M. VASKOUSKI, N. KONDRATYONOK

ANALOGUE OF THE RSA-CRYPTOSYSTEM IN QUADRATIC UNIQUE FACTORIZATION DOMAINS

(Communicated by Academician N. A. Izobov)
Belarusian State University, Minsk, Belarus
vaskovskii@bsu.by; nkondr2006@rambler.ru

Abstract

In the article, the analogue of a RSA-cryptosystem in general quadratic unique factorization domains is obtained. A scheme of digital signature on the basis of the generalized RSA-cryptosystem is suggested. The analogue of Wiener's theorem on low private key is obtained. We prove the equivalence of the problems of generalized RSA-modulus factorization and private key search when the domain of all algebraic integer elements of the quadratic field is Euclidean. A method to secure the generalized RSA-cryptosystem of the iterated encryption cracking is proposed.

Keywords: RSA-cryptosystem, digital signature, unique factorization domain, euclidean domain, quadratic number field.

М. М. ВАСЬКОВСКИЙ, Н. В. КОДРАТЕНОК

АНАЛОГ RSA-КРИПТОСИСТЕМЫ В КВАДРАТИЧНЫХ ФАКТОРИАЛЬНЫХ КОЛЬЦАХ

Белорусский государственный университет, Минск, Беларусь

vaskovskii@bsu.by; nkondr2006@rambler.ru

Abstract

Цель данной работы заключается в построении аналога RSA-криптосистемы в квадратичных факториальных кольцах. В работе предложен алгоритм построения электронной цифровой подписи. Доказан аналог поиска секретного ключа и факторизации модуля криптосистемы в случае, когда целые алгебраические элементы поля образуют Евклидово кольцо. Даны ограничения на параметры криптосистемы для защиты от метода повторного цифрования. Так же проведено исследование скорости работы и взлома полученной криптосистемы.

Ключевые слова: RSA-криптосистема, электронная цифровая подпись, факториальное кольцо, евклидово кольцо, квадратичное числовое поле.

In 1978 there was constructed [1] one of the most high-usage public-key cryptosystem, which is named as RSA-cryptosystem and is based on the difficulty of the factorization of big natural numbers. In the papers [2-6] there were obtained and investigated analogues of RSA-cryptosystem based on using of polynomials and Gaussian integers instead of natural numbers. The present paper is devoted to constructing and analysis of RSA-cryptosystem in the domain of algebraic integer elements of a general quadratic number field.

Let $\rho \neq 1$ be an integer squarefree number. Denote by $\mathbb{Z}[\sqrt{\rho}]$ the domain of all integer algebraic elements of the quadratic number field $\mathbb{Q}[\sqrt{\rho}]$ and we assume that $\mathbb{Z}[\sqrt{\rho}]$ is a unique factorization domain. It is known [7] that $\mathbb{Z}[\sqrt{\rho}]=\{a+b \sqrt{\rho} \mid a, b \in \mathbb{Z}\}$ if $\rho \not \equiv 1(\bmod 4)$, and $\mathbb{Z}[\sqrt{\rho}]=\{(a+b \sqrt{\rho}) / 2 \mid a$, $b \in \mathbb{Z}, a \equiv b(\bmod 2)\} \quad$ if $\rho \equiv 1(\bmod 4)$. Let the norm v_{ρ} in $\mathbb{Z}[\sqrt{\rho}]$ be defined by the relation $v_{\rho}(a+b \sqrt{\rho})=\left|a^{2}-\rho b^{2}\right|, a+b \sqrt{\rho} \in \mathbb{Z}[\sqrt{\rho}]$. We recall that a domain \mathbb{K} is called Euclidean if one can define a function $v: \mathbb{K} \backslash\{0\} \rightarrow \mathbb{N} \cup\{0\}$ such that for any $a, b \in \mathbb{K} \backslash\{0\}$ the inequality $v(a b) \geq v(a)$ holds, and for any $a, b \in \mathbb{K} \backslash\{0\}$ one can find elements $q, r \in \mathbb{K}$ such that $a=b q+r$, where $r=0$ or $v(r)<v(b)$. There exist exactly five Euclidean imaginary quadratic domains $\mathbb{Z}[\sqrt{\rho}]$ (for $\rho=-1,-2,-3$, $-7,-11$), and exactly sixteen Euclidean real quadratic domains $\mathbb{Z}[\sqrt{\rho}]$ (for $\rho=2,3,5,6,7,11,13,17,19$, $21,29,33,37,41,57,73)$ with respect to the norm v_{ρ}. In another quadratic domains there doesn't exist a norm, with respect to which these domains will be Euclidean [7].

[^0]Let J_{ρ} be the set of all invertible elements of $\mathbb{Z}[\sqrt{\rho}]$ with zero. For any $N \in \mathbb{Z}[\sqrt{\rho}] \backslash J_{\rho}$ denote by $\mathbb{Z}_{N}[\sqrt{\rho}]$ and $\mathbb{Z}_{N}^{*}[\sqrt{\rho}]$ the additive group of residue classes modulo N and the multiplicative group of primitive residue classes modulo N respectively. Let $\alpha_{\rho}(N)=\left|\mathbb{Z}_{N}[\sqrt{\rho}]\right|, \quad \varphi_{\rho}(N)=\left|\mathbb{Z}_{N}^{*}[\sqrt{\rho}]\right|$. An element $p \in \mathbb{Z}[\sqrt{\rho}] \backslash J_{\rho}$ is called prime element if for any divisor q of p there holds $q \in J_{\rho}$ or $p / q \in J_{\rho}$. Any prime element $p>1$ of \mathbb{Z} will be called a prime number.

In further we suppose that $\mathbb{Z}[\sqrt{\rho}]$ is a unique factorization domain.
Proposition 1 . For any $N \in \mathbb{Z}[\sqrt{\rho}] \backslash J_{\rho}$ there holds $\alpha_{\rho}(N)=v_{\rho}(N)$.
Proof. At first we prove that the function $\alpha_{\rho}: \mathbb{Z}[\sqrt{\rho}] \backslash J_{\rho} \rightarrow \mathbb{N}$ is totally multiplicative. Let N_{1}, $N_{2} \in \mathbb{Z}[\sqrt{\rho}] \backslash J_{\rho}, \alpha_{\rho}\left(N_{1}\right)=m_{1}, \alpha_{\rho}\left(N_{2}\right)=m_{2}$. Let $x_{1}, \ldots, x_{m_{1}}, y_{1}, \ldots, y_{m_{2}}$ be elements of $\mathbb{Z}[\sqrt{\rho}]$ such that $x_{i} \not \equiv x_{j}\left(\bmod N_{1}\right)$ for any $i, j=1, \ldots, m_{1}, i \neq j$, and $y_{i} \equiv y_{j}\left(\bmod N_{2}\right)$ for any $i, j=1, \ldots, m_{2}, i \neq j$. It's easy to see that the set $\left\{x_{i}+N_{1} y_{j} \mid i=1, \ldots, m_{1}, j=1, \ldots, m_{2}\right\}$ forms a complete residues system modulo $N_{1} N_{2}$, hence, $\alpha_{\rho}\left(N_{1} N_{2}\right)=m_{1} m_{2}$.

Let $N \in \mathbb{Z} \backslash J_{\rho}$. If $\rho \not \equiv 1(\bmod 4)$, then $a_{1}+b_{1} \sqrt{\rho} \equiv a_{2}+b_{2} \sqrt{\rho}(\bmod N)$ iff $a_{1} \equiv a_{2}(\bmod N)$ and $b_{1} \equiv b_{2}(\bmod N)$, hence, $\alpha_{\rho}(N)=N^{2}$. If $\rho \equiv 1(\bmod 4)$ and N is odd, then $\left(a_{1}+b_{1} \sqrt{\rho}\right) / 2 \equiv$ $\left(a_{2}+b_{2} \sqrt{\rho}\right) / 2(\bmod N)$ iff $a_{1} \equiv a_{2}(\bmod N)$ and $b_{1} \equiv b_{2}(\bmod N)$, hence, $\alpha_{\rho}(N)=N^{2}$. Suppose that $\rho \equiv 1(\bmod 4), N=2^{k}, k \in \mathbb{N}$. Let $\left(a_{1}+b_{1} \sqrt{\rho}\right) / 2 \equiv\left(a_{2}+b_{2} \sqrt{\rho}\right) / 2(\bmod N)$, where $a_{1} \equiv b_{1}(\bmod N)$, $a_{2} \equiv b_{2}(\bmod N)$. It's easy to see that there exist exactly $2^{2 k-1}$ pairs $\left(a_{1}, b_{1}\right), \ldots,\left(a_{2} 2 k-1, b_{2 k-1}\right)$ such that $\left(a_{i}+b_{i} \sqrt{\rho}\right) / 2 \not \equiv\left(a_{j}+b_{j} \sqrt{\rho}\right) / 2(\bmod N)$ for any $i, j=1, \ldots, 2^{2 k-1}, i \neq j$, where $a_{i}, b_{i}, a_{j}, b_{j}$ are even. Analogously there exist exactly $2^{2 k-1}$ pairs $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{2 k-1}, \beta_{2 k-1}\right)$ such that $\left(\alpha_{i}+\beta_{i} \sqrt{\rho}\right) / 2 \not \equiv$ $\left(\alpha_{j}+\beta_{j} \sqrt{\rho}\right) / 2(\bmod N)$ for any $i, j=1, \ldots, 2^{2 k-1}, i \neq j$, where $\alpha_{i}, \beta_{i}, \alpha_{j}, \beta_{j}$ are odd. Hence, $\alpha_{\rho}\left(2^{k}\right)=2^{2 k-1}+2^{2 k-1}=2^{2 k}$. Taking into account the total multiplicativity of the function α_{ρ} we conclude that $\alpha_{\rho}(N)=v_{\rho}(N)$ for any $N \in \mathbb{Z} \backslash J_{\rho}$.

Let $N \in \mathbb{Z}[\sqrt{\rho}] \backslash J_{\rho}$. Since $x \equiv y(\bmod N)$ iff $\bar{x} \equiv \bar{y}(\bmod \bar{N})$ for any $x, y \in \mathbb{Z}[\sqrt{\rho}]$, so $\alpha_{\rho}(N)=\alpha_{\rho}(\bar{N})$, where \bar{N} is the conjugate number to N. So, $\alpha_{\rho}(N)=\sqrt{\alpha_{\rho}(N) \alpha_{\rho}(\bar{N})}=\sqrt{\alpha_{\rho}(N \bar{N})}=\sqrt{v_{\rho}(N \bar{N})}=v_{\rho}(N)$. The proposition is proved.

Proposition 2. For any $N \in \mathbb{Z}[\sqrt{\rho}] \backslash J_{\rho}$ there holds $\varphi_{\rho}(N)=\prod_{i=1}^{k}\left(v_{\rho}\left(p_{i}\right)\right)^{q_{i}-1}\left(v_{\rho}\left(p_{i}\right)-1\right)$, where $N=\prod_{i=1}^{k} p_{i}^{q_{i}}, p_{i}$ are distinct prime elements from $\mathbb{Z}[\sqrt{\rho}], q_{i} \in \mathbb{N}$.

Proof. Let $N_{1}, N_{2} \in \mathbb{Z}[\sqrt{\rho}] \backslash J_{\rho}$ be coprime. Since $\mathbb{Z}_{N_{1} N_{2}}^{*}[\rho] \cong \mathbb{Z}_{N_{1}}^{*}[\rho] \times \mathbb{Z}_{N_{2}}^{*}[\rho]$, so $\varphi_{\rho}\left(N_{1} N_{2}\right)=$ $\varphi_{\rho}\left(N_{1}\right) \varphi_{\rho}\left(N_{2}\right)$.

Let p be a prime element of $\mathbb{Z}[\sqrt{\rho}], k \in \mathbb{N}$. It's easy to see that $\varphi_{\rho}(p)=\alpha_{\rho}(p)-1$, and $\varphi_{\rho}\left(p^{k}\right)=\alpha_{\rho}\left(p^{k}\right)-\alpha_{\rho}\left(p^{k-1}\right)$ if $k>1$. By proposition 1 , we have $\varphi_{\rho}\left(p^{k}\right)=\left(v_{\rho}(p)\right)^{k-1}\left(v_{\rho}(p)-1\right)$. Since the function φ_{ρ} is multiplicative, so the statement of the proposition is valid.

The Lagrange theorem immediately implies the following statement, which is an analogue of the Euler theorem.
$\mathrm{P} \underset{\mathrm{r}}{\mathrm{o}} \mathrm{p}$ o s it i o n 3. Let $N \in \mathbb{Z}[\sqrt{\rho}] \backslash J_{\rho}$, then for any $m \in \mathbb{Z}[\sqrt{\rho}],(m, N)=1$, there holds $m^{\varphi_{\rho}(N)} \equiv 1(\bmod N)$.

C o roll a r y 1. Let p be a prime element of $\mathbb{Z}[\sqrt{\rho}]$, then for any $m \in \mathbb{Z}[\sqrt{\rho}]$ there holds $m^{v_{\rho}(p)} \equiv m(\bmod p)$.

It's easy to see that there holds an analogue of the Chinese remainder theorem in the domain $\mathbb{Z}[\sqrt{\rho}]$.
Proposition 4 . Let $m_{1}, \ldots, m_{k}, c_{1}, \ldots, c_{k} \in \mathbb{Z}[\sqrt{\rho}],\left(m_{i}, m_{j}\right)=1$ for any $i \neq j$. Then the system of congruencies $x \equiv c_{i}\left(\bmod m_{i}\right), i=1, \ldots, k$, has a unique solution $x \equiv \sum_{i=1}^{k} c_{i} x_{i} \frac{m}{m_{i}}(\bmod m)$, where $m=\prod_{i=1}^{k} m_{i}, x_{i} \in \mathbb{Z}[\sqrt{\rho}], \frac{m}{m_{i}} x_{i} \equiv 1\left(\bmod m_{i}\right), i=1, \ldots, k$.

The following three statements are analogues of Wilson's, Lucas' [8] and Pocklington's criterions [9] of primality.

Proposition 5. An element $p \in \mathbb{Z}[\sqrt{\rho}] \backslash J_{\rho}$ is prime iff there holds the congruence

$$
\left.\prod_{x \in \mathbb{Z}}^{p}[\sqrt{\rho}], x \neq 0\right) ~ x \equiv-1(\bmod p) .
$$

Proof. If p is prime, then for any $x \in \mathbb{Z}_{p}^{*}[\sqrt{\rho}], x \not \equiv \pm 1(\bmod p)$ there exists a unique $y \in \mathbb{Z}_{p}^{*}[\sqrt{\rho}]$, $y \neq x$, such that $x y \equiv 1(\bmod p)$. Hence, $\left.\prod_{x \in \mathbb{Z}}{ }_{p}[\sqrt{\rho}], x \neq 0\right)=-1(\bmod p)$. If p is not prime, then the ring $\mathbb{Z}_{p}[\sqrt{\rho}]$ has divisors of zero, so $\prod_{x \in \mathbb{Z}}[\sqrt{\rho}], x \neq 0$, $x \equiv 0(\bmod p)$. This contradiction finishes the proof.

Proposition 6 . An element $N \in \mathbb{Z}[\sqrt{\rho}] \backslash J_{\rho}$ is prime iff there exists $a \in \mathbb{Z}[\sqrt{\rho}],(a, N)=1$, such that there holds: 1) $a^{v_{\rho}(N)-1} \equiv 1(\bmod N)$, 2) $a^{\left(v_{\rho}(N)-1\right) / q} \not \equiv 1(\bmod N)$ for any prime divisor q of $v_{\rho}(N)-1$.
Pr oof. If N is prime, then $\mathbb{Z}_{N}[\sqrt{\rho}]$ is a finite field, and we can get any primitive element a of this field. Conditions 1) and 2) of the proposition are satisfied.

Let for any a there hold conditions 1) and 2) of the proposition. Hence, ord $a=v_{\rho}(N)-1$ in the group $\mathbb{Z}_{N}^{*}[\sqrt{\rho}]$. The Lagrange theorem implies that $\left(v_{\rho}(N)-1\right) \mid \varphi_{\rho}(N)$. By proposition $1, \varphi_{\rho}(N) \leq \alpha_{\rho}(N)-1=$ $v_{\rho}(N)-1$. Consequently, $\varphi_{\rho}(N)=\alpha_{\rho}(N)-1$. The last one implies the primality of the element N. The proposition is proved.

Proposition 7 . Let $N \in \mathbb{Z}[\sqrt{\rho}] \backslash J_{\rho}$ and there exists a prime number $q>\sqrt{v_{\rho}(N)}-1$ such that $q \mid\left(v_{\rho}(N)-1\right)$. If there exists an element $a \in \mathbb{Z}[\sqrt{\rho}]$ such that the following two conditions hold: 1) $\left.a^{\nu_{\rho}(N)-1} \equiv 1(\bmod N), 2\right)\left(a^{\left(v_{\rho}(N)-1\right) / q}-1, N\right)=1$; then the element N is prime in $\mathbb{Z}[\sqrt{\rho}]$.

Proof. Let the conditions of the proposition be satisfied but N is not prime element of $\mathbb{Z}[\sqrt{\rho}]$. Hence, there exists a prime element $p \in \mathbb{Z}[\sqrt{\rho}]$ such that $p \mid N$ and $v_{\rho}(p) \leq \sqrt{v_{\rho}(N)}$. Since $q>\sqrt{v_{\rho}(N)}-1$, so $\left(q, v_{\rho}(p)-1\right)=1$ and therefore there exists a natural number u such that $u q \equiv 1\left(\bmod v_{\rho}(p)-1\right)$. Consequently, by condition 1) and proposition 3, we have

$$
a^{\left(v_{\rho}(N)-1\right) / q} \equiv a^{u q\left(v_{\rho}(N)-1\right) / q}=a^{u\left(v_{\rho}(N)-1\right)} \equiv 1(\bmod p) .
$$

The last one contradicts with condition 2). The proposition is proved.
Algorithm of the generalized RSA-cryptosystem. Any subscriber A chooses two distinct big prime elements $p_{A}, q_{A} \in \mathbb{Z}[\sqrt{\rho}]$ and calculates $\varphi_{\rho}\left(N_{A}\right)$, where $N_{A}=p_{A} q_{A}$. Further A chooses a random natural number $e_{A} \in\left[1, \varphi_{\rho}\left(N_{A}\right)\right]$ and finds a natural number d_{A} such that $e_{A} d_{A} \equiv 1\left(\bmod \varphi_{\rho}\left(N_{A}\right)\right)$ with the help of the extended Euclidean algorithm [8]. The pair $\left(N_{A}, e_{A}\right)$ is a public key of A, the pair $\left(N_{A}, d_{A}\right)$ is a private key of A. Then $f_{A}: \mathbb{Z}_{N_{A}}[\sqrt{\rho}] \rightarrow \mathbb{Z}_{N_{A}}[\sqrt{\rho}], f_{A}(x) \equiv x^{e}\left(\bmod N_{A}\right)$, is an encryption function of A, the function $f_{A}^{-1}: \mathbb{Z}_{N_{A}}[\sqrt{\rho}] \rightarrow \mathbb{Z}_{N_{A}}[\sqrt{\rho}], f_{A}^{-1}(x) \equiv x^{d}\left(\bmod N_{A}\right)$ is a decryption function of A. Any such triple $\left(N_{A}, e_{A}, d_{A}\right)$ is called parameters of the generalized RSAcryptosystem. Corollary 1 implies the correctness of the work of the the generalized RSA-cryptosystem.

Scheme of digital signature based on the generalized RSA-cryptosystem. Suppose that a subscriber A wants to send to a subscriber B a signed message (m, P), where $m \in \mathbb{Z}_{N_{B}}[\sqrt{\rho}]$ is a secret message, $P \in \mathbb{Z}_{N}[\sqrt{\rho}]$ is a signature of A (open text), where $N=N_{A}$ if $v_{\rho}\left(N_{A}\right) \leq v_{\rho}\left(N_{B}\right)$, and $N=N_{B}$ if $v_{\rho}\left(N_{A}\right)>v_{\rho}\left(N_{B}\right)$. Suppose that for any two RSA-modulus N_{1} and $N_{2}, v_{\rho}\left(N_{1}\right) \leq v_{\rho}\left(N_{2}\right)$, there is defined an injective mapping $g_{N_{1}, N_{2}}: \mathbb{Z}_{N_{1}}[\sqrt{\rho}] \rightarrow \mathbb{Z}_{N_{2}}[\sqrt{\rho}]$ such that values of the mappings $g_{N_{1}, N_{2}}$ and $g_{N_{1}, N_{2}}^{-1}$ are easy computable. If $v_{\rho}\left(N_{A}\right) \leq v_{\rho}\left(N_{B}\right)$, then the subscriber A send to B the pair $\left(m_{1}, P_{1}\right)$, where $m_{1}=f_{B}(m), \quad P_{1}=f_{B}\left(g_{N_{A}, N_{B}}\left(f_{A}^{-1}(P)\right)\right)$. The subscriber B computes $m_{2}=f_{B}^{-1}\left(m_{1}\right), \quad P_{2}=$ $f_{A}\left(g_{N_{A}, N_{B}}^{-1}\left(f_{B}^{-1}\left(P_{1}\right)\right)\right)$. If $v_{\rho}\left(N_{A}\right)>v_{\rho}\left(N_{B}\right)$, then the subscriber A send to B the pair $\left(m_{1}, P_{1}\right)$, where $m_{1}=f_{B}^{A}(m), \quad P_{1}=f_{A}^{-1}\left(g_{N_{B}, N_{A}}\left(f_{B}(P)\right)\right)$. The subscriber $\quad B$ computes $m_{2}=f_{B}^{-1}\left(m_{1}\right), \quad P_{2}=$ $f_{B}^{-1}\left(g_{N_{B}, N_{A}}^{-1}\left(f_{A}\left(P_{1}\right)\right)\right)$. Then, by corollary $1, m_{2}=m, P_{2}=P$.

Analysis of security of the generalized RSA-cryptosystem. It's easy that knowledge of the RSAmodulus factorization $N=p q$ gives an effective way to find the private key. The following theorem establishes the inverse statement and in the case of classical RSA-cryptosystem is given in [11, Ch. 14].

Theorem1. Let the domain $\mathbb{Z}[\sqrt{\rho}]$ be Euclidean, (N, e, d) be parameters of the generalized RSAcryptosystem. If the number d is known, then the number N can be effectively factorized with probability at least $\frac{1}{2}$ at polynomial, with respect to $\log v_{\rho}(N)$, number of arithmetic operations in $\mathbb{Z}[\sqrt{\rho}]$.

Proof. Let $s=e d-1=2^{t} u$, where $t, u \in \mathbb{N}, u$ is odd. Since $\varphi_{\rho}(N) \mid s$, so $x^{s} \equiv 1(\bmod N)$ for any $x \in \mathbb{Z}_{N}^{*}[\rho]$. Construct the set

$$
B=\left\{x \in \mathbb{Z}_{N}^{*}[\rho] \mid \exists j \in\{0, \ldots, t-1\}: x^{2^{j} u} \equiv-1(\bmod N) \text { or } x^{u} \equiv 1(\bmod N)\right\}
$$

Let $A=\mathbb{Z}_{N}^{*}[\rho] \backslash B$. Let's consider an arbitrary element $a \in A$. Take the smallest natural number k such that $a^{2^{k} u} \equiv 1(\bmod N)$. Let $b \equiv a^{2^{k-1} u}(\bmod N)$. It's easy to see that $b^{2} \equiv 1(\bmod N)$ and $b \not \equiv \pm 1(\bmod N)$. Hence, $(b-1, N)$ is a nontrivial divisor of N. There exists a constant $\gamma_{\rho} \in(0,1)$ such that for any $a, b \in \mathbb{Z}[\sqrt{\rho}] \backslash\{0\}, \quad v_{\rho}(a) \geq v_{\rho}(b)$, one can find $q, r \in \mathbb{Z}[\sqrt{\rho}]$ such that $a=b q+r$, where $r=0$ or $v_{\rho}(r) \leq \gamma_{\rho} v_{\rho}(b)$ [10]. Hence, the greatest divisor $(b-1, N)$ can be computed with the help of the Euclidean algorithm at polynomial number on $\log v_{\rho}(N)$ of arithmetic operations in $\mathbb{Z}[\sqrt{\rho}]$ [7]. It remains to show that $|B| \leq \frac{\varphi_{\rho}(N)}{2}$.

Let $N=p q$, where p, q are distinct prime elements of $\mathbb{Z}[\sqrt{\rho}]$. Let $\varphi_{\rho}(p)=2^{v_{1}} u_{1}, \varphi_{\rho}(q)=2^{v_{2}} u_{2}$, where $v_{1}, v_{2}, u_{1}, u_{2} \in \mathbb{N}, u_{1}$ and u_{2} are odd. Denote $v=\min \left\{v_{1}, v_{2}\right\}, K=\left(u, u_{1}\right)\left(u, u_{2}\right)$. It's easy to see that the congruence $x^{u} \equiv 1(\bmod N)$ is equivalent to the system $u \log _{\alpha} x \equiv 0\left(\bmod \varphi_{\rho}(p)\right), \quad u \log _{\beta} x \equiv$ $0\left(\bmod \varphi_{\rho}(q)\right)$, where α and β are primitive elements in $\mathbb{Z}_{p}^{*}[\rho]$ and $\mathbb{Z}_{q}^{*}[\rho]$ respectively. Since u is odd, so, by proposition 4 , the congruence $x^{u} \equiv 1(\bmod N)$ has exactly K solutions. Let's consider the congruence $x^{2^{j} u} \equiv-1(\bmod N)$, where $j \in\{0, \ldots, t-1\}$. If $j<v$, then the similar arguments imply that the number of solutions is $4^{j} K$. If $j \geq v$, then the congruence has no solutions. Therefore $|B|=\left(1+1+4+\ldots+4^{v-1}\right) K=\frac{4^{v}+2}{3} K$. Since $\varphi_{\rho}(N)=2^{v_{1}+v_{2}} u_{1} u_{2} \geq 4^{v} K$, so $\frac{|B|}{\varphi_{\rho}(N)} \leq \frac{1}{2}$. The theorem is proved.

R e mark 1 . As in the case of classical RSA-cryptosystem the question on the equivalence of breaking of the generalized RSA-cryptosystem and factorization of the RSA-modulus is open.

The following theorem is an analogue of the Wiener theorem on low private key for the classical RSA-cryptosystem [11, Ch. 14].

Theor em 2. Let $(N, e, d), N=p q$, be parameters of the generalized $R S A$-cryptosystem such that $v_{\rho}(q)<v_{\rho}(p)<\alpha^{2} v_{\rho}(q)$, where $\alpha>1$. If $d<\frac{1}{\sqrt{2 \alpha+2}}\left(v_{\rho}(N)\right)^{1 / 4}$, then the number d can be effectively computed at polynomial, with respect to $\log v_{\rho}(N)$, number of arithmetic operations in \mathbb{Z}.
Proof. Let $N=p q$, where p, q are distinct prime elements of $\mathbb{Z}[\sqrt{\rho}]$. Let $e d-1=k \varphi_{\rho}(N), k \in \mathbb{N}$. Since $v_{\rho}(p)+v_{\rho}(q)<(\alpha+1) \sqrt{v_{\rho}(N)}$, so

$$
\begin{equation*}
v_{\rho}(N)-\varphi_{\rho}(N)=v_{\rho}(p)+v_{\rho}(q)-1<(\alpha+1) \sqrt{v_{\rho}(N)} \tag{1}
\end{equation*}
$$

We have $k \varphi_{\rho}(N)<e d, e<\varphi_{\rho}(N)$. Therefore $k<d$. The last one implies the relations

$$
\begin{equation*}
\frac{(\alpha+1) k}{d \sqrt{v_{\rho}(N)}} \leq \frac{(\alpha+1)}{\sqrt{v_{\rho}(N)}}<\frac{1}{2 d^{2}} \tag{2}
\end{equation*}
$$

In view of (1) and (2) we get

$$
\begin{equation*}
\left|\frac{e}{v_{\rho}(N)}-\frac{k}{d}\right|=\left|\frac{1-k\left(v_{\rho}(N)-\varphi_{\rho}(N)\right)}{v_{\rho}(N) d}\right| \leq \frac{(\alpha+1) \sqrt{v_{\rho}(N)}}{v_{\rho}(N) d}<\frac{1}{2 d^{2}} \tag{3}
\end{equation*}
$$

Relation (3) means that $\frac{k}{d}$ is a successive fraction for the non-secret fraction $\frac{e}{v_{\rho}(N)}$. Hence, the fraction $\frac{k}{d}$ can be computed effectively with the help of the Euclidean algorithm in \mathbb{Z}. The theorem is proved.

One of the well-known methods of breaking of RSA-cryptosystem is the method of iterated encryption. Let (N, e, d) be parameters of the generalized RSA-cryptosystem. Let $y=x^{e}(\bmod N)$ be an encrypted message $x \in \mathbb{Z}_{N}[\sqrt{\rho}]$. To try to find the original text x a cryptanalytic computes the terms of the sequence $y_{i}=y^{e^{i}}(\bmod N), i=1,2, \ldots$, until one has $y_{m}=y$ for the first time. It's easy to see that $y_{m-1}=x$. So, we need to choose the parameters of the generalized RSA-cryptosystem to make the value m to be quite big.

Proposition 8 . Let $N=p q, p, q$ be distinct prime elements of $\mathbb{Z}[\sqrt{\rho}], \varphi_{\rho}(p)=r k, \varphi_{\rho}(q)=s l$, where r and s are distinct prime numbers, $(r, k)=(s, l)=1$. If $y \in \mathbb{Z}_{N}^{*}[\sqrt{\rho}]$ is a random element, then $\mathbb{P}(r s \mid \operatorname{ord} y)=\left(1-r^{-1}\right)\left(1-s^{-1}\right)$.

Proof. For any $t_{1}\left|k, t_{2}\right| l$ there exist exactly $\varphi\left(r t_{1}\right) \varphi\left(s t_{2}\right)$ of elements $y \in \mathbb{Z}_{N}^{*}[\sqrt{\rho}]$ such that ord $y=r s\left(t_{1}, t_{2}\right)$. Consequently, the number of elements $y \in \mathbb{Z}_{N}^{*}[\sqrt{\rho}]$ such that $r s \mid$ ord y is equal to

$$
\begin{equation*}
\sum_{t_{1}\left|k, t_{2}\right| l} \varphi\left(r t_{1}\right) \varphi\left(s t_{2}\right)=(r-1)(s-1) \sum_{t_{1}\left|k, t_{2}\right| l} \varphi\left(t_{1}\right) \varphi\left(t_{2}\right)=(r-1)(s-1) k l . \tag{4}
\end{equation*}
$$

So, the statement of the proposition follows from relation (4) and equality $\left|\mathbb{Z}_{N}^{*}[\sqrt{\rho}]\right|=r k s l$.
Theorem 3. Let $(N, e, d), N=p q$, be parameters of the generalized $R S A$-cryptosystem. Suppose that the numbers $\varphi_{\rho}(p), \varphi_{\rho}(q)$ have distinct prime divisors r, s respectively, and the numbers $r-1$, $s-1$ have prime divisors r_{1}, s_{1} respectively, then $\mathbb{P}\left(m \geq r_{1} s_{1}\right) \geq\left(1-r^{-1}\right)\left(1-s^{-1}\right)\left(1-r_{1}^{-1}\right)\left(1-s_{1}^{-1}\right)$, where m is the smallest natural number such that $y^{e^{m}}=y(\bmod N), y \in \mathbb{Z}_{N}^{*}[\sqrt{\rho}]$ is a random element.

Proof. Note that $y^{e^{m}}=y(\bmod N)$ iff ord $y \mid\left(e^{m}-1\right)$. By proposition 8 ,

$$
\mathbb{P}\left(r s \mid\left(e^{m}-1\right)\right) \geq \mathbb{P}(r s \mid \text { ord } y)=\left(1-r^{-1}\right)\left(1-s^{-1}\right)
$$

Applying Theorem 14.1 [11], we conclude that

$$
\mathbb{P}\left(m \geq r_{1} s_{1}\right) \geq \mathbb{P}\left(r_{1} s_{1} \mid m\right) \geq \mathbb{P}\left(r_{1} s_{1} \mid \text { ord } e, r s \mid \text { ord } y\right) \geq\left(1-r^{-1}\right)\left(1-s^{-1}\right)\left(1-r_{1}^{-1}\right)\left(1-s_{1}^{-1}\right)
$$

The theorem is proved.
R e m ark 2. To secure the generalized RSA-cryptosystem of the iterated encryption attack we should take prime elements $p, q \in \mathbb{Z}[\sqrt{\rho}]$ such that one can find big distinct prime divisors r, s of $\varphi_{\rho}(p), \varphi_{\rho}(q)$ and one can find big prime divisors r_{1}, s_{1} of $r-1, s-1$.

Remark 3 . If $N=p q$, where p and q are such that the difference $\left|v_{\rho}(p)-v_{\rho}(q)\right|$ is small, then it is easy to find the representation $N=t^{2}-s^{2}$, where $t, s \in \mathbb{Z}[\sqrt{\rho}]$ and this representation gives us the factorization of N. Hence, the difference $\left|v_{\rho}(p)-v_{\rho}(q)\right|$ should be quite large.

Remark 4. The generalized RSA-cryptosystem provides more security than the classical variant of RSA-cryptosystem, since the number of elements which are chosen to represent the message m is about square of those used in the classical variant. This advantage enables to use shorter keys than in the classical version of RSA-cryptosystem. Note that all our results cover the case of the classical RSAcryptosystem: it's enough to take the ring \mathbb{Z} instead of $\mathbb{Z}[\sqrt{\rho}]$, and to define the norm of $a \in \mathbb{Z}$ as the absolute value $|a|$.

Estimate of computational efficiency of the generalized RSA-cryptosystem in imaginary quadratic domains. Let $\mathbb{Z}[\sqrt{\rho}]$ - imaginary quadratic domain. We say that an element $x=x_{1}+x_{2} \sqrt{\rho} \in \mathbb{Z}[\sqrt{\rho}]$ is n-bit if integers x_{1} and x_{2} have less than $n+1$ bits in the binary value. Let $p=p_{1}+p_{2} \sqrt{\rho}, q=q_{1}+q_{2} \sqrt{\rho}$ be distinct prime n-bit elements of the domain $\mathbb{Z}[\sqrt{\rho}]$. Let's call RSA-cryptosystem with parameters p and $q n$-bit. Multiplication modulo $N=p q$ of two n-bit elements of the domain $\mathbb{Z}[\sqrt{\rho}]$ has the complexity $O\left(n^{2}\right)$ and involution of n-bit element $x \in \mathbb{Z}[\sqrt{\rho}]$ in the domain $\mathbb{Z}[\sqrt{\rho}]$ has the complexity $O\left(n^{2} \log k\right)$. So encryption and decryption using the generalized RSA-cryptosystem in the domain $\mathbb{Z}[\sqrt{\rho}]$ have the complexity $O\left(n^{2} \log n\right)$. The complexity of generating the pair of keys d, e is defined by the complexity of calculating of inverse element in the domain $\mathbb{Z}[\sqrt{\rho}]$. So it has the complexity $O\left(n^{2}\right)$. Note that the complexity of encrypting, decrypting and generation of keys d, e using n-bit RSA-cryptosystem in the domain $\mathbb{Z}[\sqrt{\rho}]$ can be estimated as $O(M)$, where M - the number of binary operations to encrypt, decrypt and generation of keys in classical n-bit RSA-cryptosystem. Breaking of classical n-bit cryptosystem using checking of every possible message has the complexity $O\left(4^{n} n^{2} \log n\right)$, analogical breaking for n-bit RSA-cryptosystem in the domain $\mathbb{Z}[\sqrt{\rho}]$ has the complexity $O\left(16^{n} n^{2} \log n\right)$. And also the number of binary operations to factorize RSA-modulus in the domain $\mathbb{Z}[\sqrt{\rho}]$, is not less than the number of binary operations to factorize RSA-modulus in classical RSA-cryptosystem.

Example. Let the subscriber A wishes to send the secret message $m=1+i$ with the signature $P=2 i$ to the subscriber B with the help of the generalized RSA-cryptosystem in $\mathbb{Z}[\sqrt{\rho}]$ with $\rho=-1$. Let
$\left(N_{A}, e_{A}, d_{A}\right)=(589,7,98743)$ and $\left(N_{B}, e_{B}, d_{B}\right)=(559,13,167173), \quad g_{N_{B}, N_{A}}(X)=x_{1}+i x_{2}+N_{A} \mathbb{Z}[i]$, $X \in \mathbb{Z}_{N_{B}}[i]$, where x_{1}, x_{2} are the smallest nonnegative integers such that $X=x_{1}+i x_{2}+N_{B} \mathbb{Z}[i]$. The subscriber A computes

$$
m_{1}=m^{e} B\left(\bmod N_{B}\right)=495+495 i
$$

and

$$
P_{1}=\left(P^{e_{B}}\left(\bmod N_{B}\right)\right)^{d_{A}}\left(\bmod N_{A}\right)=192 i .
$$

So, the encrypted signed message is $\left(m_{1}, P_{1}\right)=(495+495 i, 192 i)$. The subscriber B gets the pair $\left(m_{1}, P_{1}\right)$ and calculates

$$
m_{2}=m_{1}^{d_{B}}\left(\bmod N_{B}\right)=1+i
$$

and

$$
P_{2}=\left(P_{1}^{e} A\left(\bmod N_{A}\right)\right)^{d_{B}}\left(\bmod N_{B}\right)=2 i .
$$

So the pair $\left(m_{2}, P_{2}\right)$ is the decrypted message.

References

1. Rivest, R. L. A method for obtaining digital signatures and public-key cryptosystems / R. L. Rivest, A. Shamir, L. Adleman // Communications of the ACM. - 1978. - Vol. 21. - P. 120-126.
2. Elkamchouchi, H. Extended RSA Cryptosystem and digital signature schemes in the domain of Gaussian integers / H. Elkamchouchi, K. Elshenawy, H. Shaban // Proceedings of the 8th International conference on communication systems. 2002. - P. 91-95.
3. Li, B. Generalizations of RSA public key cryptosystem / B. Li // IACR. - Cryptology ePrint Arc. 2005.
4. Modified RSA in the domains of Gaussian integers and polynomials over finite fields / A. N. El-Kassar [et al.] // Proceedings of the ISCA 18th International conference on computer applications in industry and engineering. - Hawaii, USA, 2005. - P. 298-303.
5. Koval, A. Analysis of RSA over Gaussian integers algorithm // 5th international conference on information technology: new generations (ITNG 2008) / A. Koval, B. Verkhovsky. - Las Vegas, Nevada, USA, 2008. - P. 101-105.
6. Proceedings of the second international conference of soft computing for problem solving / B. V. Babu [et al.] // Advances in intelligent systems and computing. - 2014. - Vol. 236.
7. Rodossky, K. A. Euclidean algorithm / K. A. Rodossky. - Moscow: Nauka, 1988.
8. Introduction to number theoretical methods in cryptography / M. M. Gluhov [et al.]. - Saint-Petersburg: Lan', 2011.
9. Koblitz, N. Course in number theory and cryptography / N. Koblitz. - Moscow: TVP, 2001.
10. Eggleton, R. B. Euclidean quadratic fields / R. B. Eggleton, C. B. Lacampagne, J. L. Selfridge // Amer. Math. Monthly. 1992. - Vol. 99, N 9. - P. 829-837.
11. Cryptology / Y. S. Kharin [et al.]. - Minsk: BSU, 2013.

[^0]: © Васьковский М. М., Кондратенок Н. В., 2015.

