Доклады Национальной академии наук Беларуси

2015

январь-февраль

Том 59 № 1

УДК 661.551.546.621

А. С. ЛОГВИНОВИЧ, Т. В. СВИРИДОВА, член-корреспондент Д. В. СВИРИДОВ

СОНОХИМИЧЕСКОЕ МОДИФИЦИРОВАНИЕ ПОВЕРХНОСТИ НИКЕЛЯ МОЛИБДЕНОВОЙ КИСЛОТОЙ И ПРОДУКТАМИ ЕЕ ПОЛИКОНДЕНСАЦИИ

Белорусский государственный университет, Минск

Поступило 24.12.2014

Введение. Поверхностное модифицирование металлов широко используется для повышения их эксплуатационных характеристик (прежде всего, для улучшения защитно-коррозионных и трибологических свойств). Одним из перспективных и быстро развивающихся направлений в инженерии поверхности металлов является их сонохимическое модифицирование [1; 2]. Специфика такого модифицирования состоит в том, что ультразвуковое облучение оказывает многофакторное воздействие на металлическую поверхность как со стороны микроструй [3], так и радикальных частиц, генерируемых при схлопывании кавитационных пузырьков [4]. Следствием этого может быть протекание целого ряда процессов, причем как физического характера (эрозия, рекристаллизация и др.), так и химической природы (травление, окислительно-восстановительные реакции и др.). Такое воздействие в сочетании с возможностью протекания сонохимически индуцируемых процессов с участием компонентов раствора создает основу для эффективного управления состоянием поверхности для широкого круга металлов [5; 6].

Цель работы – изучение возможности сонохимической иммобилизации продуктов поликонденсации молибденовой кислоты к поверхности электрохимически осажденного никеля и изучение структуры и свойств (в первую очередь, защитных и трибологических) получаемых при этом пленочных металл-оксидных композитов.

Материалы и методы исследования. Электрохимическое осаждение никелевых покрытий толщиной 20 мкм проводили из стандартного сульфатного электролита никелирования следующего состава: NiSO₄ – 200 г/л, NiCl₂ – 50 г/л, H₃BO₃ – 35 г/л, pH 4,5–5,5. Плотность катодного тока при осаждении составляла 2 А/дм². В качестве подложки использовалась медная фольга. Водные растворы молибденовой кислоты получали из раствора молибдата натрия (исходным веществом служил кристаллогидрат Na₂MoO₄ · 2H₂O марки ч.д.а.) методом ионного обмена [7] с использованием катионита КУ-2 в H-форме.

Ультразвуковое облучение гальванического никеля в водных растворах молибденовой кислоты проводили с использованием ультразвукового генератора Bandelin Sonopuls HD 2070 (частота 22 кГц, время облучения 10 мин). После ультразвукового воздействия образцы подвергали термообработке при температуре 200 °C в течение 4 ч в воздушной атмосфере для завершения поликонденсации осажденных оксосоединений.

Коррозионную устойчивость модифицированных таким образом никелевых покрытий оценивали по результатам ускоренных коррозионных испытаний в среде 0,5 М H_2SO_4 при температуре 70 °C; показателем коррозионной устойчивости служила потеря образцом массы, отнесенная к единице площади (мг/см²). Эти измерения были дополнены измерениями коррозионных токов, которые выполнялись с помощью потенциостата Autolab PGSTAT 204. Износостойкость покрытий оценивали гравиметрически в условиях сухого трения при нагрузке 1,1 кг/см² (площадь дорожки трения составляла 1,8 см²). Морфологию поверхности и ее состав исследовали с помощью сканирующего электронного микроскопа Leo-1420 с рентгеновским микроанализатором Rontec Edwin (диаметр зондируемого участка 3 мкм). Количество молибдена, осажденного в виде оксосоединений, определяли путем растворения никелевого покрытия в HCl в присутствии H_2O_2 с последующей стабилизацией полученного раствора аммиаком и исследования методом эмиссионной спектроскопии (спектрометр Spectroflame ICP-P). Рентгенофотоэлектронные спектры получали с помощью спектрометра Quantum 2000 Microprobe PHI с использованием излучения Mg K_a.

Результаты и их обсуждение. Исследования, выполненные методом рентгеновской фотоэлектронной спектроскопии, свидетельствуют о том, что результатом ультразвукового воздействия на пленки гальванического никеля в водных растворах молибденовой кислоты является связывание молибдена на поверхности никеля в виде оксосоединений; при этом по данным химического анализа концентрация молибдена на поверхности никеля, подвергнувшегося сонохимической обработке, не превышает 0,2 ммоль/см² (в расчете на MoO₃). Величины химических сдвигов свидетельствуют о том, что связанный молибден находится преимущественно в высшем окисленном состоянии Mo(VI) ($E_{Mo3d5/2} = 231,5-231,8$ эВ), наряду с которым фиксируется наличие молибдена в состоянии Mo(V) (E_{Mo3d5/2} = 229,2 эВ) в количестве, не превышающем 5 ат. % (рис. 1). Расщепление центральной части пика Mo3d_{5/2} на две составляющие с близкими энергиями связи (что хорошо прослеживается в спектре второй производной фотоэлектронного сигнала, который чувствителен к наличию перегибов у исходного фотоэлектронного пика [8]) позволяет предположить, что в исследуемом образце Mo(VI) присутствует в двух состояниях, которые несколько отличаются по величине химического сдвига и соответствуют химически связанным и несвязанным оксосоединениям молибдена на поверхности никеля. С учетом данных работы [9] можно предположить, что в первом случае речь идет об образовании поверхностных групп типа (NiO)₂MoO₂, в пользу чего говорит и наличие в спектре Ols высокоэнергетического плеча в области 532,4 эВ (рис. 1), свидетельствующего о переносе заряда от кислорода. Указанные группы обеспечивают химическую пришивку олигомеров молибденовой кислоты к поверхности никеля, в то время как интенсификация поликонденсационных процессов под действием ультразвука ответственна за формирование компактного оксидно-гидроксидного покрытия толщиной в несколько монослоев. Электронно-микроскопическое исследование показало (рис. 2), что указанная оксидно-гидроксидная пленка является эпитаксиальной и повторяет микрорельеф никелевого покрытия. В то же время на ее поверхности фиксируется также некоторое количество дискретных частиц (рис. 2), которые по данным электронного микрозондового анализа имеют тот же состав, что и сонохимически генерированная пленка в целом и представляют собой частицы фазы триоксида молибдена, образующиеся в растворе полимолибденовой кислоты при по-

Рис. 1. Фрагменты рентгенофотоэлектронного спектра никеля, модифицированного осаждением оксидно-гидроксидных соединений молибдена: *a* – структура линии Mo3d, *б* – структура линии O1s

Рис. 2. Электронно-микроскопические изображения поверхности гальванического никеля (*a*), никелевого покрытия, модифицированного нанесением пленки оксидно-гидроксидных соединений молибдена (*б*), никелевого покрытия, модифицированного нанесением оксидно-гидроксидной пленки с окклюдированным бензотриазолом (*в*), рентгенофлуоресцентный спектр для никеля, модифицированного пленкой оксидно-гидроксидных соединений молибдена (*г*)

ликонденсации [7], захваченные оксидно-гидроксидной пленкой в ходе сонохимической иммобилизации.

Модифицирование гальванического никеля продуктами поликонденсации молибденовой кислоты увеличивает его коррозионную устойчивость в 2-3 раза (в то время как средняя скорость коррозии индивидуального никеля составляет 5,9 мг/см² · ч, данный показатель для модифицированных никелевых покрытий не превышает 2,4 мг/см² · ч) – рис. 3. Дополнительное уменьшение скорости коррозии (до 1,1 мг/см² · ч) наблюдается при переходе к оксидно-гидроксидным пленкам, полученным в присутствии бензотриазола (ингибитора коррозии), который вводился в раствор молибденовой кислоты в количестве 0,01 масс. %. Коррозионные токи, найденные из поляризационных зависимостей, также резко уменьшаются при переходе от немодифицированных никелевых покрытий к покрытиям, облученным ультразвуком в растворе молибденовой кислоты, а затем к покрытиям, облученным в растворе молибденовой кислоты с добавкой бензотриазола (таблица). Отметим, что в то время как пленка индивидуального никеля разрушается после выдерживания в агрессивной среде в течение часа, модифицированные покрытия сохраняют свою целостность в течение двух и более часов. Скорость развития коррозии образцов, защищенных оксидно-гидроксидной пленкой с инкорпорированным ингибитором, быстро уменьшается (рис. 3), что свидетельствует о постепенном выходе бензотриазола из оксидной пленки-носителя.

Электронно-микроскопические изображения поверхности свежеосажденного и модифицированного никеля после коррозионных испытаний, представленные на рис. 3, показывают, что коррозионные процессы затрагивают всю поверхность незащищенного никелевого покрытия, в то время как в случае никелевой поверхности, модифицированной осаждением пленки оксосоединений молибдена, коррозия носит точечный характер.

Выполненное трибологическое исследование показало, что пришитая к поверхности никеля оксидно-гидроксидная пленка обеспечивает увеличение износостойкости никелевой поверхности более чем в 4 раза. Последнее обстоятельство может быть объяснено наличием в иммобилизованной пленке фазовых включений триоксида молибдена, которые, обладая слоистой структурой, способны придать поверхности самосмазывающие свойства [10]. Об этом свидетельствует и сравнительный анализ электронно-микроскопических изображений поверхности исходного гальванического никеля и образцов, модифицированных пришивкой олигомеров полимолибденовой кислоты (рис. 2, a, δ и рис. 3, изображения 1', 2'), который показывает, что в отличие от

Рис. 3. Кинетические кривые потери массы, дополненные электронно-микроскопическими изображениями поверхностей, для процесса коррозии (*a*) и трения (*б*) в случае индивидуального никеля (1, 1'), никеля, сонохимически модифицированного нанесением пленки оксидно-гидроксидных соединений молибдена (2, 2'), и никеля, модифицированного пленкой оксидно-гидроксидных соединений молибдена с инкорпорированным бензотриазолом (3, 3'). Обозначения на электронно-микроскопических изображениях идентичны обозначениям на кривых

Покрытие	Плотность тока коррозии, мА/см ²
Ni	0,54
Ni-(poly-H ₂ MoO ₄)	0,33
Ni-(<i>poly</i> -H ₂ MoO ₄)- бензотриазол	0,08

Величины коррозионных токов в 0,5 М H₂SO₄ для никелевых покрытий до и после сонохимического модифицирования

никелевого гальванического покрытия, претерпевающего быстрое разрушение в условиях сухого трения (на поверхности образца отчетливо различимы борозды дорожки трения), покрытия, модифицированные нанесением оксосоединений молибдена, деградируют в ходе трибологических испытаний в существенно меньшей степени с сохранением большинства поверхностных морфологических элементов; нарушения целостности никелевого осадка в этом случае практически не происходит.

Таким образом, облучение поверхности никеля ультразвуком в присутствии молибденовой кислоты приводит к ее иммобилизации в виде оксосоединений, химически связанных с подложкой. Образующаяся оксидно-гидроксидная пленка толщиной в несколько монослоев, содержащая включения дисперсного триоксида молибдена, обеспечивает существенное увеличение износостойкости гальванического никеля, блокирует центры возможного развития коррозии на его поверхности и в состоянии выступать в качестве депо для химических ингибиторов коррозии.

Работа выполнена в рамках проекта БРФФИ (грант Х13-054).

Литература

1. Suslik K. S., Casadonte D. J., Doktycz S. J. // Chem. Mater. 1989. Vol. 1. P. 6-8.

2. Skorb E. V., Fix D., Shchukin D. G. et al. // Nanoscale. 2011. Vol. 3. P. 985–993.

3. Cravotto G., Cintas P. // Angew. Chem. Int. Ed. 2007. Vol. 46. P. 5476-5478.

4. Lawless K. R. // Rep. Prog. Phys. 1974. Vol. 37. P. 231-316.

5. Lindlay J., Meson T. // Chem. Soc. Rev. 1987. Vol. 16. P. 275-283.

6. Andreeva D. V., Sviridov D. V., Masic A. et al. // Small. 2012. Vol. 8. P. 820–825.

7. Sviridova T. V., Stepanova L. I., Sviridov D. V. // Molybdenum: Characteristics, Production and Applications / ed. by M. Ortiz et al. NY, 2012. P. 147–179.

8. Анализ поверхности методами Оже- и рентгеновской электронной спектроскопии / под ред. Д. Бригса, М. П. Сиха. М., 1987.

9. Patterson T. A., Craver C. J., Lejden D. E., Hercules D. M. // J. Phys. Chem. 1976. Vol. 80. P. 1700-1708.

10. Sviridova T. V., Stepanova L. I., Sviridov D. V. // J. Solid-State Electrochem. 2012. P. 3799-3803.

A. S. LOGVINOVICH, T. V. SVIRIDOVA, D. V. SVIRIDOV

sviridov@bsu.by

SONOCHEMICAL MODIFICATION OF THE NICKEL SURFACE BY THE MOLYBDIC ACID AND PRODUCTS OF ITS POLYCONDENSATION

Summary

The possibility of sonochemical immobilization of polymolybdic acid on the surface of electrochemically deposited nickel is shown. It is revealed that the thus obtained oxide-hydroxide surface layer is inhomogeneous and involves the products of interaction of molybdic acid oligomers with nickel and MO_3 particles which impart antifriction properties to the modified nickel surface. The possibility of doping the sonochemically obtained molybdenum oxide-hydroxide layer with a corrosion inhibitor (benzotriazole) is demonstrated; such treatment results in a radical (ca. 4-fold) enhancement of corrosion resistance of the galvanic nickel coating.