Доклады Национальной академии наук Беларуси

2015 январь-февраль Том 59 № 1

УДК 547.022+542.06

В. А. ТАРАСЕВИЧ

СИНТЕЗ И АНТИБАКТЕРИАЛЬНАЯ АКТИВНОСТЬ ЧЕТВЕРТИЧНЫХ АММОНИЕВЫХ СОЛЕЙ НА ОСНОВЕ *M*-ТЕРФЕНОЛА

(Представлено академиком В. Е. Агабековым)

Институт химии новых материалов НАН Беларуси, Минск

Поступило 03.12.2014

Патогенная роль процессов свободнорадикального окисления в развитии инфекционного процесса известна и демонстрируется многими исследователями [1–3]. Установлено, что в условиях интенсификации образования свободных радикалов при развитии таких процессов возможно проявление недостаточности собственной антиоксидантной системы человека. В этих условиях биологические молекулы становятся мишенями реактогенных продуктов, причем объектами дезорганизации являются биомолекулы различной химической природы, прежде всего, липиды, белки и нуклеиновые кислоты. В связи с этим наиболее выгодным считается применение при лечении инфекционных процессов антибактериального средства, обладающего собственными антиоксидантными свойствами.

Природные производные терфенилов обладают высокими антиокислительными свойствами, в ряде случаев превышающими эффективность широко известных синтетических ингибиторов [4]. В частности, к соединениям терфенильного ряда относится 2'-гидрокси-м-терфенил. Экспериментально установлено, что ряд производных 2'-гидрокси-м-терфенила проявляют высокие антиокислительные свойства [5–9].

Четвертичные аммониевые соли (ЧАС) широко используются для терапевтической антисептики локальных гнойно-воспалительных процессов, антисептики кожи перед операциями. ЧАС представляют значительный интерес для санитарии пищевых предприятий вследствие высокой антимикробной активности ко многим видам микрофлоры, особенно термоустойчивым.

Цель работы – синтез высокоэффективной антибактериальной системы на основе ЧАС, содержащей в своем составе антиоксидантный (*м*-терфенильный) фрагмент.

Экспериментальная часть. Спектры ЯМР¹Н записаны на спектрометре Bruker Avance-500 в CDCl₃, внутренний стандарт – ТМС; химические сдвиги приведены в м. д. относительно ТМС, ИК спектры – на фурье-спектрометре Nicolet Protégé-460 в таблетках КВг. Завершение реакции кватернизации третичных аминов контролировали с помощью тонкослойной хроматографии (TCX), используя ТСХ пластинки с силикагелем (Merck 60F254), флуоресцирующим в ультрафиолете.

Наиболее оптимальным способом получения 2'-гидрокси-м-терфенила (1) является тримеризация циклогексанона в присутствии щелочного катализатора с последующим исчерпывающим дегидрированием образующегося интермедиата на палладиевых катализаторах [10–12].

5'-Хлорметил-2'-гидрокси[1,1';3'1"]терфенил (2). Растворяли 2,7 г 2'-гидрокси-[1,1';3',1"]терфенила **(1)**, 6 г параформа, 20 мл концентрированной HCl и 2 мл трифторуксусной кислоты в 40 мл октана, кипятили 30 ч на силиконовой бане при температуре 135–140 °C. Протекание реакции контролировали с помощью тонкослойной хроматографии (TCX). Реакционную смесь охлаждали и разделяли слои на делительной воронке. Водный слой экстрагировали октаном (2 × 10 мл), объединенные органические слои сушили над MgSO₄. Растворитель отгоняли в вакууме. Оставшийся раствор помещали в холодильник, выпавшие кристаллы отфильтровывали и перекристаллизовывали из гексана. Выход 76 %, т. пл. 73–78 °C. Спектр ЯМР 1 H: 2,29 с (1H, OH), 5,45 с (2H, CH₂Cl), 7,10 тр (2H^{4,4"}, H_{аром}), 7,33 д (4H^{2,6,2",6"}, H_{аром}), 7,52 тр (4H^{3,5,3",5"}, H_{аром}), 7,60 с (2H^{4',6'}, H_{аром}). **N-[5'-метил-2'-гидрокси[1,1';3'1"]терфенил]-N,N-диметил-N-гексиламмоний хлорид (3).**

N-[5'-метил-2'-гидрокси[1,1';3'1"]терфенил]-N,N-диметил-N-гексиламмоний хлорид (3). К 0,3 г (0,001 моль) 5'-хлорметил-2'-гидрокси[1,1';3'1"]терфенила (2) в 10 мл ацетонитрила добавляли 0,2 г N,N-диметилгексиламина. Кипятили 3–5 ч, контролируя ход реакции по ТСХ. Фильтровали полученный осадок, промывали гексаном и перекристаллизовывали. Выход 65 %, т. пл. 179–183 °C. ИК спектр, см⁻¹: 3443, 3055, 3032, 2953, 1604, 1492, 1466, 1424, 1211, 1181, 980, 887, 772, 700, 596.

N-[5'-метил-2'-гидрокси[1,1';3'1"]терфенил]-N,N-диметил-N-додециламмоний хлорид (4) получали по аналогичной методике из (2) и N,N-диметилдодециламина. Выход 67 %, т. пл. 185—188 °C, ИК спектр, см $^{-1}$: 3442, 3055, 3032, 2926, 1629, 1492, 1466, 1424, 1373, 1211, 1181, 980, 887, 772, 700, 596.

В исследованиях биологической активности использованы бактерии *Bacillus subtilis* 168 и *Escherichia coli* XL1 из коллекции кафедры биотехнологии и биоэкологии Белорусского государственного технологического университета.

Посевы и культивирование бактерий проводили на питательных агаре и бульоне. Чувствительность бактерий к биоцидам определяли диффузионным и суспензионным методами [12].

Диффузионный: на поверхности агаризованной питательной среды создавали равномерный газон клеток. В толще агара формировали лунки сверлом (Ø 0,7 см), в которые вносили одинаковые порции образцов биоцидов с помощью пипетки-дозатора, выдерживали 1 ч в холодильнике, а затем инкубировали посевы при 30 °C в течение суток. Сравнением диаметров зон задержки роста микроорганизмов оценивали бактерицидную активность исследуемых препаратов.

Суспензионный: суточные культуры бактерий разводили в питательных средах до концентрации $10^4~{\rm KOE/m}$ л и добавляли к полученным суспензиям аликвоты исследуемых биоцидов, получая их различные действующие концентрации. Инкубировали суспензии сутки, серийно разводили в физиологическом растворе и высевали на плотные питательные среды для подсчета колоний и определения концентрации жизнеспособных клеток. Контролем служили суспензии не обработанных биоцидами клеток в питательных средах. Показателем антимикробной активности биоцидов являлся фактор редукции (FR):

$$FR = \lg(K_2 / K_1),$$

где K_1 — концентрация жизнеспособных клеток после инкубирования в питательной среде в присутствии биоцидного препарата, KOE/cm^3 ; K_2 — концентрация жизнеспособных клеток в питательной среде без биоцида (контроль), KOE/cm^3 .

Установлено, что испытанные препараты более эффективно задерживают рост грамположи-

тельных бактерий *Bacillus subtilis*, чем грамотрицательных бактерий *Escherichia coli* (табл. 1, 2). Наилучшими антибактериальными свойствами характеризуется образец (4).

Минимальная ингибирующая концентрация (МИК, %) наиболее активного препарата (4) по отношению к тест культурам *Bacillus subtilis* 168 и *Escherichia coli* XL1 составила 0,005 % и 0,05 % соответственно.

Таблица 1. Диаметр зон ингибирования роста тест-микроорганизмов под действием биоцидов в диффузионном методе

Образец	Диаметр зоны (мм) на газоне тест-культуры		
биоцида	Bacillus subtilis 168	Escherichia coli XL1	
3	13	_	
4	17	12	

Примечание: (-) - отсутствие зоны ингибирования.

Таблица2. Содержание жизнеспособных клеток и фактор редукции после инкубирования тест-культур в питательных средах с биоцидом

Office of frequency of the property of (0/)	Фактор редукции (FR)		Содержание жизнеспособных клеток (КОЕ/мл)	
Образец биоцида, содержание (%)	B. subtilis 168	E. coli XL1	B. subtilis 168	E. coli XL1
4 (0,01)	>7,6	6,4	<101	$2,6 \cdot 10^2$
4 (0,005)	4,0	_*	$4,2 \cdot 10^3$	_*
К (среда без биоцида)	0	0	$3.8 \cdot 10^{7}$	6.2×10^{8}

П р и м е ч а н и я: $(-^*)$ – исследования не проводились; исходное содержание клеток в суспензиях при определении (*FR*): *B. subtilis* $168 - 4 \cdot 10^4$ KOE/мл; *E. coli* XL1 $- 6 \cdot 10^4$ KOE/мл.

Заключение. Разработан метод синтеза ЧАС, содержащих в своем составе антиоксидантный, *м*-терфенильный фрагмент. Установлена высокая антибактериальная активность ЧАС, содержащих алкильный радикал C_{12} .

Автор выражает благодарность А. Л. Курловичу и Н. А. Белясовой за участие в экспериментальной работе и выполнение биологических испытаний.

Литература

- 1. Tyurina Y. Y., Serinkan F. B., Tyurin V. A. et al. // J. Biol. Chem. 2004. Vol. 279, N 7. P. 6056.
- 2. Афанасьев А. Н. // Клиническая медицина. 2004. № 8. С. 37.
- 3. Симакова А. И. // Эпидемиология и инфекционные болезни. 1998. № 1. С. 49.
- 4. Liu Ji-Kai // Chemical Reviews. 2006. Vol. 106. P. 2209.
- 5. Gow-Chin Yen et al. // Food and Chemical Toxicology. 2003. Vol. 41, N 11. P. 1561.
- 6. Kouno Isao et al. // Chemical & pharmaceutical bulletin. 1994. Vol. 42, N 1. P. 112.
- 7. Kouno Isao et al. // Chemical & pharmaceutical bulletin. 1991. Vol. 39, N 10. P. 2606.
- 8. Diaz-Rubio et al. // International J. of Food Sciences and Nutrition. 2008. Vol. 60, N 2. P. 23.
- 9. Zaragozá M. C. et al. // J. of agricultural and food chemistry. 2008. Vol. 56, N 17. P. 7773.
- 10. Bell T. W., Vargas J. R., Crispino G. A. // The J. of Organic chemistry. 1989. Vol. 54, N 8. P. 1978.
- 11. Yang H., Hay A. S. // Synthesis. 1992. Vol. 5. P. 467.
- 12. Способ получения 2,6-дифенилфенола: Патент РБ № 8116 / В. А. Тарасевич, Д. А. Василевский, А. С. Жаврид. 2006.06.30.
- 13. Белясова Н. А., Гриц Н. В. Биохимия и молекулярная биология: Теория и методы: Учебное пособие. Минск, 2002.-414 с.

V. A. TARASEVICH

tar@ichnm.basnet.by

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF THE QUATERNARY AMMONIUM SALTS BASED ON M-TERPHENOL

Summary

A method for synthesis of quaternary ammonium salts containing an antioxidant (m-terphenol) fragment is developed.