Journal of Information Systems Education

Volume 3, Number 2

INTRODUCTION TO PROGRAMMING USING DBASE

Sasa M. Dekleva

DePaul University
College of Commerce

25 East Jackson Boulevard
Chicago, IL 60604-2287

ABSTRACT: An introduction to information technology and information systems
is normally a component in business school curricula. Students are often required
to write a few simple programs, mostly using programming language BASIC.
However, dBASE is a good alternative to BASIC in fulfilling this function, indeed,
in many respects it is a superior option. The choice of the language is based on many
factors. Reasons such as dBASE’s excellent debugging facility, students’ previous
(and possibly frustrating) experience with programming in BASIC, and a perception
that dBASE will more likely be used after graduation than BASIC may support the
substitution of BASIC with dBASE. The problem with using dBASE at this elementary
level is that it offers much too extensive a set of commands and functions, which
could easily overwhelm beginning students. However, asmall subset of dBASE
programming language, provides sufficient functionality to reach the above goals. This
minimal subset should support variables, data input and output, database file
creation, loading, listing, updating and sequential processing, program editing,
saving, execution and debugging, and structured program CONSITUcCls sequence,
iteration (or repetition) and decision (or selection). This paper presents a functional
subset of dABASE commands and the order of coverage which have been successfully
used on many occasions. The paper can also be useful to prepare handout materials

for students.

KEYWORDS: Information Systems Education, Programming Teéhniques, Introduction to

Programming, dBASE.

WHY NOT BASIC?

Undergraduate curricula in business
schools normally include at least one
introductory course on information
technology (IT) and management
information systems (MIS) [1]. This
introductory course is typically required
for all business students and not just for
MIS majors. Computer programming is
often one of the concepts presented in
such a course, and students normally use
BASIC to write, test, and execute a few

simple programs. BASIC is, after all, a ‘

programming language for beginners.

The usual arguments in support of
an exposure to programming include:

- improves student’s
understanding of how the
computer works

- demonstrates what
programming is and improves
appreciation for information
system development and
maintenance

- enforces rigorous algorithmic
thinking and improves
intellectual capability in
general

- encourages systematic and
structured writing, which
should improve any writing
and not just writing computer
programs

Further -discussion of the
appropriateness of requiring all business
students to practice programming (they

Page 10

Journal of Information Systems Education
Volume 3, Number 2

very likely did it in high school already),
and to practice programming using a third
generation language, exceeds the scope
of this paper.

The choice of programming
language depends on a variety of factors,
such as ease of learning and use, popularity,
availability, level of the support of
structured programming, and the
sophistication (or the generation) of a
language. In addition to these rational
criteria, some less obvious factors may
also influence the choice. An argument
can be made that programming processes
(andstruggles) can be better experienced
by using a procedural language of a third
generation than by using a more advanced
fourth generation language. Some
pragmatic issues may also be considered.
The majority of students bring some (often
frustrating) programming experience from
high schools [2], mostly in programming
in BASIC. Theyrefuse to go through the
same affair again. To make the perception
about programming in BASIC even worse,
the laboratory assistants--most of whom
pursue computer science programs--
openlyridicule BASICas inferiorto Cor
Pascal, not to mention Smalltalk.
Although BASIC appears to be
appropriate for an introductory exposure
to programming, some of the above issues
may support the selection of an alternative
language.

dBASE is a good candidate for a
programming language of choice [3, 4, 5,
6]. It has some advantages compared
with BASIC. 1t is readily available, at
least the educational version of the
product. Its future looks good according
to the reviews of the much improved
version 1.1 of dBASE IV, It is versatile
and provides a typical third generation
language with an excellent debugger as
well as powerful nonprocedural
capabilities. The debugger facility is very
informative because it shows the
progression through the programstep by
step. Although not necessarily any better
than BASIC in terms of its support of
structured and modular programming
concepts, it has the advantage of having
been designed to manipulate relational
databases. Also, very few students have

used it before coming to college; dBASE
can be a “clean slate.” Maybe most
importantly, students recognize it as a
leading microcomputer database
management system and believe that they
will, in fact, be using it after graduation to
organize and manipulate their data. In
other words, students do not show open
aversion 10 dBASE for their programming
assignments. These items should
demonstrate sufficient grounds for

students recognize
(dBASE) as a leading
microcomputer database
management system and
believe that they will, in
fact, be using it after
graduation to organize
and manipulale their daia.
In other words, students
do not show open
aversion to dBASE for their
programming
assignments.

consideration of dBASE as an alternative
to BASIC in introductory courses.

The following discussion may help
those who would like to consider or who
plan to use dBASE third generation (called
“dot prompt”) programming capabilities
as asubstitute for BASICin introductory
IT or MIS courses.

MINIMAL SET OF DBASE
COMMANDS AND SEQUENCE OF
THEIR INTRODUCTION

As with any other complete
programming language, dBASE has a
comprehensive set of commands and
functions. To enable students to
concentrate on the programming process,
program design and logic, it is important
to identify a minimal set of commands,
knowledge of which enables the writing
of simple programs. These commands
must also be introduced in an appropriate
sequence. The restof this paper presents
a subset of commands and the structure

of their coverage, both of which have
been successfully used. The whole
programming segment of the introductory
computer course consumed 12 hours of
class time in a laboratory environment
with a microcomputer available to each
student.

1. Memory variables

The concept of memory variables
must be introduced first. Although five
types of variables are available (character,
numeric, date, logical and memo), the
first two types should suffice. The other
three types are normally used for database
attributes, called “ficlds.” Memory
vatiable names must start with a letter,
may containupperand lower case letters,
numbers and the underline character,
and may be up to ten characters long.
The type of a variable is determined
automatically when a value is assigned to
it.

The command that creates a memory
variable is the STORE command:

STORE {expression} TO {memory
variable}

Examples:
STORE “‘Peter” TO FirstName
STORE 1 TO PageNo_

Memory variables can be created
even more easily by simply using

assignment statements:
{variable} = {expression}
Examples:

LastName = “‘Smith”
RowNo = 4

Memory variables can be reviewed
with the DISPLAY MEMORY command.

2. Presenting data as output

Data can be positioned to any
location on a screen with the SAY
command and its optional PICTURE
part:

@ xy ‘SAY {expression} [PICTURE
{format}]

Page 11

Journal of Information Systems Education
Volume 3, Number 2

where x represents row number and y
represents columnnumber. Bothxandy
can be either constants or expressions.
The range of x is from 0 to 24; the range
ofy is from 0 to 79.

Examples:

@ 5,10 SAY “This will be positioned to
the 6th row and 11th column.”

@ RowNo, 10 SAY “RowNo is a numeric
memory variable."”

@ 0,70 SAY PageNo

Some of the valid format characters
are the following:

$ Displays dollar signs in place of
leading zeroes

* Displays asterisks in place of
leading zeroes
Indicates position of decimal point

, Indicates position of comma

9 Is substituted by digits (and signs
for numeric data

‘A s substituted by letters

N Issubstituted by letters or digits

X s substituted by any characters

Examples:

Salary = 12458.15

@ 5,10 SAY Salary ' PICTURE
“$99,999.99”

@ 6,10 SAY Salary PICTURE
**999,999.99"

The first of these two output
commands displays $12,458.15; the second
displays **12,458.15.

3. Interactive data entry

Input of data is requested with the
GET and the accompanying READ
command:

@ xy GET {variable} [PICTURE
{format}]

READ

The function is essentially inverse
to data output. The GET command
captures characters typed on a keyboard
and displays them on the screen; READ
then actually loads captured characters
to the memory variable(s).

Example: 7
@ 5,10 GET LastName

@ 8,10 GET SocSecNum PICTURE “999-
99-9999”

READ

Input and output operations can
be conveniently combined with SAY, GET
and a consequent READ: '

@ xy SAY {expression} GET {variable}
[PICTURE {format}]

READ
Example:

@ 5,10 SAY “Last Name: “ GET
LastName

@ 7,10 SAY “Home Telephone: “ GET
HomePhone PICTURE “(999)999-
9999”

READ

4. Program creation, modification, and
debugging

Up to now, all commands were typed
in at the dot prompt and immediately
executed. A sequence of commands can
also be entered in a form of a command
file (or program) and edited before its
execution. ‘This can be achieved with
MODIFY COMMAND which has the
following format:

MODIFY COMMAND {program name}

The program name must conform
to DOS file name constraints and is
extended with PRG if no extension is
manually provided.

The DO command triggers the
program’s execution. Its format is:

DO {program name}

One of the many features of dBASE
is the so-called TALK. It can be toggled
ON or OFF by the SET TALK command.
Its format is: -

SET TALK [ON/OFF]

The usual default setting is ON, in
which case dBASE responds to each
command by displaying the evaluated
expression. Such a display may be very
useful during program testing butshould
later be turned off because it may interfere
with the regular output. This means that
after the program is fully tested, the SET
TALK OFF command should be inserted

at the top of the program and the SET
TALK ON command at the end.

The program can be listed and
optionally printed with the TYPE
command:

TYPE {program name.PRG} [TO PRINT]

When the dBASE 1V full screen
editor is used, the edited program can be
printed by simply selecting the Print option
from the menu.

It is a good practice to insert
comments into programs to explain the
meaning of variables and the function of
individual program segments. To place
comments in the command file use:

* as the first nonspace character
in aline

&& to place a comment to the right
of a command

dBASE IV has a powerful debugger
which can be invoked with the DEBUG
command. It enables the user to runa
program and see the commands as they
are executing, edit the program, set
breakpoints to halt program execution
and display the results of expressions and
values of variables while the program is
running. This command’s format is:

DEBUG (program name}

5. Database files

The CREATE command originates
a new database file. Its format is:

CREATE {file name}

Page 12

Journal of Information Systems Education
Volume 3, Number 2

After the file structure is defined, the
datacanbeloaded. Thefilestructurecan
be reviewed by: -

DISPLAY STRUCTURE

It can be modified by:

MODIFY STRUCTURE

An old file can be activated by:

USE {file name}

Datacanbe added to the active file using:
APPEND |

or edited by using:

BROWSE

Work can be saved with the key
combination:

<Ctri><End>

or by activating another database file .

with USE {file name}.

Data from the active database file can be
displayed with the LIST command, as
follows:

LIST [{field 1 name, field 2 name, ...}]
[TO PRINT]

An optional part TO PRINT submits
output to the printer also. If field names
are omitted, all data are listed.

6. Controlling the program flow

Iteration, repetition, or theloop is
implemented with the DO WHILE:

DO WHILE {condition}
{action to be repeated}
ENDDO

There are two decision constructs,
IF and CASE. The format of the IF
statement is:

IF {condition}
{action 1}
[ELSE
{action 2}]
ENDIF

The format of the CASE construct is:
DO CASE

CASE {condition 1}

{action 1}

CASE {condition 2}

{action 2}

[OTHERWISE
{action n}]
ENDCASE

The CASE construct is preferable
when the number of actions is greater
than two, to avoid imbedded IF statements.

7._Sequential database file processing

The following implementation of
the DO WHILE loop is appropriate when
allrecords froma database fileneed tobe
processed sequentially:

USE {file name} && Activate a
file and retrieve the first r_ecord

DO WHILE .NOT. EOF() && Repeat
until the end of file is reached

&& Current record is processed
here

SKIP
record

ENDDO

&& Retrieve the next

8. Other output considerations

Two functions are useful for relative
positioning of output on the screen;
similarly, two other functions are available
for printing:

ROW/()[expression], COL()[expression]
&& Screen functions
PROW{()[expression],

PCOL()[expression] & &
Printer functions

The function ROW(), for instance,
returns the current row position of the

cursor. In the following example, thelast
name is displayed in column 10 of the
next row:

@ ROW()+1,10 SAY LastName

Similarly, the function COL()
returns current column position on the
screen and is used to distribute data
horizontally along a certain row.

The default output device is the
screen. SET DEVICE TO command is
used to redirect output to the printer:

SET DEVICE TO PRINTER

Another SET DEVICE TO
command is issued to redirect the output
back to the screen:

SET DEVICE TO SCREEN

The SET DEVICE command can
be executed from the dot prompt, and
can also be imbedded in the program.

Before the output is redirected from
the screen to the printer, all occurrences
of the relative positioning functions
ROW() and COL() must be substituted
by PROW() and PCOLY), respectively.
Functions ROW() and COL() onlywork
with the screen and their equivalents
PROW() and PCOL() only work with
the printer.

SAMPLE PROGRAM
ASSIGNMENT

The following is an example of a
program assignment which can be nicely
handled with the set of commands
presented above. It demonstrates the
use of a repetition construct for sequential
processing of a database file and the use
of both selection constructs.

CONCLUSION

There is, then, and alternative to
BASIC for introductory computer classes
in a business school environment. A rather
small set of about 28 different dBASE
(III+ or IV) commands and functions
enables writing of simple programs to
reach the goals of an introductory

Page 13

Journal of Information Systems Education
Volume 3, Number 2

computer course. The careful use of
dBASE presents significant advantages
to instructor and students alike, and
manages to avoid some of the difficulties
associated with BASIC. In particular,
students gain by becoming familiar with
a language they are more likely to use
outside of class. ‘

Since there is no book in the form
of a short course in dBASE programming
presenting only the minimal set of
commands and functions, a combination
of handout material and a general dBASE
text must be used. The author successfully
combined a five-page handout with cross
references to the appropriate sections of
the Ross text [7). The same set of
commands can also be used with dBASE
IV, enjoying additional functionality of
its debugger. The use of dBASE can be

| extended with the coverage of its

application-generation capabilities, which
illustrate different levels of system
development sophistication as well as
other concepts, such as end user
development, prototyping, and database

querying. :

REFERENCES

[1] Frand, L.J. and Britt, J. A. “Sixth
Annual UCLA Survey of Business
School Computer Usage,”
Communications of the ACM,
Volume 33, Number 5, May 1990,
pp- 544-562.

[2] Myers,]. P.,Jr. “The New
Generation of Computer
Literacy,” SIGCSE Bulletin,
Volume 21, Number 1, February
1989, pp. 177-181.

[3] Otto,J. C. “dBASE IV: Major
Enhancements Make This Version
Powerful and Easy,” Business
Forum, 15, no. 4 (1991): 48-49.

[4] Weizxel, S. “dBASE IV: Feature-
Rich, Slower than Others,”
Computerworld 25, no. 13 (1991):
45.

[5] McMullen, J. “End Users Create
PC Applications,” Datamation 35,
no. 23 (1989): 41,43.

[6] Buchanan, R. L. Structured
Programming in BASE IV,
Belmont: Wadsworth Publishing
Co., 1991.

[7] Ross, S. C. Understanding and
Using dBASE III PLUS, St Paul:
West Publishing Company, 1987.

CLEAR
CLEAR ALL

STORE 0 TO TOTAL_AGE
STORE 0 TO COUNTER
STORE 0 TO NO_MALES
STORE 0 TO NO_FEMALES
STORE 0 TO NO_FRESHMN
STORE 0 TO NO_SOPHMRS
STORE 0 TO NO_JUNIORS
STORE 0 TO NO_SENIORS
¥¥#% Setting up the data base file
USE STUDENTS

DO WHILE .NOT. EOF()

COUNTER = COUNTER + 1
IFSEX =1

ELSE

ENDIF

SAMPLE PROGRAM:

+ Defining memory variables to accumulate total and counts

*¥**** Starting the processing of records in the file

TOTAL_AGE = TOTAL_AGE + AGE

NO_FEMALES = NO_FEMALES + 1

NO_MALES = NO_MALES + 1

P I E r R R R R T T e T s P e R S Rt L R R 22 SRS SRR 22222222 222 R 222 2 1)

* Write a program to present some statistics on the students in a class. One record holds the following data for each
* student: student’s age, sex code (1=female, 2=male), and student’s standing code (1=freshmen, 2=sophomore,

* 3=junior, and 4=senior). The output should contain the average age, the percent of males and females, and the

* percent of freshmen, sophomores, juniors, and seniors. Assume that data are already available in a database

* file called STUDENTS, which contains fields AGE, SEX, and STANDING.

ERRERREERERREERRRERRERE AR RS R R R R E R KRR B KRR R AR R AR R R KRR R R SRR R RKEE R RS R R R R R R R kSRR Rk *

* Programmer: Terry Byte, SS#:123-45-6789

EERERE R KRR R TR IR R AR R R TR R R Rk kSRR Tk TRk kb ok kkkhok kR Rk kR Rk Rk k ko kkk ks hkk kb ek kkkkk

Page 14

Journal of Information Systems Education
Volume 3, Number 2

SAMPLE PROGRAM, continued:

DO CASE
CASE STANDING =1
NO_FRESHMN = NO_FRESHMN + 1
CASE STANDING =2
NO_SOPHMRS = NO_SOPHMRS +1
CASE STANDING =3
NO_JUNIORS = NO_JUNIORS + 1
CASE STANDING =4
NO_SENIORS = NO_SENIORS + 1
ENDCASE***** Advancmg to the next record
SKIP
ENDDO
*4%x% Presenting the results
@ 1,10 SAY “DESCRIPTIVE STATISTICS OF CLASS POPULATION”
@ 3,10 SAY “Average age ="
@ 3,24 SAY TOTAL_AGE/COUNTER PICTURE “99.9”
@ 5,10 SAY “Percent of males ="
@ 5,34 SAY NO_MALES*100/COUNTER PICTURE “999.9%”
@ 6,10 SAY “Percent of females ="
@ 6,34 SAY NO_FEMALES*100/COUNTER PICTURE “999.9%”
@ 8,10 SAY “Percent of freshmen ="
- @834SAY NO FRESHMN*IOO/COUNTER PICTURE “999%"
@ 9,10 SAY “Percent of sophomores =
@ 9,34 SAYNO SOPHMRS"IOO/COUNTER PICTURE “999%”
@ 10,10 SAY “Percent of juniors ="
@ 10,34 SAY NO_JUNIORS*100/COUNTER PICTURE “999%”
@ 11,10 SAY “Percent of seniors ="
@ 11,34 SAY NO_SENIORS*100/COUNTER PICTURE “999%”
SET TALK ON

AUTHOR'S BIOGRAPHY

Sasa M. Dekleva is an Assistant Professor of Information Systems at the DePaul
University. He received his bachelor's degree from University of Ljubljana and Ph.D.
from University of Belgrade. His areas of expertise include information systems
development methodologies, software engineering productivity, data modeling and
database design, software maintenance and natural language querying. - Dr.
Dekleva has been in software engineering more than twenty years which includes
nine years of industrial experience in systems engineering, systems analysis and

management.

Page 15

ISCCp Eosic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1991 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

