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In the article, the analogue of a RSA-cryptosystem in general quadratic unique factorization domains is obtained. A scheme 
of digital signature on the basis of the generalized RSA-cryptosystem is suggested. The analogue of Wiener’s theorem on low 
private key is obtained. We prove the equivalence of the problems of generalized RSA-modulus factorization and private key 
search when the domain of all algebraic integer elements of the quadratic field is Euclidean. A method to secure the generalized 
RSA-cryptosystem of the iterated encryption cracking is proposed.
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Цель данной работы заключается в построении аналога RSA-криптосистемы в квадратичных факториальных 
кольцах. В работе предложен алгоритм построения электронной цифровой подписи. Доказан аналог поиска 
секретного ключа и факторизации модуля криптосистемы в случае, когда целые алгебраические элементы поля 
образуют Евклидово кольцо. Даны ограничения на параметры криптосистемы для защиты от метода повторного 
цифрования. Так же проведено исследование скорости работы и взлома полученной криптосистемы.

Ключевые слова: RSA-криптосистема, электронная цифровая подпись, факториальное кольцо, евклидово кольцо, 
квадратичное числовое поле.

In 1978 there was constructed [1] one of the most high-usage public-key cryptosystem, which is 
named as RSA-cryptosystem and is based on the difficulty of the factorization of big natural numbers. 
In the papers [2–6] there were obtained and investigated analogues of RSA-cryptosystem based on using 
of polynomials and Gaussian integers instead of natural numbers. The present paper is devoted to 
constructing and analysis of RSA-cryptosystem in the domain of algebraic integer elements of a general 
quadratic number field.

Let 1r ≠  be an integer squarefree number. Denote by [ ]r  the domain of all integer algebraic 
elements of the quadratic number field [ ]r  and we assume that [ ]r  is a unique factorization 
domain. It is known [7] that [ ] = { | , }a b a br + r ∈   if 1(mod 4),r ≡/  and [ ] = {( )/2 | ,a b ar + r  

, (mod 2)}b a b∈ ≡  if 1(mod 4).r ≡  Let the norm vr in [ ]r  be defined by the relation 
2 2( ) =| |,v a b a br + r − r  [ ].a b+ r ∈ r  We recall that a domain K is called Euclidean if one can 

define a function : \ {0} {0}ν → ∪K  such that for any ,a  \ {0}b∈K  the inequality ( ) ( )ab aν ≥ ν  
holds, and for any ,a  \ {0}b∈K  one can find elements ,q  r ∈K  such that = ,a bq r+  where = 0r  or 

( ) < ( ).r bν ν  There exist exactly five Euclidean imaginary quadratic domains [ ]r  (for = 1,r −  2,−  3,−  
7,−  –11), and exactly sixteen Euclidean real quadratic domains [ ]r  (for = 2,r  3, 5, 6, 7, 11, 13, 17, 19, 

21, 29, 33, 37, 41, 57, 73) with respect to the norm .vr  In another quadratic domains there doesn’t exist  
a norm, with respect to which these domains will be Euclidean [7].
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Let J r be the set of all invertible elements of [ ]r  with zero. For any [ ] \N J r∈ r  denote by 
[ ]N r  and * [ ]N r  the additive group of residue classes modulo N  and the multiplicative group of 

primitive residue classes modulo N  respectively. Let ( ) = | [ ] |,NNra r  *( ) = | [ ] | .NNrϕ r  An 
element [ ] \p J r∈ r  is called prime element if for any divisor q of p there holds q J r∈  or / .p q J r∈  
Any prime element > 1p  of Z will be called a prime number.

In further we suppose that [ ]r  is a unique factorization domain.
P r o p o s i t i o n 1. For any [ ] \N J r∈ r  there holds ( ) = ( ).N v Nr ra
P r o o f. At first we prove that the function : [ ] \ Jr ra r →   is totally multiplicative. Let 1,N  

2 [ ] \ ,N J r∈ r  1 1( ) = ,N mra  2 2( ) = .N mra  Let 1 1, , ,mx x  1 2, , my y  be elements of [ ]r  such 
that 1(mod )i jx x N≡/  for any 1, = 1, , ,i j m  ,i j≠  and 2(mod )i jy y N≡/  for any 2, = 1, , ,i j m  .i j≠  It’s 
easy to see that the set 1 1 2{ | = 1, , , = 1, , }i jx N y i m j m+    forms a complete residues system modulo 

1 2 ,N N  hence, 1 2 1 2( ) = .N N m mra
Let \ .N J r∈  If 1(mod 4),r ≡/  then 1 1 2 2 (mod )a b a b N+ r ≡ + r  iff 1 2 (mod )a a N≡  and 

1 2 (mod ),b b N≡  hence, 2( ) = .N Nra  If 1(mod 4)r ≡  and N  is odd, then 1 1( )/2a b+ r ≡  
2 2( )/2(mod )a b N+ r  iff 1 2 (mod )a a N≡  and 1 2 (mod ),b b N≡  hence, 2( ) = .N Nra  Suppose that 
1(mod 4),r ≡  = 2 ,kN  .k ∈  Let 1 1 2 2( ) / 2 ( ) / 2(mod ),a b a b N+ r ≡ + r  where 1 1(mod ),a b N≡  

2 2 (mod ).a b N≡  It’s easy to see that there exist exactly 22k –1 pairs 1 1 2 1 2 12 2
( , ), , ( , )k ka b a b− −  such that 

( ) / 2 ( ) / 2(mod )i i j ja b a b N+ r ≡ + r/  for any 2 1, = 1, ,2 ,ki j −
  ,i j≠  where ,ia  ,ib  ,ja  jb  are even. 

Analogously there exist exactly 22k –1 pairs 1 1 2 1 2 12 2
( , ), , ( , )k k− −a β a β  such that ( )/2i ia + β r ≡/  

( )/2(mod )j j Na + β r  for any 2 1, = 1, ,2 ,ki j −
  ,i j≠  where ,ia  ,iβ  ,ja  jβ  are odd. Hence, 

2 1 2 1 2(2 ) = 2 2 = 2 .k k k k− −
ra +  Taking into account the total multiplicativity of the function ra  we 

conclude that ( ) = ( )N v Nr ra  for any \ .N J r∈
Let [ ] \ .N J r∈ r  Since (mod )x y N≡  iff (mod )x y N≡  for any ,x  [ ],y ∈ r  so ( ) = ( ),N Nr ra a  

where N  is the conjugate number to .N  So, ( ) = ( ) ( ) = ( ) = ( ) = ( ).N N N N N v N N v Nr r r r r ra a a a  
The proposition is proved.

P r o p o s i t i o n 2. For any [ ] \N J r∈ r  there holds 1
=1( ) = ( ( )) ( ( ) 1),k qii iiN v p v p−

r r rϕ −∏  
where =1= ,k qi

iiN p∏  ip  are distinct prime elements from [ ],r  .iq ∈
P r o o f. Let 1,N  2 [ ] \N J r∈ r  be coprime. Since * * *

1 2 1 2[ ] [ ] [ ],N N N Nr ≅ r × r    so 1 2( ) =N Nrϕ  
1 2( ) ( ).N Nr rϕ ϕ

Let p be a prime element of [ ],r  .k ∈  It’s easy to see that ( ) = ( ) 1,p pr rϕ a −  and 
1( ) = ( ) ( )k k kp p p −

r r rϕ a − a  if > 1.k  By proposition 1, we have 1( ) = ( ( )) ( ( ) 1).k kp v p v p−
r r rϕ −  

Since the function rϕ  is multiplicative, so the statement of the proposition is valid.
The Lagrange theorem immediately implies the following statement, which is an analogue of the 

Euler theorem.
P r o p o s i t i o n 3. Let [ ] \N J r∈ r , then for any [ ],m∈ r  ( , ) = 1,m N  there holds 

( ) 1(mod )Nm Nϕr ≡ .
C o r o l l a r y 1. Let p be a prime element of [ ]r , then for any [ ]m∈ r  there holds 
( ) (mod ).v pm m pr ≡

It’s easy to see that there holds an analogue of the Chinese remainder theorem in the domain [ ].r

P r o p o s i t i o n 4. Let 1, , ,km m  1, , [ ],kc c ∈ r   ( , ) = 1i jm m  for any .i j≠  Then the system of 
congruencies (mod ),i ix c m≡  = 1, , ,i k  has a unique solution =1 (mod ),k

i ii
i

mx c x m
m

≡ ∑  where 

=1= ,k
iim m∏  [ ],ix ∈ r  1(mod ),i i

i

m x m
m

≡  = 1, , .i k

The following three statements are analogues of Wilson’s, Lucas’ [8] and Pocklington’s criterions [9] 
of primality.

P r o p o s i t i o n 5. An element [ ] \p J r∈ r  is prime iff there holds the congruence 

 
[ ], 0

1(mod ).
x xp

x p
∈ r ≠

≡ −∏
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P r o o f. If p is prime, then for any * [ ],px∈ r  1(mod )x p≡ ±/  there exists a unique * [ ],py ∈ r  
,y x≠  such that 1(mod ).xy p≡  Hence, [ ], 0 1(mod ).x xp

x p∈ r ≠ ≡ −∏


 If p is not prime, then the ring 
[ ]p r  has divisors of zero, so [ ], 0 0(mod ).x xp

x p∈ r ≠ ≡∏


 This contradiction finishes the proof.
P r o p o s i t i o n 6. An element [ ] \N J r∈ r  is prime iff there exists [ ],a ∈ r  ( , ) = 1,a N  such 

that there holds: 1) ( ) 1 1(mod ),v Na N−r ≡  2) ( ( ) 1)/ 1(mod )v N qa N−r ≡/  for any prime divisor q of ( ) 1.v Nr −
P r o o f. If N  is prime, then [ ]N r  is a finite field, and we can get any primitive element a of this 

field. Conditions 1) and 2) of the proposition are satisfied.
Let for any a there hold conditions 1) and 2) of the proposition. Hence, ord = ( ) 1a v Nr −  in the group 

* [ ].N r  The Lagrange theorem implies that ( ( ) 1) | ( ).v N Nr r− ϕ  By proposition 1, ( ) ( ) 1 =N Nr rϕ ≤ a −  
( ) 1.v Nr −  Consequently, ( ) = ( ) 1.N Nr rϕ a −  The last one implies the primality of the element .N   

The proposition is proved.
P r o p o s i t i o n 7. Let [ ] \N J r∈ r  and there exists a prime number > ( ) 1q v Nr −  such that 

| ( ( ) 1).q v Nr −  If there exists an element [ ]a ∈ r  such that the following two conditions hold:  
1) ( ) 1 1(mod ),v Na N−r ≡  2) ( ( ) 1)/( 1, ) = 1;v N qa N−r −  then the element N  is prime in [ ].r

P r o o f. Let the conditions of the proposition be satisfied but N  is not prime element of [ ].r  
Hence, there exists a prime element [ ]p ∈ r  such that |p N  and ( ) ( ).v p v Nr r≤  Since > ( ) 1,q v Nr −  
so ( , ( ) 1) = 1q v pr −  and therefore there exists a natural number u such that 1(mod ( ) 1).uq v pr≡ −  
Consequently, by condition 1) and proposition 3, we have 

 ( ( ) 1)/ ( ( ) 1)/ ( ( ) 1)= 1(mod ).v N q uq v N q u v Na a a p− − −r r r≡ ≡

The last one contradicts with condition 2). The proposition is proved.
Algorithm of the generalized RSA-cryptosystem. Any subscriber A chooses two distinct big 

prime elements ,Ap  [ ]Aq ∈ r  and calculates ( ),ANrϕ  where = .A A AN p q  Further A chooses a 
random natural number [1, ( )]A Ae Nr∈ ϕ  and finds a natural number Ad  such that 1(mod ( ))A A Ae d Nr≡ ϕ  
with the help of the extended Euclidean algorithm [8]. The pair ( , )A AN e  is a public key of ,A  the pair 
( , )A AN d  is a private key of .A  Then : [ ] [ ],A N NA Af r → r   ( ) (mod ),eAA Af x x N≡  is an 
encryption function of ,A  the function 1 : [ ] [ ],A N NA Af − r → r   1( ) (mod )d AA Af x x N− ≡  is a 
decryption function of .A  Any such triple ( , , )A A AN e d  is called parameters of the generalized RSA-
cryptosystem. Corollary 1 implies the correctness of the work of the the generalized RSA-cryptosystem.

Scheme of digital signature based on the generalized RSA-cryptosystem. Suppose that a su bsc-
riber A wants to send to a subscriber B a signed message ( , ),m P  where [ ]N Bm∈ r  is a secret message, 

[ ]NP ∈ r  is a signature of A (open text), where = AN N  if ( ) ( ),A Bv N v Nr r≤  and = BN N  if 
( ) > ( )A Bv N v Nr r . Suppose that for any two RSA-modulus 1N  and 2 ,N  1 2( ) ( ),v N v Nr r≤  there is defined 

an injective mapping ,1 2 1 2: [ ] [ ]N N N Ng r → r   such that values of the mappings ,1 2N Ng  and 1
,1 2N Ng −  

are easy computable. If ( ) ( ),A Bv N v Nr r≤  then the subscriber A send to B the pair 1 1( , ),m P  where 
1 = ( ),Bm f m  1

1 ,= ( ( ( ))).B N N AA BP f g f P−  The subscriber B computes 1
2 1= ( ),Bm f m−  2 =P  

1 1
1,( ( ( ))).A BN NA B

f g f P− −  If ( ) > ( ),A Bv N v Nr r  then the subscriber A send to B the pair 1 1( , ),m P  where 
1 = ( ),Bm f m  1

1 ,= ( ( ( ))).A N N BB AP f g f P−  The subscriber B computes 1
2 1= ( ),Bm f m−  2 =P  

1 1
1,( ( ( ))).B AN NB A

f g f P− −  Then, by corollary 1, 2 = ,m m  2 = .P P
Analysis of security of the generalized RSA-cryptosystem. It’s easy that knowledge of the RSA-

modulus factorization =N pq gives an effective way to find the private key. The following theorem 
establishes the inverse statement and in the case of classical RSA-cryptosystem is given in [11, Ch. 14].

T h e o r e m 1. Let the domain [ ]r  be Euclidean, ( , , )N e d  be parameters of the generalized RSA-
cryptosystem. If the number d  is known, then the number N  can be effectively factorized with probability 
at least 1

2
 at polynomial, with respect to log ( )v Nr , number of arithmetic operations in [ ].r

P r o o f. Let = 1 = 2 ,ts ed u−  where ,t  ,u ∈  u is odd. Since ( ) | ,N srϕ  so 1(mod )sx N≡  for any 
* [ ].Nx∈ r  Construct the set 

 * 2= { [ ] | {0, , 1}: 1(mod ) or 1(mod )}.
j u u

NB x j t x N x N∈ r ∃ ∈ − ≡ − ≡ 
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Let *= [ ] \ .NA Br  Let’s consider an arbitrary element .a A∈  Take the smallest natural number k  such 
that 2 1(mod ).

k ua N≡  Let 
12 (mod ).

k ub a N
−

≡  It’s easy to see that 2 1(mod )b N≡  and 1(mod ).b N≡ ±/  
Hence, ( 1, )b N−  is a nontrivial divisor of .N  There exists a constant (0,1)rγ ∈  such that for any 

, [ ] \{0},a b∈ r  ( ) ( ),v a v br r≥  one can find ,q  [ ]r ∈ r  such that = ,a bq r+  where = 0r  or 
( ) ( )v r v br r r≤ γ  [10]. Hence, the greatest divisor ( 1, )b N−  can be computed with the help of the Euclidean 

algorithm at polynomial number on log ( )v Nr  of arithmetic operations in [ ]r  [7]. It remains to show 

that 
( )

| | .
2
N

B rϕ
≤

Let = ,N pq  where ,p  q are distinct prime elements of [ ].r  Let 1 1( ) = 2 ,vp urϕ  2 2( ) = 2 ,vq urϕ  
where 1,v  2 ,v  1,u  2 ,u ∈  1u  and 2u  are odd. Denote 1 2= min{ , },v v v  1 2= ( , )( , ).K u u u u  It’s easy to see that 
the congruence 1(mod )ux N≡  is equivalent to the system 0(mod ( )),logu x pra ≡ ϕ  logu xβ ≡  
0(mod ( )),qrϕ  where a and β are primitive elements in * [ ]p r  and * [ ]q r  respectively. Since u is odd, 
so, by proposition 4, the congruence 1(mod )ux N≡  has exactly K solutions. Let’s consider the 
congruence 2 1(mod ),

j ux N≡ −  where {0, , 1}.j t∈ −  If < ,j v  then the similar arguments imply  
that the number of solutions is 4 .j K  If ,j v≥  then the congruence has no solutions. Therefore 

1 4 2| | = (1 1 4 4 ) = .
3

v
vB K K− +

+ + + +  Since 1 2 1 2( ) = 2 4 ,v v vN u u K+
rϕ ≥  so | | 1 .

( ) 2
B

Nr
≤

ϕ
 The theorem 

is proved.
R e m a r k 1. As in the case of classical RSA-cryptosystem the question on the equivalence of 

breaking of the generalized RSA-cryptosystem and factorization of the RSA-modulus is open.
The following theorem is an analogue of the Wiener theorem on low private key for the classical 

RSA-cryptosystem [11, Ch. 14].
T h e o r e m 2. Let ( , , ),N e d  = ,N pq  be parameters of the generalized RSA-cryptosystem such that 

2( ) < ( ) < ( ),v q v p v qr r ra  where > 1.a  If 1/41< ( ( )) ,
2 2

d v Nr
a +

 then the number d  can be effectively 

computed at polynomial, with respect to log ( ),v Nr  number of arithmetic operations in .
P r o o f. Let = ,N pq  where ,p  q are distinct prime elements of [ ].r  Let 1 = ( ),ed k Nr− ϕ  .k ∈  

Since ( ) ( ) < ( 1) ( ),v p v q v Nr r r+ a +  so 

 ( ) ( ) = ( ) ( ) 1 < ( 1) ( ).v N N v p v q v Nr r r r r− ϕ + − a +  (1)

We have ( ) < ,k N edrϕ  < ( ).e Nrϕ  Therefore < .k d  The last one implies the relations 

 2
( 1) ( 1) 1< .

( ) ( ) 2
k

d v N v N dr r

a + a +
≤  (2)

In view of (1) and (2) we get 

 2

( 1) ( )1 ( ( ) ( )) 1= < .
( ) ( ) ( ) 2

v Nk v N Ne k
v N d v N d v N d d

rr r

r r r

a +− − ϕ
− ≤  (3)

Relation (3) means that k
d

 is a successive fraction for the non-secret fraction .
( )
e

v Nr
 Hence, the 

fraction k
d

 can be computed effectively with the help of the Euclidean algorithm in Z. The theorem is 
proved.

One of the well-known methods of breaking of RSA-cryptosystem is the method of iterated 
encryption. Let ( , , )N e d  be parameters of the generalized RSA-cryptosystem. Let (mod )ey x N=  be an 
encrypted message [ ].Nx∈ r  To try to find the original text x a cryptanalytic computes the terms of 
the sequence (mod ),

ie
iy y N=  = 1,2, ,i   until one has =my y for the first time. It’s easy to see that 

1 = .my x−  So, we need to choose the parameters of the generalized RSA-cryptosystem to make the value 
m to be quite big.
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P r o p o s i t i o n 8. Let = ,N pq  ,p  q be distinct prime elements of [ ],r  ( ) = ,p rkrϕ  ( ) = ,q slrϕ  
where r and s are distinct prime numbers, ( , ) = ( , ) = 1.r k s l  If * [ ]Ny ∈ r  is a random element, then 

1 1( | ord ) = (1 )(1 ).rs y r s− −− −
P r o o f. For any 1 | ,t k  2 |t l there exist exactly 1 2( ) ( )rt stϕ ϕ  of elements * [ ]Ny ∈ r  such that 

1 2ord = ( , ).y rs t t  Consequently, the number of elements * [ ]Ny ∈ r  such that | ordrs y  is equal to 

 1 2 1 2
| , | | , |1 2 1 2

( ) ( ) = ( 1)( 1) ( ) ( ) = ( 1)( 1) .
t k t l t k t l

rt st r s t t r s klϕ ϕ − − ϕ ϕ − −∑ ∑  (4)

So, the statement of the proposition follows from relation (4) and equality *| [ ] |=N rkslr .
T h e o r e m 3. Let ( , , ),N e d  = ,N pq  be parameters of the generalized RSA-cryptosystem. Suppose 

that the numbers ( ),prϕ  ( )qrϕ  have distinct prime divisors ,r  s respectively, and the numbers 1,r −  
1s −  have prime divisors 1,r  1s  respectively, then 1 1 1 1

1 1 1 1( ) (1 )(1 )(1 )(1 ),m r s r s r s− − − −≥ ≥ − − − −  where 
m is the smallest natural number such that (mod ),

mey y N=  * [ ]Ny ∈ r  is a random element.
P r o o f. Note that (mod )

mey y N=  iff ord | ( 1).my e −  By proposition 8, 

 1 1( | ( 1)) ( | ord ) = (1 )(1 ).mrs e rs y r s− −− ≥ − − 

Applying Theorem 14.1 [11], we conclude that 

 1 1 1 1
1 1 1 1 1 1 1 1( ) ( | ) ( | ord , | ord ) (1 )(1 )(1 )(1 ).m r s r s m r s e rs y r s r s− − − −≥ ≥ ≥ ≥ − − − −  

The theorem is proved.
R e m a r k 2. To secure the generalized RSA-cryptosystem of the iterated encryption attack we 

should take prime elements ,p  [ ]q ∈ r  such that one can find big distinct prime divisors ,r  s of 
( ),prϕ  ( )qrϕ  and one can find big prime divisors 1,r  1s  of 1,r −  1.s −
R e m a r k 3. If = ,N pq  where p and q are such that the difference | ( ) ( ) |v p v qr r−  is small, then it is 

easy to find the representation 2 2= ,N t s−  where ,t  [ ]s ∈ r  and this representation gives us the 
factorization of .N  Hence, the difference | ( ) ( ) |v p v qr r−  should be quite large.

R e m a r k 4. The generalized RSA-cryptosystem provides more security than the classical variant 
of RSA-cryptosystem, since the number of elements which are chosen to represent the message m is 
about square of those used in the classical variant. This advantage enables to use shorter keys than in the 
classical version of RSA-cryptosystem. Note that all our results cover the case of the classical RSA-
cryptosystem: it’s enough to take the ring Z instead of [ ],r  and to define the norm of a ∈  as the 
absolute value | | .a

Estimate of computational efficiency of the generalized RSA-cryptosystem in imaginary quadratic 
domains. Let [ ]r  – imaginary quadratic domain. We say that an element 1 2= [ ]x x x+ r ∈ r  is  
n-bit if integers 1x  and 2x  have less than 1n +  bits in the binary value. Let 1 2= ,p p p+ r  1 2=q q q+ r  
be distinct prime n-bit elements of the domain [ ].r  Let’s call RSA-cryptosystem with parameters p 
and q n-bit. Multiplication modulo =N pq of two n-bit elements of the domain [ ]r  has the complexity 

2( )O n  and involution of n-bit element [ ]x∈ r  in the domain [ ]r  has the complexity 2( log ).O n k  
So encryption and decryption using the generalized RSA-cryptosystem in the domain [ ]r  have the 
complexity 2( log )O n n . The complexity of generating the pair of keys ,d  e is defined by the complexity 
of calculating of inverse element in the domain [ ].r  So it has the complexity 2( ).O n  Note that the 
complexity of encrypting, decrypting and generation of keys ,d  e using n-bit RSA-cryptosystem in the 
domain [ ]r  can be estimated as ( ),O M  where M – the number of binary operations to encrypt, 
decrypt and generation of keys in classical n-bit RSA-cryptosystem. Breaking of classical n-bit 
cryptosystem using checking of every possible message has the complexity 2(4 log )nO n n , analogical 
breaking for n-bit RSA-cryptosystem in the domain [ ]r  has the complexity 2(16 log ).nO n n  And 
also the number of binary operations to factorize RSA-modulus in the domain [ ],r  is not less than 
the number of binary operations to factorize RSA-modulus in classical RSA-cryptosystem.

E x a m p l e. Let the subscriber A wishes to send the secret message = 1m i+  with the signature 
= 2P i to the subscriber B with the help of the generalized RSA-cryptosystem in [ ]r  with = 1r − . Let 



( , , ) = (589,7,98743)A A AN e d  and ( , , ) = (559,13,167173),B B BN e d  , 1 2( ) = [ ],N N AB Ag X x ix N i+ +   
[ ],N BX i∈  where 1,x  2x  are the smallest nonnegative integers such that 1 2= [ ].BX x ix N i+ +   The 

subscriber A computes 

 1 (mod ) 495 495eB Bm m N i= = +

and 

 1 ( (mod )) (mod ) 192 .e dB AB AP P N N i= =

So, the encrypted signed message is 1 1( , ) = (495 495 ,192 ).m P i i+  The subscriber B gets the pair 1 1( , )m P  
and calculates 

 2 1 (mod ) 1d B Bm m N i= = +

and 

 2 1( (mod )) (mod ) 2 .e dA BA BP P N N i= =

So the pair 2 2( , )m P  is the decrypted message.
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