-1)^{k}\binom{S_{n}^{(r)}}{k}\right]
$$

and using the linearity of expectation.
We will use these observations about $S_{n}^{(r)}$ to get a compact generating function related to this random variable, which happens to be amenable to asymptotic analysis. Introduce the bivariate generating function

$$
F_{r}(x, y):=\sum_{n \geq 1} x^{n} E\left[(1+y)^{S_{n}^{(r)}}\right]
$$

and let

$$
f_{r}(z):=\sum_{\beta \geq 0} \frac{z^{\beta}}{(\beta+1)!^{r}}
$$

Using what we know about $S_{n}^{(r)}$, we can simplify $F_{r}(x, y)$:

$$
\begin{aligned}
F_{r}(x, y) & =\sum_{n \geq 1} x^{n} E\left[(1+y)^{S_{n}^{(r)}}\right] \\
& =\sum_{n \geq 1} x^{n} \sum_{k=0}^{n-1} y^{k} E\left[\binom{S_{n}^{(r)}}{k}\right] \\
& =\sum_{n \geq 1} x^{n} \sum_{k=0}^{n-1} y^{k} \sum_{\substack{b_{1}, \ldots, b_{n-k} \geq 1 \\
b_{1}+\cdots+b_{n-k}=n}} \frac{1}{\left(b_{1}!\right)^{r} \cdots\left(b_{n-k}!\right)^{r}} \\
& =\sum_{k \geq 0}(x y)^{k} \sum_{n>k} x^{n-k} \sum_{\substack{b_{1}, \ldots, b_{n-k} \geq 1 \\
b_{1}+\cdots+b_{n-k}=n}} \frac{1}{\left(b_{1}!\right)^{r} \cdots\left(b_{n-k}!\right)^{r}} \\
& =\sum_{k \geq 0}(x y)^{k} \sum_{\nu \geq 1} x^{\nu} \sum_{\substack{b_{1}, \ldots, b_{\nu} \geq 1 \\
b_{1}+\cdots+b_{\nu}=\nu+k}} \frac{1}{\left(b_{1}!\right)^{r} \cdots\left(b_{\nu}!\right)^{r}} \\
& =\sum_{k \geq 0}(x y)^{k} \sum_{\nu \geq 1} x^{\nu} \sum_{\substack{\beta_{1}, \ldots, \beta_{\nu} \geq 0 \\
\beta_{1}+\cdots+\beta_{\nu}=k}} \frac{1}{\left(\beta_{1}+1\right)!^{r} \cdots\left(\beta_{\nu}+1\right)!^{r}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k \geq 0}(x y)^{k}\left[z^{k}\right] \sum_{\nu \geq 1}\left(x f_{r}(z)\right)^{\nu} \\
& =\sum_{k \geq 0}(x y)^{k}\left[z^{k}\right] \frac{x f_{r}(z)}{1-x f_{r}(z)} \\
& =\frac{x f_{r}(x y)}{1-x f_{r}(x y)} \\
& =\frac{1}{1-x f_{r}(x y)}-1
\end{aligned}
$$

Therefore

$$
\begin{equation*}
E\left[(1+y)^{S_{n}^{(r)}}\right]=\left[x^{n}\right] \frac{1}{1-x f_{r}(x y)}, \quad n \geq 1 \tag{9.8}
\end{equation*}
$$

Plugging $y=-1$ into this expression, we obtain

$$
\begin{align*}
P_{n}^{(r)}=P\left(S_{n}^{(r)}=0\right)=E\left[(1-1)^{S_{n}^{(r)}}\right] & =\left[x^{n}\right] \frac{1}{1-x f_{r}(-x)} \tag{9.9}\\
& =\left[x^{n}\right] \frac{1}{h_{r}(x)}, \quad n \geq 1,
\end{align*}
$$

where $h_{r}(x)=\sum_{j \geq 0}\left((-1)^{j} /(j!)^{r}\right) x^{j}$, and this is (9.4). It should be duly noted that this generating function is a special case of one found by Richard Stanley [45], but it is probably safe to say that he was unaware of any connection with the weak ordering.

9.5.3 Step 3: Asymptotics

We are about to finish the proof; all of the combinatorial insights are behind us, and only some asymptotic analysis remains. Armed with formula (9.9), our goal is to use Darboux's theorem [2] to estimate

$$
\left[z^{n}\right] \frac{1}{h_{r}(z)}, \quad h_{r}(z)=\sum_{j \geq 0} \frac{(-1)^{j}}{(j!)^{r}} z^{j}, \quad r \geq 2
$$

First of all, notice that for $z>0$ we have

$$
1-z<h_{r}(z)<1-z+z^{2} /(2!)^{r} .
$$

Hence, we get

$$
0=1-(1)<h_{r}(1) ; \quad h_{r}(2)<1-(2)+(2)^{2} /(2!)^{r} \leq 0, \quad r \geq 2
$$

So $h_{r}(z)=0$ has a root in $(1,2)$ by the intermediate value theorem.
Now, consider the circle $|z|=u$, where $u>1$ will be specified later. Let

$$
g(z)=1-z, \quad G(z)=\sum_{j \geq 2} \frac{(-1)^{j}}{(j!)^{r}} z^{j}
$$

$g(z)=0$ has a single root, of multiplicity 1 , within the circle $|z|=u$. For $|z|=u$,

$$
|g(z)| \geq \min _{t \in[0,2 \pi)}\left|1-u e^{i t}\right|=u-1
$$

and

$$
\begin{aligned}
|G(z)| & \leq \frac{u^{2}}{2^{r}}\left(1+\frac{u}{3^{r}}+\frac{u}{3^{r}} \frac{u}{4^{r}}+\cdots\right) \\
& \leq \frac{u^{2}}{2^{r}} \cdot \frac{1}{1-\frac{u}{3^{r}}}, \quad u<3^{r}
\end{aligned}
$$

If we can find $u \in\left(1,3^{r}\right)$ such that

$$
\begin{equation*}
u-1>\frac{\frac{u^{2}}{2^{r}}}{1-\frac{u}{3^{r}}} \tag{9.10}
\end{equation*}
$$

then, by Rouché's theorem [48], $h_{r}(z)=g(z)+G(z)$ also has a unique, whence real positive, root z^{*} within the circle $|z|=u$. The inequality (9.10) is equivalent to

$$
F(u):=u^{2}\left(2^{-r}+3^{-r}\right)-u\left(1+3^{-r}\right)+1<0 .
$$

$F(u)$ attains its minimum at

$$
\bar{u}=\frac{1+3^{-r}}{2\left(2^{-r}+3^{-r}\right)} \in\left(1,3^{r}\right),
$$

and

$$
F(\bar{u})=1-\frac{\left(1+3^{-r}\right)^{2}}{4\left(2^{-r}+3^{-r}\right)} .
$$

For $r>2$,

$$
4\left(2^{-r}+3^{-r}\right) \leq 8 \cdot 2^{-3}=1,
$$

and so $F(\bar{u})<0$ in this case, and we are done. Actually, notice that our choice of circle radius

$$
|z|=\bar{u}=\frac{1+3^{-r}}{2\left(2^{-r}+3^{-r}\right)} \in\left(2,3^{r}\right), \quad r>2 .
$$

So we have proved $h_{r}(z)=0$ has a unique (positive) root $z^{*}=z^{*}(r) \in(1,2)$ within the disk $|z| \leq 2, r>2$, which is what we wanted.

On the other hand, for $r=2$,

$$
F(\bar{u})=1-\frac{(1+1 / 9)^{2}}{1+4 / 9}>0
$$

so this case requires a bit more attention. Instead, consider

$$
g(z)=1-z+\frac{z^{2}}{(2!)^{2}}-\frac{z^{3}}{(3!)^{2}}, \quad G(z)=\sum_{j \geq 4} \frac{(-1)^{j}}{(j!)^{2}} z^{j},
$$

and our strategy will be analogous to the above. First,

$$
g^{\prime}(z)=-1+z / 2-z^{2} / 12=-\frac{(z-3)^{2}+3}{12}<0, \quad z \in \mathbb{R},
$$

so $g(z)=0$ has one real root, z_{1}. Since $g(1)=2 / 9>0$ and $g(2)=-2 / 9<0$, we have $z_{1} \in(1,2)$.

Let $z_{2}=a+i b, \overline{z_{2}}=a-i b$ denote the two complex roots of $g(z)=0$. Then (Vieta's relations [48])

$$
2 a+z_{1}=9, \quad\left(a^{2}+b^{2}\right) z_{1}=36
$$

In particular

$$
a=\frac{9-z_{1}}{2}>3.5,
$$

hence $\left|z_{2}\right|=\left|\bar{z}_{2}\right|>3.5$. So, if we can find $u \in\left(z_{1}, 3.5\right)$ with

$$
|g(z)|>|G(z)|, \quad|z|=u
$$

we will be done once again by Rouché's theorem. For $|z|=u$,

$$
\begin{align*}
|G(z)| & \leq \frac{u^{4}}{(4!)^{2}}\left(1+\frac{u}{5^{2}}+\frac{u}{5^{2}} \frac{u}{6^{2}}+\cdots\right) \\
& \leq \frac{u^{4}}{(4!)^{2}} \cdot \frac{1}{1-\frac{u}{5^{2}}}, \quad u<5^{2} \tag{9.11}
\end{align*}
$$

Take $u=2$. Let us show that

$$
\min _{|z|=2}|g(z)|=|g(2)|=\frac{2}{9}
$$

To this end, we bound

$$
\begin{aligned}
|g(z)| & =\frac{1}{36}\left|\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-\bar{z}_{2}\right)\right| \\
& \geq \frac{1}{36}\left(2-z_{1}\right) \min _{|z|=2}\left|z-z_{2}\right|\left|z-\bar{z}_{2}\right| .
\end{aligned}
$$

Setting $z=2 e^{i t}$, we obtain

$$
\begin{aligned}
\left|z-z_{2}\right|^{2}\left|z-\overline{z_{2}}\right|^{2} & =\left[(2 \cos t-a)^{2}+(2 \sin t-b)^{2}\right] \cdot\left[(2 \cos t-a)^{2}+(2 \sin t+b)^{2}\right] \\
& =\left(4-4 a \cos t+a^{2}+b^{2}-4 b \sin t\right)\left(4-4 a \cos t+a^{2}+b^{2}+4 b \sin t\right) \\
& =\left(4-4 a \cos t+a^{2}+b^{2}\right)^{2}-16 b^{2} \sin ^{2} t \\
& :=F(t)
\end{aligned}
$$

Then

$$
\begin{aligned}
F^{\prime}(t) & =8 a \sin t\left(4-4 a \cos t+a^{2}+b^{2}\right)-32 b^{2} \sin t \cos t \\
& =8 \sin t\left[a\left(4+a^{2}+b^{2}\right)-4\left(a^{2}+b^{2}\right) \cos t\right] .
\end{aligned}
$$

So $F^{\prime}(t)=0$ if and only if $t=0, \pi$, since

$$
\begin{aligned}
\frac{a\left(4+a^{2}+b^{2}\right)}{4\left(a^{2}+b^{2}\right)} & =\frac{a}{4}+\frac{a}{a^{2}+b^{2}} \\
& =\frac{9-z_{1}}{8}+\frac{z_{1}\left(9-z_{1}\right)}{72} \\
& =\frac{81-z_{1}^{2}}{72}>\frac{77}{72}>1 .
\end{aligned}
$$

This inequality also shows that $F^{\prime}(t)$ always has the same sign as $\sin t$, hence $F^{\prime}(t)>0$ for $t \in(0, \pi)$ and $F^{\prime}(t)<0$ for $t \in(\pi, 2 \pi)$. So $F(t)$ attains its minimum at $t=0$, and consequently on $|z|=2$

$$
\begin{aligned}
|g(z)| \geq\left(2-z_{1}\right) \sqrt{F(0)} & =\left(2-z_{1}\right)\left(4-4 a+a^{2}+b^{2}\right) \\
& =\left(2-z_{1}\right)\left(2-z_{2}\right)\left(2-\overline{z_{2}}\right) \\
& =g(2)=\frac{2}{9}
\end{aligned}
$$

Combining this with (9.11), we are done since

$$
|g(z)| \geq \frac{2}{9}>\frac{\frac{2^{4}}{(4!)^{2}}}{1-\frac{2}{5^{2}}} \geq|G(z)|, \quad|z|=2
$$

