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ABSTRACT 

 The research conducted was to investigate the potential connections between 

group theory and a puzzle set up by color cubes.  The goal of the research was to 

investigate different sized puzzles and discover any relationships between solutions of the 

same sized puzzles.  In this research, first, there was an extensive look into the 

background of Abstract Algebra and group theory, which is briefly covered in the 

introduction.  Then, each puzzle of various sizes was explored to find all possible color 

combinations of the solutions.  Specifically, the 2x2x2, 3x3x3, and 4x4x4 puzzles were 

examined to find that the 2x2x2 has 24 different color combination possibilities, the 

3x3x3 puzzle has 11,612,160 color combinations, and the 4x4x4 has at least 

1,339,058,552,832,000 color combinations.  We cannot say exactly how many the 4x4x4 

puzzle will have due to the insufficient certainty of the possible solutions of the 4x4x4 

cube. 

 After inspecting each solution for the cube, it was found that the 2x2x2 puzzle 

had 4 transformations (or elements, in group theory terms), and the 3x3x3 puzzle had 

either 9 or 27 elements.  The number of elements for the 3x3x3 puzzle was dependent on 

its original set up.  If not every cube moved in the same direction horizontally and 

vertically, the puzzle would have 27 elements.  Since the research was not sufficient 

enough to find a definite number of set ups that the 4x4x4 cube could have, there was not 

enough information to build upon to find a collection of the elements or groups that this 

puzzle would be isomorphic to.  However, the other two puzzles, the 2x2x2 and 3x3x3, 

were successfully mapped to another group, proving that these groups are isomorphic.  

The 2x2x2 puzzle mapped to the group Z2 ⊕ Z2. The 3x3x3 puzzle is mapped to either 
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the group Z3 ⊕ Z3 or Z3 ⊕ Z3 ⊕ Z3, depending on which group the original set up 

belonged to. 

 

KEYWORDS: Combinatorics, Group Theory, Recreational Mathematics 
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INTRODUCTION 

 A popular question always being asked is how math is applicable to real life 

situations, especially branches of math such as Abstract Algebra.  With such a complex 

subject, it’s hard to imagine that it could be related to something as simple as a puzzle.  

However, through this color cube puzzle presented in this article, we can see the complex 

concepts of Abstract Algebra being used to help find its solutions.  This puzzle that is 

going to be investigated begins by setting up a 2x2x2 cube, made up of 8 cubettes of 4 

different colors.  Throughout this article, we will refer to cubettes as the smaller cubes 

that are arranged to create the cube puzzle.  The goal is that when the cube is set up, each 

color is represented exactly once on each of the six faces of the cube.  Once the 2x2x2 

has been solved, the 3x3x3 can be attempted.  The same restrictions apply with each 

color needing to be represented on each face exactly once, except now there are 9 

different colors and 27 cubettes total.  The goal of this research is to take a deeper look 

into this puzzle and examine the connections to different symmetries and mathematical 

groups (Brown & Hathaway, 2012).   

In order to see how group theory relates to this puzzle, it is important first to 

understand what properties a group consists of.  A group is a set of elements paired with 

an operation, where the pair meets 4 specific requirements.  The 4 properties of a group 

are (1) the group must contain an identity, (2) every element must have an inverse, (3) 

every element must be associative, and (4) the group must have closure (Gallian, 2010). 

Operations, which we will call transformations, on a solved puzzle lead to a group.  

Before relating group theory to the color cube puzzle, solutions to the puzzle should be 

further explored. The solution that one begins with will affect what elements the cube’s 
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group contains. Since we find that different solutions of the puzzle lead to different 

groups, it is important to find a systematic way of looking at these different solutions.   
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REVIEW OF LITERATURE 

 The idea for this puzzle, as described in the introduction, was presented to me 

through an article written by Dr. Justin Brown and Dr. Dale Hathaway of Olivet 

Nazarene University.  This puzzle brings Abstract Algebraic concepts into a tangible, 

manipulative form, creating a relatable way for students to investigate Group Theory, as 

well as symmetry.  The term group has changed over after first being referred to by 

Galois in 1830.  Gallian defines a group to be a set together with a binary operation that 

is associative, such that there is an identity, every element has an inverse, and any pair of 

elements can be combined without going outside the set (Gallian, 2010). When a solved 

cube is generated, operations performed on the solved cubes lead to the family of groups 

Zn ⊕ Zn, where n is the length of cubettes on each side of the cube (Brown & Hathaway, 

2012).   

 Symmetry has a large part in connecting this puzzle to Abstract Algebra.  

Symmetry is typically only thought of when looking at images or patterns that repeat.  

However, symmetry goes much beyond this concept.  Take for example, the 3-

permutahedron, which is shown as a regular hexagon with its vertices labeled as 

permutations of {1, 2, 3} (Crisman, 2011).  This symmetry group is D12 with the normal 

subgroup S3.  This 3-permutahedron can also use left- and right-multiplication with direct 

products, where each product is distinct.  These symmetry groups can be represented in 

Cayley Tables, or Cayley Graphs, as they are occasionally referred to.  These tables are 

“a combinatorial graph or digraph representing the action of multiplication of the 

elements of a given group G by elements of a generating set S for G,” (Conder, 2007).  

These tables generate a visual to compare symmetry groups that are isomorphic to one 
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another.  The elements of a symmetry group are listed on the top and side of these tables 

with their products displayed in the corresponding cells of the table.  Each of these 

products will be an element already listed in the group in order for the set of elements to 

be a group. 

 Puzzles are typically solved using some logic, reasoning, or trial and error.  

However, puzzles can often be solved using math, as well.  A common example of a 

puzzle that can be solved using either strategy is the Rubik’s cube.  This puzzle has been 

a popular game that has been solved by many using trial and error, but has also been 

studied in its complexities by many mathematicians.  Permutations are one of the ways of 

looking at all the possible moves that can be performed on a puzzle in order to solve it.  

In the case of the Rubik’s cube, any twist is a move, meaning any combination of twists 

is a permutation of the puzzle (Davis, 1982).  After figuring out the number of 

permutations and properties of the permutations, they can be used to determine solutions 

to the puzzle. 
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RESULTS 

SOLUTIONS 

In each puzzle, no matter the size, there are different ways of looking at 

generating solutions for the puzzle.  For the sake of consistency, we will refer to each 

layer being a translation of the layers preceding it.  A translation (in this context) refers to 

in which directions (horizontally and vertically) the cubettes are shifted.  The size of the 

cube determines what translations produce solutions to the puzzle.  In all cases, we know 

that each cubette needs to be moved in either the same direction vertically or the same 

direction horizontally, but not necessarily in the same direction both horizontally and 

vertically, although that produces a unique solution as well.   

Also, another important note about the cubettes’ translations is that they relate to 

modular addition.  This may be easier understood in pictures than in words alone, so let’s 

take a look at the 2x2x2 example in the next section to understand.   

2x2x2 

 As we look at a 2x2x2 case, it is quickly made obvious that there is only one 

possible solution for the second layer once the first layer of the four different colored 

cubettes has been decided.  Let’s look at the different possible translations to prove that 

this is a true statement in Figure 1.   

 

 

 

 

  

Figure 1 
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Above shows the translation (h,v).  After looking at each of these translations of 

(h,v), (h’,v), (h,v’) and (h’,v’), we notice that each translation ended up giving us the 

same second layer.  This tells us that in the 2x2x2 case, (h,v) = (h’,v) = (h,v’) = (h’,v’).  

3x3x3 

Now, as we look into the case of the 3x3x3 cube, we see that the same is not true 

of the translations.  Since this cube has 3 layers, there is much more room for different set 

ups for solutions.  Just as with the 2x2x2, we can look at the different translations of (h,v) 

and all of its opposites for the cubettes.  Now that there is a third layer to each side of the 

cube being added, we have to consider translations such as (2h, 2v), as now we can move 

a cubette in the same direction twice and it will be in a new location.  However, as we 

consider each of these new translations, we can see that they are each equivalent to one of 

the original translations of (h,v), (h’,v), (h,v’), or (h’,v’), as follows: 

2h = h’  2v = v’  2h’ = h  2v’ = v 

Therefore, we can say that each translation can be put in terms of h, h’, v, and v’.  

There also exists a translation for the cubettes such that on any given diagonal (same 

diagonal for each layer), the cubettes on the diagonal will follow one translation, while 

every other cubette not on the diagonal will follow the exact opposite translation.  For 

example, if each cubette on the diagonal follows the translation (h,v), every other cubette 

will follow the translation (h’,v’). 

 As previously stated, each of these new translations will lead to a different set up 

for a different solution.  Another way of stating this is given a particular first layer in the 

3x3x3, the second and third layers can be decided by following any of these translations.  

Notice that once the second layer has been set up, the third layer has been decided.  Later 
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on we will discuss how each cube relates to a group and allows for specific 

transformations on the cube (different from the translations on the cubettes), which is all 

dependent on the initial set up and transformations on the cubettes. 

4x4x4 

 In the case of the 4x4x4 cube, we run into a different situation than the 3x3x3 

cube or the 2x2x2 cube because in an n x n x n cube, when n is even, a translation of 2h 

or 2v (of some form) will cause a layer to be duplicated, violating the rules of a valid 

solution.  Therefore, we now must consider the translation of 3h or 3v.  With this 

translation done to the first layer, the second layer is created and is unique to the first.  As 

this is repeated throughout the layers, each layer remains unique and gives us a solution 

that follows the rules of a valid cube.  Just as we could in the 3x3x3 cube, we can still 

write each of these 3h or 3v moves in terms of simply h and v, as follows: 

3h = h’  3v = v’  3h’ = h  3v’ = v 

Therefore, there is a way to write each translation for the cubettes in the 4x4x4 

case in terms of h, v, h’ and v’.  This helps us see that there are less possible translations 

than one might originally think, as well as simplifies the notation. 

COLOR COMBINATION POSSIBILITIES 

 After dissecting the possible translations that can be performed on the cubettes in 

order to form a cube that is a valid solution, we can now analyze the exact number of 

color combinations there can be for solving each puzzle.  Obviously, as the puzzle gets 

larger, so do the number of color combination possibilities.  Let’s begin by looking at the 

2x2x2 case. 
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2x2x2 

 In this color cube, there are two layers.  Since we build the second layer based on 

the first layer, we must look at the number of color combinations that can result from just 

one layer.  In this primary layer, there are four spots and 4 colors to choose from, one 

color for each spot.  This calls for the use of a permutation, since the order does not 

matter in this layer.  When calculated, we find that 4P4 = 4! = 4 • 3 • 2 • 1 = 24.  This 

means that given 4 different colors to solve a 2x2x2 cube, there are 24 different ways to 

arrange the cubettes in the first layer.   

 Now, since the second layer is dependent on the first, we can move on to finding 

the number of possible color combinations of the cubettes in the second layer.  As stated 

in the solutions section for the 2x2x2, we know that once the first layer of the 2x2x2 has 

been set, the second layer has only one possible way of being arranged such that the cube 

is a valid solution.  Therefore, we take the number of possibilities for the first layer, 24, 

and multiply it by the number of possibilities for the second and final layer, which is 1, 

giving us a result of 24 different possible color combinations in the 2x2x2 puzzle.   

3x3x3 

 As we look into the 3x3x3 cube’s color combinations, we can quickly see that 

there are many more than 24 color combinations.  First off, we have introduced 5 more 

colors since each layer has a total of 9 different colors.  Since there are 9 spots to be 

filled, each with one color and order does not matter, the number of different color 

combination possibilities is 9P9 = 9! = 9 • 8 • 7 • 6 • 5 • 4 • 3 • 2 • 1 = 362,880.  Now that 

we’ve taken into account all possibilities for the primary layer, we consider the 2nd level 
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of the cube.  Since we know that, in order to create a solution, the 2nd layer must be a 

specific transformation of the first layer. 

 As we found previously, these translations for the 3x3x3 cube have to be written 

in the form (h,v).  There are the cases where all the cubes follow the same translation, 

where they both move in the same directions horizontally and vertically.  This gives us 4 

different translations.  Secondly, there are 12 cases where the translations can move in the 

same direction horizontally and 12 separate cases where they move in the same directions 

vertically. 

Finally, there is the last translation for the cubes called the diagonal translation.  

In this translation, the 3 cubettes on one of the 2 diagonals all follow the same translation, 

say (h,v), while the rest of the cubettes not on the given diagonal follow the exact 

opposite translation, (h’,v’).  Since there are 2 diagonals and each diagonal can move 

either (h,v) or (h’,v’), we have 4 different diagonal translations.  Putting all these 

different translation combinations together, we have 32 different possible set-ups for the 

2nd layer.  The 3rd layer has already been decided once the 1st and 2nd layers have been set 

because each color now has a specific spot that it needs to be in order to make sure the 

cube meets the puzzle’s requirements of having each color represented on each side.  

Therefore, the total number of color combination possibilities for the 3x3x3 cube would 

be 9! • 32 • 1 = 11,612,160.   

4x4x4 

 We can approach the 4x4x4 case in the same way we did the 3x3x3.  First we 

evaluate the number of color combinations that can make up the first layer.  This 4x4x4 
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cube has 16 different colors for the cubettes in the puzzle, meaning we have 16! = 

20,922,789,888,000 different color combinations for the first layer alone!   

Now we look at the possibilities for the 2nd layer as we did before by evaluating 

the number of different translations that can be performed and produce a solvable puzzle.  

In this 4x4x4 cube, we get 4 translations again where the transformation moves each 

cubette in the same direction horizontally and vertically.  Now each translation has 16 

different combinations of translations where they move in the same direction vertically, 

but one row shifts in a different direction horizontally, as well as 16 more for translations 

in the same direction horizontally with one row moving in a different direction than the 

rest vertically.  There are 12 more possibilities for the translations where the cubettes all 

move in the same direction vertically, but half move in one direction horizontally and the 

other half move the opposite direction horizontally, as well as another 12 for the cubettes 

moving in the same direction horizontally and half move one way vertically, while the 

other half moves the opposite way vertically.  As far as can be examined for the purpose 

of this research, these are the only translations that I have found to lead to a solution in 

the 4x4x4 cube, but this has not been an exhaustive search for solutions for this puzzle, so 

we cannot say this is the definitive number of translations for this puzzle. 

Finally, we consider the moves that can take place in the diagonal translation.  

While there are more possible translations (such as (2h,2v) or (h,3v)) that cause different 

set-ups, these translations cause overlaps in the cubettes or make set-ups that do not 

create a solvable puzzle.  Therefore, there are still only 4 diagonal translations in the 

4x4x4 case again, where each of the two diagonals can be either (h,v) or (h’,v’), 



     11 

producing four different translations.  This gives us the total of 62 different translations 

that can be performed on the first layer to generate the rest of the cube. 

Since each layer needs to be produced using the same translation as all the other 

layers, this tells us that after the first and second layer have been decided by first 

choosing a color set up for the primary level and second choosing a translation to 

manipulate each layer, the rest of the remaining two layers have also been decided.  

Therefore, the total minimum number of color combination possibilities that can be 

created in a 4x4x4 solvable cube is 16! • 62 = 1,339,058,552,832,000.   

TRANSFORMATIONS 

 Now that we’ve established an in depth look at the set up possibilities for each 

puzzle, we can finally begin to look into the movements that can be performed on the 

cube that still yield a solution.  We call these movements that are performed on the cube 

transformations of the cube, and as the cube’s dimensions get bigger, the more 

transformations are possible to perform while keeping the integrity of the puzzle.  For 

example, in any solvable cube, the front face of cubettes should be able to be moved to 

the back of the cube, and still give us a solution to the puzzle. Later on, we will discuss 

how each of the cubes relates to a specific group, depending on the set up, and how these 

transformations affect the related group.  As usual, let’s begin by looking at the 2x2x2 

cube in order to see these transformations in their simplest form. 

2x2x2 

In the 2x2x2 puzzle, we first begin by defining that a transformation needs to be 

the movement of a layer or “slice” from one side of the cube to another.  By limiting our 

transformations to this restriction, we will be able to get a better look at the similarities 
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between the color combinations we obtain.  We should also notice that there is only one 

case to be studied in the 2x2x2 puzzle since there is only one possible general set up for 

the 2x2x2 solution (once given a particular base).   

Now we can begin by looking at the transformation mentioned previously, where 

we take the front “slice” of cubettes, meaning the four cubettes on the front face of the 

cube, and moving them to the opposite side of the cube.  Since this transformation gave 

our original 2x2x2 cube a new color arrangement that still left the puzzle solvable, we 

now have a valid transformation for this puzzle.  We can call this transformation where 

we move the front face of cubettes to the back “F”.  Now notice that by performing “F” 

again on the 2x2x2 gets us back to the original color set up we started our cube with.  We 

will call this original set up the “identity”.  This is because once we performed “F” once, 

the front slice was in the back, and the back slice was in the front.  Performing the same 

operation again, we get the front slice shifted back to the front again with the back slice 

in the back, hence we have our original cube.   

Now that we’ve established “F”, we want to look for another transformation that 

can be performed that will give us a new color combination than one of the ones already 

found by our identity and by the transformation of “F”.  If we move the left slice of the 

puzzle to the right side (and in turn shifting the right side to the left), we have a new color 

arrangement for our 2x2x2, meaning we have a new transformation.  Let’s call this 

transformation “L”, where the left slice is moved to the right side of the cube.   

Now that we’ve established the transformations F and L, we can combine these 

transformations to see that this leads to another combination.  Since this set up is a 

combination of the two transformations, which we will call F*L, we perform the first 
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transformation on the cube, and then follow that with the second.  For every new color 

combination we get from a given transformation, we can call each of them an element.  

This means that we are defining an element to be a color combination that results from a 

transformation on a solved puzzle.  That means a cube must have the same 4 colors as its 

original set up in order to be an element of that cube.   

Now that we have determined all the elements we can get from F and L (3 so far, 

which are F, L, and F*L), we want to determine if there are any other transformations 

that will lead to a new element of the 2x2x2.  The next movement we naturally want to 

claim to be a transformation would be moving the top slice of the puzzle to the bottom.  

While this does create a set up that keeps the puzzle in a solvable set up, it creates an 

element that we’ve already discovered.  If we look at the positions of the cubettes in this 

set up from the top to bottom movement, we find it to be identical to the positioning of 

the cubettes of the F*L element.  Since a transformation must create a unique element, 

the top to bottom movement is not a transformation in the 2x2x2 puzzle.   

In order to find all the possible transformations for this cube, we need to examine 

every set of four cubettes that make up a face of the cube.  While our transformations that 

we’ve already discussed may seem that we have only examined the left and front faces of 

the cube, when in reality, when we look at performing a transformation where we move 

the right slice to the left, or the back face to the front, we once again get elements that 

have already been produced.  In the case of the 2x2x2, we can see that the transformation 

L yields the same element of R because in both cases, the right slice and the left slice 

switch places.  The same situation takes place with F and R (where R is the rear face) as 

the front and rear slices switch places in both transformations.  Also, just as before, since 
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the movement of the top layer moving to the bottom did not result in a new element, the 

movement of the bottom layer moving to the top will also not result in a new element.  

Now we can see that we have established the 2 transformations in the case of the 2x2x2 

cube.   

3x3x3 

Now that we’ve set up the groundwork for transformations in the 2x2x2, we can 

dive into transformations in the 3x3x3.  We should notice right away that these 

transformations will be more complex than the 2x2x2 transformations since there is 

another layer added in.  In the 2x2x2 with the transformation L, each layer just swapped 

places.  In the 3x3x3, when the left layer moves to the right side, now the middle layer 

becomes the left layer, and the right becomes the middle.  However, this does not mean 

they aren’t a solution, it solely means it needs further exploration. 

I have found that, similarly to the 2x2x2, the movements L and F lead to new 

elements for the cube.  As a reminder, these new elements are manipulations of the 

identity that create different combinations of the same color cubettes that the identity 

held, as well as still holding a solution to the puzzle.  Also, the combination of these 2 

transformations together creates another element.  However, unlike before, if we operate 

the same transformation twice, we do not come back to the original element again, as we 

did in the 2x2x2.  If we operate the transformation L with itself, L2, we get a completely 

new element for this cube.  The same is true for the F transformation.  However, once we 

reach L3 (or F3), now we come back to the original set up, meaning we do not have a new 

element.   
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Now that we have these elements, we can now test to see if, just as before in the 

2x2x2, combination of transformations operated with each other will also lead to new 

elements.  This gives us new elements such as F*L, F2*L, F2*L2, etc.  Another way to 

view all of these elements for this group is in a Cayley Table (Conder, 2007), seen here in 

Table 1.  

 

 

 

 

 

 

 

 

 

 

This is the Cayley Table of one example of a solved 3x3x3 cube, since the Cayley 

Table will differ if other setups are used.  The cube this Cayley table is based on was 

created by one of the four translations where all the cubettes move in the same direction 

horizontally and vertically.  As we can see, this cube has 9 distinct elements, meaning 

there are 9 transformations that give this cube a new color combination without breaking 

the properties of the puzzle.  The Cayley Table shows the different elements operated 

with each other and what they would yield as a result.   

Table 1 – Cayley Table for a 3x3x3 
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Now, in order to make sure the group is complete, we need to see that there are no 

more possible elements, meaning there are no other transformations that we can perform 

on the cube to get a new color combination in the cube.  The only transformation we have 

not considered yet is the move of the top slice to the bottom, which we call B.  In this 

specific case, where the cube was set up with the transformation of each cubette moving 

in the same direction horizontally and vertically, we find that B actually reveals a color 

combination of a cube we’ve already seen.  However, this is not always the case when we 

look at the different setups we can have in the 3x3x3. 

While looking at the setups for the cubes where the translations were either all in 

the same direction vertically and not horizontally, all in the same direction horizontally 

and not vertically, and where the translation was on the diagonal, we will see that L and F 

(and every product of L and F) still create new elements, just as they had in the cubes 

with the translation of every cubette moving in all the same direction horizontally and 

vertically.  However, once we look at the transformation B, we find our results to be 

different than before.  Now, when we move that top slice to the bottom of the cube, we 

do in fact get a new color combination than any of the previous elements have given us.  

This results in B being a new element. 

Just as how L and F had different combinations of those transformations to give 

us more elements, we now must incorporate B into each of those elements to find all the 

possible new elements this group can give us. Now instead of 9 elements, we have 27 

elements.  This shows us that there is a significant difference in the 4 setups where the 

translations move the cubettes in the same direction horizontally and vertically compared 



     17 

to the other 28 setups.  In order to further explain these differences, we can look into the 

connections that have been made between this puzzle and Group Theory. 

CONNECTIONS TO GROUP THEORY 

 In Group Theory, a group is not simply a collection of items, but rather is much 

more complex than that.  Here, we are considering a group to be a set of elements paired 

with a binary operation.  As we touched on earlier, in order for a set to be considered a 

group, it must keep the four properties of a group true.  These 4 properties of a group are 

(1) the group must contain an identity, (2) every element must have an inverse, (3) every 

element must be associative, and (4) the group must have closure (Gallian, 2010).   

The first requirement states the set of elements must include an identity element.  

This identity is an element that, when operated with any other element of the group, the 

resulting product is the original element (i.e. if   a, e ⊂ G, meaning a and e are elements 

in G where G is the group, a is any element in G, and e is the identity element, then   a ∗ e 

= a , e ∗ a = a ).   

Secondly, each element in the group must have an inverse.  This property states 

that for every element in the group, there is an inverse element that it can be operated 

with to produce the identity element (i.e. if   a, b, e ⊂ G, b is the inverse of a, and e is the 

identity element, then 

a ∗ b = e , b ∗ a = e ).   

The third requirement states that the elements under the given operation are 

associative (i.e. if   a, b, c ⊂ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c ).  Finally, the last requirement for 

a set of elements to be considered a group states that the group must have closure.  In 

order for a group to be closed, when any two elements of the group are operated together, 
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they must produce another element in that same group.  If the set of elements meets each 

of the preceding criteria, it can be named as a group in Group Theory terms. 

 To put the term “group” into a practical example, we can look at the example of 

the dihedral group, known as D4, which contains all the elements of possible rotations 

and flips of a square.  The elements contained in D4 are as follows: R0, R90, R180, R270, H, 

V, D, and D’.  The Rx elements describe the square being rotated (in a counter-clockwise 

motion) by each degree noted as x.  The R0 element rotates the square 0°, leaving the 

square in its original position.  This makes R0 the identity element of this group.  If R0 is 

the identity element, then we can operate it with any other element of the group, and the 

product will be that second element chosen from the group.  For example, given the 

elements in D4 where R0 is the identity as described and a is any other element of the 

group,  R0 * a = a . 

H, V, D, and D’ are different flips of the square over a specific line of symmetry.  

H refers to a horizontal flip, V a vertical flip, D a flip across the diagonal, and D’ a flip 

across the other diagonal. R0, R90, R180, and R270, are all different rotations, where x in Rx 

refers to the degree of which the square is rotated. Figure 2 demonstrates these elements 

of D4.   

 

 

 

 

Now, we look to see if each element has an inverse. We can see that each flip is 

its own inverse, as well as the identity element and R180.  This leaves us with R90 and 

Figure 2 
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R270.  We know these two elements are inverses of each other because when we operate 

them together (R90 ∗ R270 or R270 ∗ R90), meaning we rotate the square 90° and 270°, a 

total of 360°, we arrive back at R0, the identity element.  Therefore, each element does, in 

fact, have an inverse.   

Next, we can state that elements of a group are associative.  We know that these 

elements are each associative because throughout all of the elements, the product is not 

affected if one element is operated before the other elements.  For example, we can look 

at V * H and H * V.  We can see below in Figure 3 that both products yield the same end 

result. 

 

 

 

 

 

Finally, we know that this group is closed because we have every possible 

combination of every letter being in every corner listed, so therefore when any two 

elements are operated on together, they must create another element in the group.  Thus, 

with all requirements met, D4 is a group.  (Gallian, p. 30) 

 Now that we understand the fundamental parts of being a group, we can describe 

how the solutions to this color cube puzzle is, in fact, a group.  Again, the four 

requirements for being a group are having an identity, being associative, having an 

inverse for each element, and being closed.  First, we can find the identity element by 

looking at which element, when performed with another element, does not change the 

Figure 3 
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cube.  In our color cube groups, for the 2x2x2 and each different set up in the 3x3x3, the 

identity element is “e”, the transformation that does not move any of the layers of cubes.  

We know this is the identity element because we can see that when operated with any 

other transformation, the result is the other transformation the identity operated with.   

 Next, we will investigate if these groups are associative.  By definition of 

associative, any two elements of the group should be able to be operated together in any 

order and the end result will be the same.  We know that each of these groups is 

associative because no matter the order that the transformations are operated in, the final 

set up is the same.  For example, if we refer back to a Cayley Table, as we did in Table 1, 

for the transformations of a 3x3x3 cube with a particular set up, we can see that order of 

transformations does not affect the final set up of a color cube. 

 

 

 

 

 

 

 

 

 

 

 

Table 2 – Cayley Table for a 3x3x3 
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 We can look at many different combinations in this table, 81 combinations to be 

exact, and we will see that every time a pair of transformations is operated on in either 

order, the final set up is the same.  For example, if we look at the left column and choose 

the transformation L*F, and operate it then with the top row element L2*F, we get the 

element F2.  Now, if we were to switch the order of those transformations and operate 

L2*F with then L*F, we still get the element F2.  We can prove this with every 

transformation in the Cayley table above, as well as a Cayley table created for the other 

set ups for the 3x3x3, as well as the 2x2x2 puzzle.  The 4x4x4 puzzle would follow the 

same rules, for the set ups that have been figured out for the 4x4x4.  As we saw with the 

differences in the 2x2x2 and the 3x3x3 cube, the increased number to the dimensions of 

the puzzle creates a massive amount of differences in the puzzles, as well as a whole new 

level of complexities to be explored.  For the sake of brevity in this article, the 2x2x2 and 

3x3x3 puzzles will remain the focus of discussion.   

 Now that we’ve discussed the identity and associative properties, we can look at 

the inverse property for this group.  The inverse of an element should be able to “undo” 

that particular element, meaning when one element is operated, the inverse of that 

element will return the cube to its set up prior to being operated on.  An element and its 

inverse when operated together will result in the identity element.  So, in looking at our 

Cayley Table, we should be able to confirm these results by finding an identity element in 

every column and every row, meaning that each element has another element it can be 

operated with to produce the identity element.  Since our Cayley table does prove this in 

figure, we can say our group has the inverse property. 
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 Finally, in order to prove that the solutions to our puzzles are groups, we need to 

show that they are closed.  If a group is closed, each element, when operated with any 

other element in the group, will produce an element already found in the group.  This 

means that if we operate any two elements together in our left column or top row, we 

should find that their product is already an element included in the left column or top 

row.  Our Cayley table confirms this result for the particular set up of a 3x3x3 cube, as all 

the products in the table are elements of the group, so we can conclude this group would 

have the closed property.  These same findings resulted for the 2x2x2 cube, as well as the 

other set ups for the 3x3x3 cubes.    

 Since each of these groups of elements has each property of a group, we can 

confirm that they are what Abstract Algebra classifies a group to be.  The interesting 

relationship that I found for each of these groups was the groups that each puzzle was 

isomorphic to.  Groups are isomorphic to one another if they share the same number of 

elements, where each element has a corresponding element with the same order.  Each 

element has a certain order, meaning the number of times an element has to operate with 

itself to produce the identity element.   

 After researching groups with different elements and orders, it can be shown that 

the group Z2 ⊕ Z2 is isomorphic to the 2x2x2 color cube puzzle.  In both groups, there are 

four elements, each with an order of two (besides the identity element).  This color cube 

puzzle is also isomorphic to the Klein group, which has 4 elements, each with an order of 

two as well.  The following Cayley tables show the similarities in the groups and show 

their isomorphism.   
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Table 4 - 2x2x2 Color Cube Group 

Table 5 - Z2 ⊕ Z2 

Table 3 - Klein Group  

 

 

 

 

 

  

 

 

 

 

 In each of these groups, we can see which elements would map to one another.  

We find that each of the following elements is a mapping of the other: 

1  e  (0,0) 

a  L  (0,1) 

b  F  (1,0) 

ab  B  (1,1) 

 Since we can find a mapping for each element to another in each group, these 

three groups can be called isomorphic.  (For a definition of isomorphism, see page 123 of 

(Gallian, 2010).)  We can find similar findings in our first set up for the 3x3x3 cube, 

where each cube on one layer is translated to the next layer in the same pattern for each 

row.  Looking at this specific set up, we found it had nine elements: e, L, L2, F, F2, L*F, 

L*F2, L2*F, and L2*F2.  Another group with the same number of elements and the same 

* 
 
 
 
 
 
 
 

 

1 a b ab 

1 1 a b ab 

a a 1 ab b 

b b ab 1 a 

ab ab b a 1 

* e L F B 

e e L F B 

L L e B F 

F F B e L 

B B F L e 

* (0,0) (0,1) (1,0) (1,1) 

(0,0) (0,0) (0,1) (1,0) (1,1) 

(0,1) (0,1) (0,0) (1,1) (1,0) 

(1,0) (1,0) (1,1) (0,0) (0,1) 

(1,1) (1,1) (1,0) (0,1) (0,0) 
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corresponding orders was the group Z3 ⊕ Z3.  In this group, the nine elements are as 

follows: (0, 0), (0, 1),  (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), and (2, 2).   We find that 

each of the following elements maps to one another: 

e  (0,0) 

L  (0,1) 

L2  (0,2) 

F  (1,0) 

F2  (2,0) 

L*F  (1,1) 

L*F2  (1,2) 

L2*F  (2,1) 

L2*F2  (2,2) 

 The interesting findings come into play when we take a look at the differences in 

the groups that are isomorphic to the groups with a different set up for the 3x3x3 cube.  

Instead of setting up each puzzle by translating each cube into its new row by performing 

the same translation, this solution is set up by translating each cube all the same direction 

horizontally or vertically, and moving one row the opposite direction vertically or 

horizontally.  We found that there are 12 different set ups in which we can set up the 

solution in this manner.  We also found four more solutions where we could set up the 

cube by doing a translation on the diagonal, as previously mentioned in the section about 

different color combination possibilities.  Even though the puzzle has not changed size, 

the set up of the solution has changed the group that these solutions are isomorphic to.  

Once we change the set up to having a row, column, or diagonal translate in a different 

direction than the rest of the cubes, we are creating an entirely different group because 

now we cannot say L*F=B, meaning we have 27 elements instead of 9 because B is a 

new element.  We can say B is a new element because it is not a color combination we 

have seen before.  With this addition of elements to the group, these groups are now 

isomorphic to the group Z3 ⊕ Z3 ⊕ Z3.  The mapping for each element to its 

corresponding element with equal order is as follows: 
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e  (0,0,0) 

L  (0,1,0) 

L2  (0,2,0) 

F  (1,0,0) 

F2  (2,0,0) 

B  (0,0,1) 

B2  (0,0,2) 

L*F  (1,1,0) 

L*F2  (2,1,0) 

L2*F  (1,2,0) 

L2*F2  (2,2,0) 

L*B  (0,1,1) 

L*B2  (0,1,2) 

L2*B  (0,2,1) 

L2*B2  (0,2,2) 

F*B  (1,0,1) 

F*B2  (1,0,2) 

F2*B  (2,0,1) 

F2*B2  (2,0,2) 

L*F*B  (1,1,1) 

L*F2*B  (2,1,1) 

L2*F*B  (1,2,1) 

L2*F2*B  (2,2,1) 

L*F*B2  (1,1,2) 

L*F2*B2  (2,1,2) 

L2*F*B2  (1,2,2) 

L2*F2*B2  (2,2,2)

 

 It can be seen that by adding a new element B, we get three times as many elements as 

we had before, sort of adding a third dimension to the elements.   
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DISCUSSION 

Overall, the conclusions of connecting this puzzle to group theory may seem simple, but 

it took a lot of deep investigating about the different ways to set up a solution for each puzzle.  

While we weren’t able to get a confident number on all the possible ways to set up all the 

solutions to a 4x4x4 puzzle, we were able to say that we explored all possibilities for the 3x3x3 

solutions, and therefore find that depending on which of the 28 set up of the solutions were 

chosen, it would be isomorphic to either Z3 ⊕ Z3 or Z3 ⊕ Z3 ⊕ Z3. 
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