OLIVET NAZARENE UNIVERSITY

Spectral Mixture Modeling using Principle Component Analysis

> April 18, 2018 Joseph S. Makarewicz Heather D. Makarewicz

Outline

- Background
- Spectra Pre-processing
- Principle Component Analysis
- Principle Component Correlation
- Classification
- Binary Mixture Models
- Discussion
- Future Work

- Mars Reconnaissance Orbiter (MRO)
 - Launched in 2005
 - Capturing images of Mars using several different instruments
 - Stilling sending back images
- CRISM
 - One of several imaging instruments onboard MRO
 - A pushbroom imaging VNIR spectrometer that produces hyperspectral images

www.nasa.gov

- Hyperspectral Cube
 - A stack of images of the same scene at many different wavelengths
 - Has 2 spatial dimensions and 1 spectral dimension
 - Acquired with a spectral imager (grid of sensors)
 - Large hyperspectral libraries available (USGS, NASA, etc.)

• Spectra

- A single pixel in a hyperspectral image
- A plot of reflective Intensity versus wavelength (or frequency)
- Can also be acquired with a spectrometer (single sensor)
- Large spectral libraries available (USGS, RELAB)

- MGM Laboratory Studies
 - Use modified-Gaussian modeling (MGM) to model spectral features
 - Use MGM parameters to determine mineral composition
 - Band Center
 - Amplitude
 - Full Width at Half Max (FWHM)
- Has been performed on:
 - Pyroxenes (Enstatite, Clinopyroxene)
 - Olivine Binary Mixtures (Forsterite, Fayalite)
 - Phyllosilicate Binary Mixtures (Kaolinite, Montmorillonite)

- Modified Gaussian Modeling
 - Uses Optimization
 - Levenberg-Marquardt
 - Tarantola and Valette
 - Automated parameter initialization
 - Estimate number of Gaussians and their parameters
 - Applied to Lunar and Martian hyperspectral images

• PCA Laboratory Studies

- Use Principle Component Analysis (PCA) to derive a set of PC vectors and PC values
- Retain a subset of PC values as principle components
- Use principle components to determine mineral composition
- No optimization
- Has been performed on:
 - Tertiary Mixtures (Enstatite, Olivine, and Calcite)

M. O. Smith , P. E. Johnson and J. B. Adams

Objective

- Perform principle component analysis to determine mineral composition
 - Use M. O. Smith's methodology
 - Apply to a variety of mixture data sets

Methods

Spectra Pre-processing

• Crop

- All spectra must have the same range of wavelengths.
- 0.325 um to 2.6 um
- Resample
 - Fine enough to resolve spectral features
 - 0.05 um
- Normalize
 - Area under spectrum equal 1

Principle Component Analysis

- Subtract the Mean Normalized Spectrum
 - Similar to 50% CPX
 - Features that are present in all sample spectra
- Computed Using Singular Value Decomposition
 - A set of PC vectors
 - Sets of PC values

Table 1 – Training Set Principal Components						
	Ratio	Grain	PC1	PC2		
Name	(%CPX)	Size (um)	Value	Value		
C1PP21	100%	<45	4.9834	14.6796		
C1XP16	85%	<45	3.5224	14.1942		
C1XP14	75%	<45	3.0545	13.1861		
C1XP12	60%	<45	1.4616	17.5569		
C1XP10	50%	<45	0.5630	18.3265		
C1XP11	40%	<45	-0.1848	18.5786		
C1XP13	25%	<45	-1.7919	19.8681		
C1XP15	15%	<45	-2.9467	21.0338		
C1PE30	0%	<45	-4.3693	22.3367		
C1PP22	100%	45-75	8.6066	-5.8343		
C1XP26	85%	45-75	6.1334	-7.1253		
C1XP24	75%	45-75	5.0372	-9.2222		
C1XP22	60%	45-75	2.1198	-6.2064		
C1XP20	50%	45-75	0.6355	-6.2429		
C1XP21	40%	45-75	-1.7180	-3.9304		
C1XP23	25%	45-75	-4.4424	-4.2354		
C1XP25	15%	45-75	-6.5749	-4.8977		
C1PE31	0%	45-75	-9.7554	-4.4636		
C1PP23	100%	75-125	10.091	-11.9483		
C1XP07	85%	75-125	7.1403	-10.5483		
C1XP05	75%	75-125	4.9318	-10.7730		
C1XP03	60%	75-125	2.0399	-14.4355		
C1XP01	50%	75-125	-0.0357	-14.2804		
C1XP02	40%	75-125	-1.8646	-12.0175		
C1XP04	25%	75-125	-6.2256	-11.0001		
C1XP06	15%	75-125	-8.3312	-8.1490		
C1PE32	0%	75-125	-12.0808	-14.4500		

Principle Component Correlation

- First Principle Component was correlated with Percent Clinopyroxene
- Linear Regressions
 - <45um
 %CPX = 50 + 10×PC1 value
 - >45um
 %CPX = 50 + 5×PC1 value

Principle Component Correlation

- Second Principle Component was correlated with Grain Size
- Bayesian Classifer
 - <45um
 μ=17.75, σ=3.16
 - 45-75um
 μ=-5.79, σ=1.67
 - 74-125um
 μ=-11.95, σ=2.13

Classification

• Process

- Pre-process spectrum.
- Compute the first two principle component values using the first two principle component vectors.
- Determine the grain size using the second principle component value.
- Determine the percent composition using linear regression and the first principle component value.

Results

Table 2 – Test Set Grain Size							
	Actual	Actual		Predicted			
	Ratio	Grain	PC2	Grain			
Name	(%CPX)	Size (um)	Value	Size (um)			
C1PE30	0%	<45	22.3367	<45			
C2PE30	0%	<45	22.3361	<45			
C4PE30	0%	<45	24.9357	<45			
C5PP21	0%	<45	13.4838	<45			
C2XP15	15%	<45	21.0338	<45			
C5PE30	50%	<45	25.3391	<45			
C4XP14	75%	<45	13.3947	<45			
C1XP17	75%	<45	15.1154	<45			
C2XP16	85%	<45	14.1942	<45			
C4XP16	85%	<45	13.7501	<45			
C1PE31	0%	45-75	-4.4636	45-75			
C2PE31	0%	45-75	-4.4653	45-75			
C3PE31	0%	45-75	-4.5904	45-75			
C3PP22	100%	45-75	-7.9079	45-75			
C1PP22	100%	45-75	-5.8343	45-75			
C5PE32	0%	75-125	-10.9787	75-125			
C1PP23	100%	75-125	-11.9483	75-125			
C2PP22	100%	75-125	-5.8349	45-75			
C2PP23	100%	75-125	-11.9487	75-125			
C5PP23	100%	75-125	-11.8181	75-125			

Table 3 – Test Set Percent Composition							
	Actual	Actual		Predicted			
	Ratio	Grain	PC1	Ratio			
Name	(%CPX)	Size (um)	Value	(%CPX)			
C1PE30	0%	<45	-4.3693	6.3067			
C2PE30	0%	<45	-4.3693	6.3074			
C4PE30	0%	<45	-4.1384	8.6156			
C5PP21	0%	<45	5.3783	103.783			
C2XP15	15%	<45	-2.9467	20.533			
C5PE30	50%	<45	-4.1980	8.0199			
C4XP14	75%	<45	3.1054	81.0539			
C1XP17	75%	<45	2.9716	79.7157			
C2XP16	85%	<45	3.5224	85.2244			
C4XP16	85%	<45	3.475	84.75			
C1PE31	0%	45-75	-9.7554	1.2229			
C2PE31	0%	45-75	-9.7553	1.2236			
C3PE31	0%	45-75	-10.2877	-1.4383			
C3PP22	100%	45-75	9.0428	95.2139			
C1PP22	100%	45-75	8.6066	93.033			
C5PE32	0%	75-125	-12.2364	-11.1822			
C1PP23	100%	75-125	10.0919	100.4594			
C2PP22	100%	75-125	8.6066	93.0332			
C2PP23	100%	75-125	10.0919	100.4596			
C5PP23	100%	75-125	10.3279	101.6394			

Binary Mixture Models – Clinopyroxene-Orthopyroxene

16

Binary Mixture Models – Kaolinite-Montmorillonite

17 ABET

Accreditation Commission

Binary Mixture Models – Nontronite-Ferrihydrite

Discussion

Normalization

- Lose information about albedo
- Allows analysis to be invariant to light source intensity
- Important for generalizing algorithm to remotely sensed data

Grain Size

- Strongly correlated with albedo
- May not always be detectable
- If spectral features change with grain size, then it will still be detectable after normalization.

Discussion

- PC vectors
 - Used to form the projection matrix
 - Contain reflection and absorption band information
- Example
 - As PC1 value increases, %CPX increases, and PC1 vector is weighted more and absorption bands at 1.02um and 2.29um become stronger, but bands at 0.91um and 1.83um become weaker.

As %CPX increases

Future Work

- Apply algorithm to small sets of binary and tertiary mixtures for mass percent composition models.
- Apply algorithm to larger sets of various minerals for coarse identification of mineral presence.
 - Variance will increase amongst sample spectra
 - More principle components vectors and values will need to be retained
 - PC vectors will represent bands that are unique to different mineral groups
- Use models to identify minerals and estimate mineral abundance in lunar and Martian hyper spectral images.
 - Investigate residuals from model to identify trace minerals.

