
Communications of the Association for Information Systems Communications of the Association for Information Systems

Volume 46 Article 18

4-2020

Examining Exploitability Risk of Vulnerabilities: A Hazard Model Examining Exploitability Risk of Vulnerabilities: A Hazard Model

Yaman Roumani
Oakland University, yamanroumani@oakland.edu

Joseph Nwankpa
Miami University

Follow this and additional works at: https://aisel.aisnet.org/cais

Recommended Citation Recommended Citation
Roumani, Y., & Nwankpa, J. (2020). Examining Exploitability Risk of Vulnerabilities: A Hazard Model.
Communications of the Association for Information Systems, 46, pp-pp. https://doi.org/10.17705/
1CAIS.04618

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for
inclusion in Communications of the Association for Information Systems by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301391709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/cais
https://aisel.aisnet.org/cais/vol46
https://aisel.aisnet.org/cais/vol46/iss1/18
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol46%2Fiss1%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17705/1CAIS.04618
https://doi.org/10.17705/1CAIS.04618
mailto:elibrary@aisnet.org%3E

C

ommunications of the

A

I

S

 ssociation for nformation ystems

Research Article DOI: 10.17705/1CAIS.04618 ISSN: 1529-3181

Volume 46 Paper 18 pp. 421 – 443 April 2020

Examining Exploitability Risk of Vulnerabilities: A
Hazard Model

Yaman Roumani

Management Information Systems

Oakland University

yamanroumani@oakland.edu

Joseph Nwankpa

Information Systems & Analytics

Miami University

Abstract:

With the increasing number and severity of security incidents and exploits, information technology (IT) vendors,
security managers, and consumers have begun to place more emphasis on security. Yet, fixing the sheer volume of
vulnerabilities remains a challenge as IT vendors race against attackers to evaluate system vulnerabilities, prioritize
them, and issue security patches before cybercriminals can exploit them. In this study, we posit that IT vendors can
prioritize which vulnerabilities they should patch first by assessing their exploitability risk. Accordingly, we identified
the vulnerabilities that cybercriminals will most likely exploit using vulnerability-related attributes and vulnerability
types. To do so, we employed survival analysis and tested our models using historical data of vulnerabilities and
exploits between 2007 and 2016. Our results indicate that IT vendors benefit the most from fixing remotely exploitable
vulnerabilities; non-complex vulnerabilities; vulnerabilities that require no authentication; and vulnerabilities that affect
confidentiality, integrity, and availability components. Furthermore, our findings suggest that IT vendors can mitigate
the risk of exploit-related attacks by remedying code-injection vulnerabilities, buffer-overflow vulnerabilities, and
numeric-error vulnerabilities.

Keywords: Vulnerabilities, Exploitability Risk, Game Theory, Risk Assessment, Survival Analysis.

This manuscript underwent peer review. It was received 29/01/2019 and was with the authors for 5 months for 3 revisions. Alvin
Leung served as Associate Editor.

http://aisel.aisnet.org/cais/

Communications of the Association for Information Systems 422

Volume 46 10.17705/1CAIS.04618 Paper 18

1 Introduction

Software vulnerabilities constitute a major threat to organizations’ information resources and result in
direct and indirect financial losses (Hinz, Nofer, Schiereck, & Trillig, 2015). Software vulnerabilities often
result from a software flaw, weakness, glitch, or human error that cybercriminals exploit. According to the
National Vulnerability Database (NVD), the total number of vulnerabilities reported since 2007 has been
rising, reaching a historic high in 2017 and 2018. Exploits, on the other hand, are malicious programs,
written by attackers (i.e., hackers), that use software vulnerabilities to penetrate a system. An intrusion
takes place when attackers identify and exploit vulnerabilities to break into and compromise a system.
Exploits pose a major threat given the time gap between the discovery of a vulnerability and the release of
the security patch. During that time, exploits function freely and endanger the security of the vulnerable
software. At the same time, the risk of exploits lies in their availability over the Internet and the rise and
ease of use of attack tools (Symantec, 2018).

Given the high number of vulnerabilities in software and the associated risk that someone will exploit
them, managing vulnerabilities and responding to attacks pose a challenge for IT vendors and
organizations (Baskerville, Spagnoletti, & Kim, 2014; Sen, 2018). For IT vendors, addressing a large
number of vulnerability reports across numerous products and issuing security patches constitutes a
lengthy and a complex process. For each reported vulnerability, an IT vendor must assess its severity,
evaluate its impact level, identify a solution, and issue a security patch before attackers exploit it. For
instance, Oracle identified 164 vulnerabilities across more than 20 products in January, 2018, and 690
vulnerabilities in total during that year (NVD, 2018). At this rate, assessing vulnerability risk becomes a
challenge as security managers race against attackers to fix all reported vulnerabilities.

Given limited time and budgets, administrators cannot afford to issue a security patch to all vulnerabilities;
thus, they assess and prioritize vulnerabilities by ranking them according to their impact severity (Arora,
Krishnan, Telang, & Yang, 2010). The existing literature on vulnerability assessment highlights three
deficiencies in the practice: being perfunctory, not based on evidence, and performed on an intermittent
and non-historical basis (Webb, Ahmad, Maynard, & Shanks, 2014). Additionally, while many vulnerability
risk-assessment methods exist (see, for e.g., Mell, Scarfone, & Romanosky, 2007; OWASP, 2017b), such
methods neither consider the ever-changing security environment nor rely on historical data. Specifically,
these methods offer a snapshot analysis and do not consider changes in vulnerability-related attributes
and types. Thus, they cannot factor in the rise and decline of vulnerability-related factors when assessing
exploitability risk.

Although prior studies have proposed several approaches to assess and measure exploitability risk, they
have various limitations (Huang, Lin, Lin, & Sun, 2013; Sen & Heim, 2016; Younis, Malaiya, & Ray, 2016).
First, researchers have focused on a wide range of factors that impact exploitability risk (Sen & Heim,
2016; Younis et al., 2016) but ignored specific factors related to vulnerabilities. Second, existing studies
have frequently analyzed small-sample data over a short period that may not reflect exploitability risk
overtime (Huang et al., 2013; Sen & Heim, 2016; Younis et al., 2016). Finally, implementing some
methods researchers have proposed involves much difficulty and complexity (Huang et al., 2013) and
requires access to the source code of the vulnerable software (Younis et al., 2016), which one may not be
able to attain.

To fill this gap, we analyze historical data of vulnerabilities and their related exploits to identify
vulnerabilities with the highest exploitability risk. Specifically, we consider vulnerability-related attributes
and vulnerability types and measure their impact on exploitability risk. We use game theory as a
theoretical framework and investigate the following research questions:

RQ1: Which vulnerability-related attributes result in the highest exploitability risk?

RQ2: Which vulnerability types result in the highest exploitability risk?

To address our research questions, we conducted survival analysis using the Cox proportional hazard
model and examined reported vulnerabilities and exploits between 2007 and 2016. In doing so, we
contribute to the information systems (IS) literature on risk assessment and management (Da Veiga &
Eloff, 2010; Spears & Barki, 2010; Sen & Heim, 2016). In addition, we answer prior calls for additional
factors associated with vulnerability risk and exploits (Sen & Heim, 2016). Finally, we also offer insight into
the factors affecting exploitability risk and, thus, address the aforementioned deficiencies in risk
assessment (Webb et al., 2014).

423 Examining Exploitability Risk of Vulnerabilities: A Hazard Model

Volume 46 10.17705/1CAIS.04618 Paper 18

Our findings allow IT vendors to handle vulnerabilities more efficiently and provide them with valuable
information to assess and prioritize vulnerabilities based on exploitability risk. More specifically,
investigating exploitability risk should offer initial insights to security managers who deal with prioritizing
issues and resources when fixing vulnerabilities. Furthermore, as new exploits and vulnerabilities emerge,
our model can be employed to reanalyze new information. Finally, examining exploitability risk helps to
address limitations in existing methods.

The paper proceeds as follows: in Section 2, we provide relevant background information and review
relevant literature and game theory. In Section 3, we introduce the research model and hypotheses. In
Section 4, we detail our data-collection procedure. In Section 5, we describe how we analyzed the data
and the results. In Section 6, we discuss our findings, their theoretical and managerial implications, the
study’s limitations, and possibilities for future research. Finally, in Section 7, we conclude the paper.

2 Literature Review and Theory

The IS literature has examined information security predominantly from behavioral and economic
paradigms. Hui, Vance, and Zhdanov (2016) recently reviewed the security-related literature and identified
four emerging themes: 1) behavioral compliance, 2) risk assessment/management, 3) information security
investment, 4) market effects of information security. Prior work in these areas has relied heavily on game
theory to model, measure, and mitigate security risk and propose solutions for organizations.

2.1 Game Theory

Game theory deals with problems involving decision makers (players) who compete against each other to
achieve their own objectives. Game theory explains the interaction between players with opposite goals
where each player’s strategic choices depend on other players’ moves. Specifically, each player attempts
to maximize their payoff by implementing the best dominant game strategy. Payoffs are the utility that
players receive as the outcome of game play. A positive payoff indicates a win for a player, whereas a
negative payoff indicates a loss.

Recent developments of game theoretical models have integrated psychological and behavioral factors,
such as perfect rationality, bounded rationality, belief formation, and learning (Chong, Camerer, & Ho,
2006; Li, 2014; Hong, Pavlou, Wang, & Shi, 2016; Xu, 2018; Kim, Chung, & Lim, 2019). Perfect rationality
assumes that participants have perfectly rationality, that is, that they can frame complex rational
arguments, maximize their payoff, and arrive at the best outcome. The bounded rationality perspective
suggests that, rather than optimizing every possible decision, adversaries often satisfice due to
incomplete information, time, and their limited ability to process it (Arthur, 1994; Simon, 1955, 1972). Prior
research and experimental evidence has widely accepted and supported the bounded rationality concept
(Sterman, Henderson, Beinhocker, & Newman, 2007; Ho & Zhang, 2008). Furthermore, learning
constitutes an integral part of game theory (Fudenberg, Drew, Levine, & Levine, 1998). Learning involves
making sense of information in the context of each player’s own reason. Specifically, learning constitutes
an iterative process that specifies how players use information about past actions, observes the current
game state and their environment, estimate the prospective payoff, and modify their game strategy based
on the observation. Prior research has introduced various learning models such as belief learning
(Ioannou & Romero, 2014), rule learning (Stahl, 2000) and strategic learning (Boylu, Aytug, & Koehler,
2010). In addition to learning, players differ in how they form beliefs from information. That is, players form
beliefs about other players’ actions that they may derive from their past experience playing the game
(Osborne & Rubinstein, 1994). Thus, even with the same information and objectives, players may have
heterogeneous behavior rules and different beliefs (Li, 2014).

Communications of the Association for Information Systems 424

Volume 46 10.17705/1CAIS.04618 Paper 18

2.2 Information Security

The information security literature has widely used game theory to examine the impact that attackers (i.e.,
hackers) have on the software industry (Galbreth & Shor, 2010), model the implications of sharing security
information and investments in security technologies (Cavusoglu, Raghunathan, & Yue, 2008; Hua &
Bapna, 2013; Gao, Zhong, & Mei, 2014; Wu, Feng, Wang, & Liang, 2015; Fielder, Panaousis, Malacaria,
Hankin, & Smeraldi, 2016; Wu, Feng, & Fung, 2018), and understand the speed with which attackers
publish exploits and vendors patch the vulnerabilities (Sen & Heim, 2016). For instance, Galbreth and
Shor (2010) used game theory to model the impact that attackers have on the enterprise software industry
and showed that firms may benefit from the pricing power that vulnerabilities enable. Cavusoglu et al.
(2008) employed sequential game theory to model IT security investment levels and concluded that a firm
gains the maximum payoff when it participates in a sequential game with hackers that requires a firm to
move first before hackers. Gao et al. (2014) showed that firms should focus on their relationship with other
firms when choosing a security-investment strategy. Cremonini and Nizovtsev (2009) concluded that the
most optimal strategy for attackers who can probe their target involves putting more effort into attacking
systems with low security levels than those with higher security levels. Wu et al. (2018) used game theory
to show that firms under different business environments should implement different security strategies.

In another research stream, researchers have used game theory and other novel approaches to assess
exploitability risk (Huang et al., 2013; Sen & Heim, 2016; Younis et al., 2016). For instance, Younis et al.
(2016) proposed that organizations use software properties (i.e., attack surface entry points, vulnerability
location, dangerous system calls, and reachability analysis) to assess exploitability risk. Finally, Sen and
Heim (2016) used game theory and institutional theory to examine the risk that attackers will exploit
vulnerabilities. They used a limited number of vulnerability-related attributes including vulnerability
disclosure, vulnerability severity score, and vulnerability access vector in addition to software-related
characteristics such as targeted software and software type to measure their impact on exploitability.
However, they analyzed only 844 vulnerabilities published between 2002 and 2004.

While existing studies provide important insights into the relationship between attackers and the software
industry, we lack studies on the factors that influence exploitability risk. With this work, we extend Sen and
Heim’s (2016) study by examining the impact of other as-yet unexplored vulnerability-related factors on
exploitability risk. Moreover, we examine the impact that vulnerability types have on exploitability risk and
analyze a broader data sample over a 10-year period, which no other study has done.

3 Research Model and Hypotheses Development

Game theory provides the assumptions and the tools one needs to understand attackers’ (i.e., hackers)
and defenders’ (i.e., IT vendors) choices. For attackers, successfully exploiting a vulnerability means a
winning game. We use game theory to understand the strategic choices that attackers make in choosing
which vulnerability to exploit and derive our hypotheses. For defenders, we consider game theory as a
means to understand how firms can use exploitability risk to decide which vulnerability to fix in order to
mitigate risk and protect their information assets. Our framework focuses on a specific situation based on
perfect rationality (Rasmusen & Blackwell, 1994). In the context of perfect rationality, we assume that
attackers have full knowledge of their choices and the cost needed to exploit a vulnerability in order to
maximize the expected utility. We associate cost (i.e., entry barrier of attacks) with the risk, time, effort,
and skill required from attackers to exploit a vulnerability.

Using perfect rationality assumption of game theory, we draw two models. The first model assesses
exploitability risk through six vulnerability attributes (access vector, access complexity, authentication,
confidentiality, integrity, and availability impact). We choose these attributes because IT vendors and
federal agencies such as the National Institute of Standards and Technology (NIST) (Mell et al., 2007) and
the United States Computer Emergency Readiness Team (US-CERT) (Manion, 2012) have validated and
widely adopted them. The second model investigates exploitability risk in relation to ten vulnerability types
that we selected based on their frequency. We show both models in Figure 1.

425 Examining Exploitability Risk of Vulnerabilities: A Hazard Model

Volume 46 10.17705/1CAIS.04618 Paper 18

Figure 1. Hypothesized Models

3.1 Access Vector

An access vector describes the access method one needs to execute an attack against a vulnerability.
Based on the attacker’s proximity, an access vector can be either local or outside. A vulnerability with a
local access vector requires attackers to physically be in the same location as the vulnerable system. A
vulnerability with an outside access vector, on the other hand, requires attackers to be remote or adjacent
to the vulnerable system. Specifically, attackers need to be either in an adjacent network (e.g., Bluetooth,
local IP subnet) or remote network (e.g., over the Internet). Since vulnerabilities with an outside access
vector do not require adversaries to physically exist near a targeted system, they can perform attacks with
less risk and cost for adversaries. Furthermore, vulnerabilities with an outside access vector allow
attackers to exploit them over the Internet without being in close proximity or having physical access to the
targeted system. This implies that attackers can relay through multiple hosts over the Internet prior to
launching an attack. This allows them to remain anonymous and safe and imposes lower costs. Indeed,
recent research has raised concerns in regards to the increased number and sophistication levels of
remote attacks (Kaspersky, 2016). This view was also supported by further evidence suggesting the
increased number and political motivation of remote attacks given their anonymity over local attacks
(Kshetri, 2013; Wagner & Schweitzer, 2016). Based on this discussion, we anticipate that vulnerabilities
with an outside access vector will have a higher exploitability risk than vulnerabilities with a local access
vector.

Compared to an outside access vector, vulnerabilities with a local access vector require adversaries to be
closer to the vulnerable system. Thus, from an attacker’s perspective, these types of vulnerabilities involve
more risk and impose a higher cost (Verizon, 2012). Therefore, we posit that vulnerabilities with a local
access vector will have a lower exploitability risk than vulnerabilities with a remote access vector. Thus,
we hypothesize:

Communications of the Association for Information Systems 426

Volume 46 10.17705/1CAIS.04618 Paper 18

H1: A vulnerability with an outside access vector has a greater exploitability risk than a
vulnerability with a local access vector.

3.2 Access Complexity

Access complexity refers to how easily one can exploit a vulnerability (Mell et al., 2007). Attackers can
more easily exploit vulnerabilities with a low access complexity since doing so requires less knowledge
and skill. Moreover, vulnerabilities low in access complexity often arise due to poor protection
mechanisms or to the vulnerable system’s open access. For instance, SQL injection, a common type of
vulnerability in Web applications, has a low complexity level given the little effort needed to exploit it
(Chung, Wu, Chen, & Chang, 2012). In contrast, attackers cannot as easily exploit vulnerabilities with a
medium or high complexity levels as doing so requires them to have higher levels of knowledge and skills
and to execute special criteria and complex manipulations. For example, the race condition vulnerability, a
timing flaw, involves executing two or more operations at the same time. The high complexity level of a
race condition vulnerability lies in the perfect timing requirement.

As adversaries race against time to exploit vulnerabilities, less complex vulnerabilities offer attackers the
ability to breach a system at a faster rate given the reduced effort doing so requires. Indeed, prior studies
have found that attackers rationally make their choices based on the amount of effort and reward required
to successfully breach a target (Cavusoglu et al., 2008). Thus, as the complexity level of a vulnerability
decreases, we expect the exploitability risk to increase due to the reduced amount of time, level of effort,
and skills needed from attackers. On the other hand, we anticipate that the exploitability risk of
vulnerabilities with medium/high access complexity will decrease given the increased amount of time,
level of effort, and skills required from adversaries. Thus, we hypothesize:

H2: A vulnerability with medium or high access complexity has a lower exploitability risk than a
vulnerability with low access complexity.

3.3 Authentication

One sometimes requires access rights to a vulnerable system in order to exploit its vulnerabilities.
According to Mell et al. (2007), authentication-related attacks are measured by the number of times an
attacker has to authenticate to the vulnerable system prior to exploitation. Specifically, an adversary may
need to either have an existing account or gain unauthorized access to an account on the vulnerable
system, which means that an attacker needs to make further efforts, such as session hijacking, social
engineering, and phishing, to exploit a vulnerability. For instance, a reported vulnerability in Windows 10
and Windows Server 2016 specified that only authenticated users could launch a malicious search query
attack (CVE, 2018). Moreover, some attacks require multiple authentication instances before exploitation,
which means that an adversary needs to have access to multiple accounts, a complex process that
requires attackers to make privilege escalation attacks or hijack multiple user sessions.

As adversaries choose their attack strategy that requires the least amount of effort and constraints,
exploiting a vulnerability with no authentication requirement has more value given the amount of time,
difficulty, and effort required. However, as the number of required authentication instances increases,
attackers face additional constraints and an increased amount of effort to exploit a vulnerability. Therefore,
we anticipate that vulnerabilities that require no authentication instances will increase exploitability risks
since such vulnerabilities require less time, skill, and effort from attackers. On the other hand, we posit
that vulnerabilities that require one or more authentication instances will decrease exploitability risk given
the high cost required from attackers. Thus, we hypothesize:

H3: A vulnerability that requires one or more authentication instances has a lower exploitability
risk than a vulnerability with no authentication instances.

3.4 Confidentiality, Integrity, and Availability

The confidentiality, integrity, and availability (CIA) framework constitutes one of the earliest and most
widely used security dimensions (Hartono, Holsapple, Kim, Na, & Simpson, 2014). Researchers have
used the CIA framework to develop practical security objectives, evaluate systems’ security, and assess
the impact of attacks on targeted systems (Hedström, Kolkowska, Karlsson, & Allen, 2011). Confidentiality
implies protecting confidential information from unauthorized disclosure; protection be achieved through
encryption, authentication, and access controls. Integrity refers to preventing individuals from modifying

427 Examining Exploitability Risk of Vulnerabilities: A Hazard Model

Volume 46 10.17705/1CAIS.04618 Paper 18

information without authorization. Common countermeasures include cryptographic algorithms (e.g.,
symmetric, asymmetric, hashes). Availability implies that intended users can access information at all
times; availability can be achieved through regular hardware maintenance, system and security updates,
data redundancy, and disaster-recovery procedures. Prior research on the CIA framework has examined
its impact on software vendors and found a positive association between confidentiality’s, integrity’s, and
availability’s degree of compromise and the likelihood that vendors will release a security patch
(Temizkan, Kumar, Park, & Subramaniam, 2012).

An exploit can result in different impact levels on the CIA framework’s components. The impact level
depends on the amount of damage done due to a loss of confidentiality, integrity, and availability; an
exploit that compromises all CIA components translates to the highest impact level. For instance,
Shellshock, a serious bash command vulnerability disclosed in 2014 resulted in complete information
disclosure, total compromise of system integrity, and enabled attackers to render the vulnerable resource
completely unavailable (National Institute of Standards and Technology, 2016). On the other hand, an
exploit that partially or does not compromise CIA components translates to lesser impact levels. The
Heartbleed bug, for example, partially impacted confidentially but did not impact on integrity or availability
(National Institute of Standards and Technology, 2015).

Vulnerabilities that compromise CIA components represent an attractive target for attackers since they
align with their objectives and maximize their payoff. Driven by information theft, an adversary would be
interested in exploiting vulnerabilities that compromise a targeted system’s confidentiality. Similarly, an
attacker who seeks to modify or destroy information would be interested in vulnerabilities that compromise
a vulnerable system’s integrity. Furthermore, as the markets for vulnerabilities and bug bounty programs
continue to favor serious vulnerabilities, attackers will continue to target vulnerabilities with the highest
CIA impact (Ransbotham, Mitra, & Ramsey, 2012).

Based on this discussion, we anticipate that a strategic attacker will be more likely to exploit vulnerabilities
that result in the highest levels of CIA impact since they lead to a bigger payoff. Specifically, vulnerabilities
that compromise CIA components offer attackers more control and wider access to the vulnerable system.
For IT vendors, such attacks involve the most danger since they compromise business assets and result
in substantial losses (Temizkan et al., 2012). On the contrary, attackers may not find vulnerabilities that
result in no impact on CIA components appealing given the time and effort needed compared to the
reward. Thus, we posit that vulnerabilities that compromise CIA components will increase exploitability
risk. On the other hand, vulnerabilities that cause no CIA impact will decrease exploitability risk. Thus, we
hypothesize:

H4: A vulnerability that affects confidentiality has a greater exploitability risk than a vulnerability
that does not affect confidentiality.

H5: A vulnerability that affects integrity has a greater exploitability risk than a vulnerability that
does not affect integrity.

H6: A vulnerability that affects availability has a greater exploitability risk than a vulnerability that
does not affect availability.

3.5 Vulnerability Type

Vulnerability type refers to the common attributes that vulnerabilities share with each other. Specifically,
each vulnerability has an attack surface that describes an attack’s assumptions, requirements, post-
conditions, mechanism, and the overall goal. An attack surface is typically used to classify vulnerabilities
into different classes. For instance, a buffer overflow vulnerability refers to a vulnerability that allows an
attacker to inject a malicious code by providing extra data and overwriting a system’s memory. While over
one hundred vulnerability types exist (CWE, 2018), attackers target and exploit certain vulnerability types
more frequently than others, and vulnerability types tend to surge and decline in popularity overtime.
Furthermore, the rapid adoption of new technologies such as Web applications, cloud computing, third-
party libraries, and frameworks affects how often vulnerability types occur (OWASP, 2017b). For example,
buffer overflow was the most common vulnerability type until Web applications rose in prominence in 2006
when injection flaw surpassed it (OWASP, 2017a).

Injection flaw, a vulnerability class, occurs when an attacker passes malicious data to a vulnerable system
without proper sanitization. One can often find this type of vulnerability in websites, SQL/NoSQL queries,
program arguments, operating system (OS) commands, XML parsers, and other technologies. Compared

Communications of the Association for Information Systems 428

Volume 46 10.17705/1CAIS.04618 Paper 18

to other vulnerability classes, injection flaw involves more risk for IT vendors since one can easily discover
and exploit it through code examination, security-/penetration-testing tools, and fuzzers (Palsetia, Deepa,
Khan, Thilagam, & Pais, 2016). Indeed, prior research has shown the extent to which automated
techniques and hacking tools can discover and exploit injection flaw vulnerabilities (Cadar & Sen, 2013)
make them an easier target to exploit for attackers. In addition, injection flaw does not rely on a particular
platform, and one can exploit the vulnerability through remote attacks; therefore, they offer attackers with
the anonymity and reduced risk. Drawing on these insights, we posit that the exploitability risk of injection
flaw vulnerabilities will be higher than the exploitability risk of other vulnerability types given the reduced
cost associated with them. Thus, we hypothesize:

H7: An injection flaw vulnerability has a greater exploitability risk than other vulnerability types

4 Data

We obtained our vulnerability dataset from the National Vulnerability Database (NVD), a public database
that the the Department of Homeland Security sponsors (see https://nvd.nist.gov). NVD contains data
related to vulnerabilities and assigns each vulnerability a unique identifier known as the common
vulnerability enumeration (CVE). In addition, NVD provides detailed information about each vulnerability
including the publication date, a short textual description, and details about vulnerability-related attributes
including access vector, access complexity, authentication, confidentiality impact, integrity impact,
availability impact, and vulnerability type. Furthermore, for each vulnerability, the database contains
information about the affected vendor and the affect products’ version and name. We obtained our exploit
dataset from Exploit Database (EDB), a public database that includes proof-of-concept exploits that the
community submits (see https://www.exploit-db.com). EDB assigns a unique identifier to each exploit
known as EDB-ID. In addition, each exploit includes additional details such as the exploit’s author, the
exploit type platform, date published, and the proof-of-concept exploit code. For some exploits, EDB
includes the CVE of the affected vulnerability. Finally, we obtained data for our control variables from the
Compustat database.

Table 1. Descriptive Statistics of Vulnerabilities and Exploits

Year Number of vulnerabilities Number of exploited vulnerabilities

2007 6437 2426

2008 6985 3425

2009 4857 1964

2010 4931 1369

2011 4357 569

2012 5125 815

2013 5594 593

2014 7301 596

2015 6287 433

2016 5526 358

Total # of initial observations 57400 12548

observations with zero-day exploits 3257 3257

observations with missing information 391 93

Final sample size 53752 9198

For our dataset, we collected all vulnerabilities published by NVD between 2007 and 2016, and we used
the coding scheme that the database provided. Our initial dataset contained 57,400 vulnerabilities. We
then collected all exploits published by EDB between 2007 and 2016. Our initial exploit dataset had
25,768 exploits with the following information: CVE of the exploited vulnerability and the exploit publication
date. We removed any exploit without an assigned CVE from the dataset. Thereafter, we cross-referenced
both datasets using the CVE. For vulnerabilities with multiple exploits, we chose the earliest exploit
publication date. We removed 3,257 observations from the sample because they had a negative
exploitability risk. These observations suggest a zero-day vulnerability in which the exploit existed prior to
the vulnerability’s publication. Finally, we cross referenced our dataset with Compustat by matching the

429 Examining Exploitability Risk of Vulnerabilities: A Hazard Model

Volume 46 10.17705/1CAIS.04618 Paper 18

names of the affected firms with the extracted information from Compustat. After matching the data and
removing cases with missing information, the final dataset contained 53,752 vulnerabilities (9,198 of which
had an exploit). We provide descriptive statistics of the vulnerabilities and exploits in Table 1.

5 Analysis and Results

To test the proposed hypotheses, we used survival analysis—a set of statistical methods for studying the
occurrence and timing of events. Unlike other statistical methods, survival analysis considers time-
dependent variables and does not assume any type of distribution for the survival times (Allison, 2010).
Specifically, given that the hazard of an exploited vulnerability lacks an exact distribution, we use the Cox
model (also called the Cox proportional hazard model), a semi-parametric method of survival analysis.
One can use the Cox model to analyze time-to-event data; it estimates the hazard ratio (relative risk) for
each independent variable (Cox, 2018). The Cox model helps reduce potential biases associated with
misspecifying statistical models. In other words, in cases where one does not know the baseline risk, one
can use the Cox model to estimate the baseline and study the deviations from said baseline. In addition,
Cox model accounts for the issue of right censoring, which occurs when one does not observe an event
(e.g., exploited vulnerability) during a study. The Cox model addresses censored data by considering all
observations regardless of the occurrence of the event of interest. Finally, Cox regression includes a
proportionality assumption that changes in the levels of independent variables will produce proportionate
changes in the hazard function that remains constant over time. We express Cox regression as follows:

h1(exploitability risk)= h0(exploitability risk) exp (ΣAttributei 𝛾i +ΣX𝑖 β), (1)

where h0(exploitability risk) refers to the base hazard function when all independent variables are zero,
attribute refers to our vector of attributes, and Xiβ refers to our vector controls for the ith observation.

For our research, we use exploitability risk as the dependent variable. Thus, we censored vulnerabilities
that no one exploited. Researchers suggest that each independent variable should have 40 to 50 required
events (Austin, Allignol, & Fine, 2017). Our sample of 53,752 vulnerabilities adequately met that criterion.
Furthermore, for each categorical independent variable with n levels, we created n-1 dummy variables. In
such cases, the omitted level becomes the reference group. As such, we could measure how a change in
the hazard ratio reflects a difference from the baseline hazard containing the reference group.

In this study, we used vulnerability publication date (Dvulnerability) and exploit publication date (Dexploit) to
measure the primary dependent variable exploitability risk. Dvulnerability refers to the date when NVD
released information about a vulnerability to the public. NVD typically releases such information after it
notifies the IT vendor about a vulnerable product and provides them with 30-45 days to release a security
patch (Arora et al., 2010). Dexploit refers to an exploit’s publication date. We measured exploitability risk as
the duration between vulnerability publication date and exploit publication date (exploitability risk = Dexploit -
Dvulnerability). We set the cutoff date for exploitability risk to 31 December, 2016. Thus, we censored
published vulnerabilities that lacked an exploit by the cutoff date.

For the vulnerability attributes model, we included six independent variables: access vector, access
complexity, authentication, confidentiality, integrity, and availability. Access vector had two values: 0 for
local access and 1 for outside access. The access complexity variable had two values according to the
complexity level: 0 for low complexity and 1 for medium/high complexity. Authentication variable measures
the number of authentication instances required and had two values: 0 for no authentication and 1 for one
or more authentication instances. Confidentiality variable had two possible values: 0 for no compromise
and 1 for compromise. Similarly, integrity variable had two values: 0 for no compromise and 1 for
compromise. Finally, availability variable had two values according to the compromise level: 0 for no
compromise and 1 for compromise.

To account for other confounding factors, we controlled for six variables: affected product type, number of
affected software versions, year of exploit, number of past exploits, firm size, and research and
development (R&D) expenses. Existing research suggests that specific product types attract more attacks
and represent main targets for exploits. For example, given the ubiquity of Web browsers and browser
plugins, they have become an attractive target for malicious attacks (Onarlioglu, Buyukkayhan, Robertson,
& Kirda, 2015). Similarly, the wide adoption of mobile devices has led to a major increase in attacks and
malware that exploit and compromise mobile apps (McAfee, 2016). We also controlled for the number of
affected software versions since a vulnerability may impact multiple software versions, which would likely

Communications of the Association for Information Systems 430

Volume 46 10.17705/1CAIS.04618 Paper 18

affect attackers’ behavior and their exploit strategy. Furthermore, we also included an additional control
variable that counts the number of previous exploits and we controlled for exploited year effects by
including dummy variables. Finally, following previous studies, at the firm level, we controlled for firm size
and R&D expenses (Higgs, Pinsker, Smith, & Young, 2016; Wang, Kannan, & Ulmer, 2013). We
summarize the control variables and how we operationalized them in Table 2.

Table 2. Variables and Descriptions/Measures for the Vulnerability Attributes Model

Variable name Variable type Description/measure

Exploitability risk Dependent
The difference (in days) between vulnerability publication and
exploit publication dates

Access vector Independent
The method of access needed to execute an attack: 0 for local
access, 1 outside access

Access complexity Independent
The level of difficulty of the attack: 0 for low complexity, 1 for
medium/high complexity.

Authentication Independent
The number of authentication instances required for an attack: 0
for no instances, 1 for one or more instances.

Confidentiality impact Independent
The level of compromise of confidentiality: 0 for no compromise, 1
for compromise

Integrity impact Independent
The level of compromise of integrity: 0 for no compromise, 1 for
compromise

Availability impact Independent
The level of compromise of availability: 0 for no compromise, 1 for
compromise

Affected product type Control
The type of product affected by the vulnerability: 0 for application,
1 for operating system, 2 for hardware

Number of affected
software versions

Control A count of the number of affected software versions

Number of past exploits Control A count of the total number of previous exploits

Year Control Dummy variables that control for exploited year effect

Firm size Control Measures the book value of the firm’s total assets

R&D expenses Control Firm’s research and development expenses

Our second model, vulnerability types, included the same dependent variable (exploitability risk), one
independent variable (vulnerability types), and six control variables. A categorical variable, vulnerability types
had ten levels that individually referred to a vulnerability type. We identified these levels using the common
weakness and exposures (CWE), a community-developed dictionary that describes the architecture, design,
and code of software weakness types. Originally, this variable comprised 70 levels; however, we limited
vulnerability types to the top ten levels with the highest frequency (see Table 4) to remove sample size
issues per level. Finally, to account for other confounding factors, we controlled for the same six variables as
in the first model. We summarize the variables and how we operationalized them in Table 3.

Table 3. Variables and Descriptions/Measures for the Vulnerability Types Model

Variable name Variable type Description/measure

Exploitability risk Dependent
The difference (in days) between vulnerability publication and
exploit publication dates

Vulnerability type Independent The type of vulnerability (see Table 4)

Affected product type Control
The type of product affected by the vulnerability; 0 for application,
1 for operating system (OS), 2 for hardware

Number of affected
software versions

Control A count of the number of affected software versions

Number of past exploits Control A count of the total number of previous exploits

Year Control Dummy variables that control for exploited year effect

Firm size Control Measures the book value of the firm’s total assets

R&D expenses Control Firm’s research and development expenses

431 Examining Exploitability Risk of Vulnerabilities: A Hazard Model

Volume 46 10.17705/1CAIS.04618 Paper 18

For this study, we evaluated a Cox regression model to predict exploitability risk using vulnerability
attributes (Equation 2) and vulnerability types (Equation 3) as follows:

(2)

(3)

Table 4. Descriptive Statistics of Vulnerability Types

Vulnerability type Vulnerability class Frequency Percent

Buffer error Input validation 6271 17.42

Cross-site scripting Injection flaw 5030 13.97

Access control issue Security features 4294 11.92

Information leak/disclosure Info. management error 2709 7.52

Resource management error Indicator of poor code quality 2498 6.94

Cryptographic issue Security features 2217 6.16

SQL injection Injection flaw 1249 3.47

Numeric error Data handling 1169 3.25

Code injection Injection flaw 1103 3.06

Cross-site request forgery
Insufficient verification of data

authenticity
949 2.64

Total 27489 76.35

Prior to running the analysis, we used the plots of deviance residuals to check the data for outliers. The
plots did not show high or low deviance residuals, which suggests the data lacked outliers. We performed
Cox regression analysis using SAS (version 9.3). We examined Cox regression’s proportionality
assumption using plots of log(−log(survival)) versus log(time). Both graphs produced parallel curves,
which implies our models did not violate the proportionality assumption. We assessed goodness-of-fit and
maximum-likelihood estimates for both models (see Table A1 in the Appendix). To examine the
significance of the overall models, we used the -2 log-likelihood (-2LL) likelihood ratio test. Based on the
chi-square statistic 953.01 (p < .0001) for the vulnerability attributes model and 483.73 (p < .0001) for the
vulnerability types model, we rejected the null hypothesis that the independent variables had no effect,
and we deemed the models statistically significant. Furthermore, we tested for multicollinearity using
variance inflation factor (VIF). Our results showed no VIF scores greater than 10, which suggests our
models did not violate multicollinearity (Hosmer, Lemeshow, & May, 2011; Lin & Wei, 1989).

For each independent variable, Cox regression produces a coefficient, a standard error, a chi-square
value, and a hazard ratio. A hazard ratio greater than 1 implies that an increase in the independent
variable will increase the likelihood of an exploit. On the contrary, a hazard ratio that does not exceed 1
implies that an increase in the independent variable will lower the likelihood of an exploit. Finally, a hazard
ratio that equals 1 implies that a change in the independent variable does not affect the likelihood of an
exploit.

Based on the results of the vulnerability attributes model (see Table 5), a vulnerability with an outside
access vector had a 20 percent higher exploitability risk compared to a vulnerability with a local access
vector. This result implies that attackers will more likely exploit a vulnerability with an outside access
vector than a vulnerability with a local access. Therefore, we found support for H1. We also found that
vulnerabilities with medium/high access complexities had a 13 percent lower exploitability risk compared
to low access complexity. Therefore, we found support for H2. In addition, we found that vulnerabilities
that require one or more authentication instances had a 48 percent lower exploitability risk compared to
vulnerabilities that require no authentication instances. Therefore, we found support for H3.

We also found support for our hypotheses about whether vulnerabilities that affect confidentiality (H4),
integrity (H5), and availability (H6) have a greater exploitability risk than vulnerabilities that do not.

Communications of the Association for Information Systems 432

Volume 46 10.17705/1CAIS.04618 Paper 18

Specifically, we found that a vulnerability that affects confidentiality had a 110 percent higher exploitability
risk compared to a vulnerability that does not. Similarly, we found that a vulnerability that affects integrity
had a 134 percent higher exploitability risk compared to a vulnerability that does not. Finally, we found that
a vulnerability that affects availability had a 19 percent higher exploitability risk compared to a vulnerability
that does not. As for our control variables, we found that larger firms had a higher exploitability risk than
smaller firms. We also found that firms that spend more on R&D had a lower exploitability risk than firms
that spend less. These results highlight the benefits that farms can gain from investing in R&D to reduce
exploitability risk.

Table 5. Maximum Likelihood Estimates for the Vulnerability Attributes Model

Variables Coefficient (β) SE X2 Hazard ratio

Access vector (outside access) 0.18 0.04 28.42 1.20***

Access complexity (high/medium) -0.25 0.03 35.90 0.78***

Authentication (one or more) -0.66 0.03 41.37 0.52***

Confidentiality (compromise) 0.74 0.22 50.44 2.10***

Integrity (compromise) 0.85 0.35 37.94 2.34***

Availability (compromise) 0.17 0.2 13.55 1.19**

Affected product type (OS) 0.52 0.1 0.96 1.68

Affected product type (hardware) 0.28 0.18 0.81 1.32

Number of affected software versions 0.49 0.03 1.13 1.63

Number of past exploits 0.31 0.02 0.26 1.36

Year 0.56 0.07 0.59 1.75

Firm size 0.23 0.18 23.72 1.26***

Firm R&D -2.82 1.4 30.04 0.06***

***significant at p < 0.001, **significant at p < 0.01, *significant at p < 0.05

We explored the robustness of the results through alternative sampling strategies and statistical methods.
Since a vulnerability can have multiple exploits, a high correlation among exploits for the same
vulnerability could exist. In order to account for correlation, we used generalized estimating equations
(GEE). A longitudinal statistical method, GEE considers the correlations between repeated measures
(Hardin & Hilbe, 2002). We found that our results remained the same (see Table A2 in the Appendix).
Next, we employed a Cox regression model with repeated events. Again, we found that our results
remained the same (see Table A3 in the Appendix). Based on our analysis, we conclude that our main
findings remain robust to including or excluding exploits for the same vulnerability. Last, we ran an
additional Cox regression model using three levels for each of the independent variables without
combining any level together as follows: access vector (local, adjacent, remote), access complexity (low,
medium, high), authentication (no, single, multiple), confidentiality (no compromise, partial compromise,
complete compromise), integrity (no compromise, partial compromise, complete compromise) and
availability (no compromise, partial compromise, complete compromise). The majority of our results
remained qualitatively the same (see Table A4 in the Appendix); however, some of the independent
variables did not reach statistical significance, which we can attribute to the low sample size per level.

After analyzing the vulnerability attributes model, we repeated the same process for the vulnerability types
model. We found that code injection, a type of injection flaw class, had the highest exploitability risk
compared to buffer overflow (see Table 6). Specifically, we found that code injection vulnerabilities had a
39 percent higher exploitability risk compared to buffer overflow vulnerabilities. Other vulnerability types
had a lower exploitability risk compared to buffer overflow vulnerabilities (in descending order from highest
to lowest exploitability risk: SQL injection, numeric error, access control issue, resource management
error, cross-site request forgery, information leak/disclosure, cross-site scripting, and cryptographic issue).
Thus, we found support for H7. Furthermore, our results for the control variables in this hazard model
concur with our previous findings. Specifically, larger firms face a higher exploitability risk than smaller
firms and firms with higher R&D spending have a lower exploitability risk. To ensure that variation in
frequency of vulnerability types did not affect our results, we reran the analysis using a random sample of
1,000 cases from each vulnerability type. We obtained the same results. Furthermore, we also explored
the results’ robustness through GEE and the Cox regression model with repeated events. As for the GEE

433 Examining Exploitability Risk of Vulnerabilities: A Hazard Model

Volume 46 10.17705/1CAIS.04618 Paper 18

analysis, our results remained the same (see Table A5 in the Appendix). Similarly, as for the Cox
regression model, the same results remained the same (see Table A6 in the Appendix). Thus, we
conclude that our results remain robust to including or excluding multiple exploits for the same
vulnerability.

Table 6. Analysis of Maximum Likelihood Estimates for the Vulnerability Types Model

Variable
Coefficient

(β)
SE X2 Hazard ratio

Vulnerability type (cross-site scripting) -1.60 0.10 63.20 0.20***

Vulnerability type (access control issue) -0.74 0.03 58.16 0.48***

Vulnerability type (info leak/disclosure) -1.55 0.11 52.79 0.21***

Vulnerability type (resource management error) -0.81 0.16 73.85 0.44***

Vulnerability type (cryptographic issue) -2.68 0.29 47.21 0.07***

Vulnerability type (SQL injection) -0.32 0.19 5.82 0.73*

Vulnerability type (numeric error) -0.60 0.14 31.01 0.55***

Vulnerability type (code injection) 0.33 0.15 45.14 1.39***

Vulnerability type (cross-site request forgery) -1.19 0.19 58.37 0.30***

Affected product type (OS) 0.31 0.09 0.78 1.36

Affected product type (hardware) 0.24 0.16 0.89 1.27

Number of affected software versions 0.13 0.22 0.19 1.14

Number of past exploits 0.22 0.04 0.47 1.25

Year 0.50 0.03 0.73 1.65

Firm size 0.49 0.29 33.85 1.63***

Firm R&D -3.13 1.42 40.55 0.04***

***significant at p < 0.001, **significant at p < 0.01, *significant at p < 0.05

6 Discussion

Researchers need to study vulnerabilities’ exploitability risk to assist IT vendors and organizations who
struggle to protect vulnerable systems from exploits. Yet, we do not comprehensively understanding the
relationship between vulnerability-related factors and exploitability risk. Accordingly, in this study, we focus
on better understanding vulnerabilities’ exploitability risk and how vulnerability attributes and vulnerability
types impact exploitability risk. Using vulnerability and exploit data published between 2007 and 2016, we
built two Cox proportional hazard models. We found that vulnerability attributes (access vector, access
complexity, authentication, confidentiality, integrity, and availability impacts) were associated with
exploitability risk. Our results suggest that attackers will most likely exploit vulnerabilities that they can
exploit remotely, that have a low complexity level, that require no authentication, and that affect
confidentiality, integrity, and availability components. Not surprisingly and consistent with prior studies
(Sen & Heim, 2016), attackers find vulnerabilities with an outside access vector favorable as it provides
them with anonymity and lowers the chance that someone will detect them. Further, it minimizes the
burden associated with writing and testing exploits locally. This finding could also explain the increasing
trend in specific remote attacks such as distributed-denial-of-service (DDOS) (Akamai, 2016). For access
complexity, we found that attackers will more likely target less complex vulnerabilities. We can explain this
observation based on the fact that exploiting less complex vulnerabilities requires less effort from
attackers, and, in some cases, they can automate the process with penetration testing kits and online
hacking tools (Samtani, Chinn, Chen, & Nunamaker, 2017). In other words, attackers prefer to exploit
easier vulnerabilities. On the contrary, vulnerabilities with medium/high access complexity require
advanced skills and more experience, which decreases their exploitability risk. With regards to
authentication, we found that exploitability risk increases when a vulnerability does not require an
authentication instance. As for why, hackers possibly do not need to expend as much effort to write
exploits that require no authentication. Further, the growth and advances in authentication mechanisms,
such as biometric technology and two-factor authentication, may have increased the amount of effort and
difficulty required to exploit vulnerabilities (Orbis, 2016). Consistent with our hypotheses, we found a

Communications of the Association for Information Systems 434

Volume 46 10.17705/1CAIS.04618 Paper 18

positive interaction between exploitability risk and confidentiality, integrity, and availability. Thus, our
results suggest that attackers will more likely exploit vulnerabilities that affect confidentiality, integrity, and
availability. This observation could provide one explanation for the high prevalence of reported data-
integrity, confidentiality, and availability attacks (Kharif, 2016).

In terms of the vulnerability types model, our findings suggest that code injection has the highest
exploitability risk. Interestingly, this finding indicates that attackers have a preference when it comes to
exploiting certain vulnerability types. Code injection may have a high exploitability risk because, unlike
other vulnerability types, intrusion-prevention systems cannot detect code injection, and firewalls or SSL
encryption cannot block it (Talukder & Chaitanya, 2008). Hence, adversaries can more easily attack a
vulnerable system without putting additional effort into bypassing security measures. While we examined
other types in the injection flaw class (e.g., cross-site scripting and SQL injection), we found that code
injection had the highest exploitability risk level. This finding implies that the exploitability risk of
vulnerabilities in the injection flaw class differs across all types—an interesting result that merits further
research to examine the specific properties of vulnerability types and their impact on exploitability risk.

6.1 Implications for Research and Practice

With this study, we make key contributions to theory and practice. As we note in Section 1, although
significant research attention has focused on assessing vulnerabilities, little attention has focused on
analyzing exploitability risk of vulnerabilities using historical data (Webb et al., 2014)—a significant gap in
the risk-assessment literature. With this study, we help to fill this gap by examining vulnerabilities and
analyzing the relationship between vulnerability attributes and exploitability risk. We also provide insight
into the specific interplay between vulnerability types and exploitability risk. Specifically, with this paper,
pinpoint the significant attributes of vulnerabilities including access vector, access complexity,
authentication, confidentiality, integrity, and availability impacts. In addition, the models we present
answer prior calls (Sen & Heim, 2016) for additional factors associated with exploitability risk.
Furthermore, our findings make an important contribution to the existing literature on risk assessment and
management (see, for e.g., Da Veiga & Eloff, 2010; Spears & Barki, 2010; Sen & Heim, 2016) by
highlighting the factors that affect exploitability risk and better explaining their impact. Additionally, an
important theoretical implication concerns the added power to explain exploitability risk. Finally, we extend
research in the information security theme and contribute to current trends in the IS literature (Goyal,
Ahuja & Guan, 2018; Zafar & Clark, 2009)

IT vendors, security managers, and professionals who seek to secure their systems and reduce security
related losses should find this study relevant. Interestingly, we found that attackers have preferences
regarding the attributes and the type of vulnerabilities which they target. Therefore, as IT vendors learn
about hackers’ strategies, they can employ this knowledge to predict future attacks (Cavusoglu, Mishra, &
Raghunathan, 2005). Based on our results, IT vendors can prioritize patch development with respect to
exploits’ likelihood. Similarly, system administrators and consumers can choose which security patch to
apply based on an exploit’s importance and likelihood. In addition, our results can aid security managers
who grapple with allocating personnel and non-personnel resources when dealing with numerous security
issues. Specifically, IT vendors can demonstrate their proficiency in solving security issues and delivering
timely patches by making smart decisions when assessing vulnerable software for risk. With respect to the
software development lifecycle (SDLC), our results can guide code developers and quality assurance
personnel to implement secure coding practices and test for the most exploited vulnerability types. In
addition, software maintenance teams can use our proposed models to discover particular types of
vulnerabilities and vulnerabilities with specific attributes to mitigate the risk of exploits. Finally, when faced
with multiple vulnerability reports, IT vendors may find it more efficient to consider policies that prioritize
security assessment and patching and that promote more secure software-development practices.

6.2 Limitations and Future Research

While this study provides interesting facts surrounding vulnerabilities and exploitability risk, it suffers from
several limitations. The first limitation deals with the data we used for analysis. In particular, we relied on
publicly disclosed information from NVD and EDB without considering non-disclosed or private
information. However, given the difficulty and integrity issues with obtaining private information, we believe
that the datasets we used were sufficient to answer our research questions. Second, our theoretical
framework assumed perfect rationality and did not consider other psychological and behavioral factors,
such as bounded rationality, belief formation, and learning. Third, the survival analysis method relied on

435 Examining Exploitability Risk of Vulnerabilities: A Hazard Model

Volume 46 10.17705/1CAIS.04618 Paper 18

exploits’ earliest publication date; however, with the existence of underground hacker communities, other
exploits may have existed prior to that date. Finally, given the dynamic nature of the cyberspace and the
growth of the security field, our current findings may not hold as attackers change tactics and IT vendors
adapt to security threats. Therefore, researchers need to continuously monitor our results as new
vulnerabilities and exploits appear.

Future research on exploitability risk could examine additional attributes related to vulnerable software,
such as source code availability and programming language. Since we examined only published
vulnerabilities’ exploitability risk, future research could analyze this relationship in the context of zero-day
vulnerabilities, which would entail exploring exploits that became available prior to publishing
vulnerabilities. In addition, future work may benefit from integrating additional psychological and
behavioral factors (e.g., bounded rationality, belief formation, and learning) that may reveal further insight
into the interaction between attackers and IT vendors. Furthermore, future studies could contribute to the
literature by examining the association between vulnerabilities and how frequently and quickly attackers
publish exploits. Additionally, we believe one would benefit from integrating our findings with other
assessment methods. Thus, future studies might find examining a hybrid approach to exploitability risk
beneficial. Finally, future research might benefit from analyzing exploitability risk for specific IT vendors.

7 Conclusion

As IT vendors continue to face attacks from adversaries who attempt to exploit vulnerabilities, they need
to assess and prioritize which vulnerabilities to fix first. In this study, we address two research questions to
find out which vulnerability-related attributes and vulnerability types result in the highest exploitability risks.
Using datasets from the National Vulnerability Database and Exploit Database, we employed survival
analysis to answer our research questions. Our findings indicate that IT vendors benefit the most from
fixing remotely exploitable vulnerabilities; low-complexity vulnerabilities; vulnerabilities that require no
authentication; and vulnerabilities that affect confidentiality, integrity, and availability components.
Furthermore, we found that the code injection vulnerability type has the highest exploitability risk followed
by buffer overflow and numeric error vulnerabilities. This study offers insights to IT vendors and security
managers on how to assess exploitability risk using vulnerability-related attributes and types.

Communications of the Association for Information Systems 436

Volume 46 10.17705/1CAIS.04618 Paper 18

References

Akamai. (2016). Akamai’s [state of the Internet] / security Q1 2016. Retrieved from
https://www.akamai.com/es/es/multimedia/documents/state-of-the-internet/akamai-q1-2016-state-
of-the-internet-security-report.pdf

Allison, P. D. (2010). Survival analysis using SAS: A practical guide. Cary. NC: SAS Institute.

Arora, A., Krishnan, R., Telang, R., & Yang, Y. (2010). An empirical analysis of software vendors’ patch
release behavior: impact of vulnerability disclosure. Information Systems Research, 21(1), 115-132.

Arthur, W. B. (1994). Inductive reasoning and bounded rationality. The American Economic Review, 84(2),
406-411.

Austin, P. C., Allignol, A., & Fine, J. P. (2017). The number of primary events per variable affects
estimation of the subdistribution hazard competing risks model. Journal of Clinical Epidemiology,
83, 75-84.

Baskerville, R., Spagnoletti, P., & Kim, J. (2014). Incident-centered information security: Managing a
strategic balance between prevention and response. Information & Management, 51(1), 138-151.

Boylu, F., Aytug, H., & Koehler, G. J. (2010). Induction over strategic agents. Information Systems
Research, 21(1), 170-189.

Cadar, C., & Sen, K. (2013). Symbolic execution for software testing: Three decades later.
Communications of the ACM, 56(2), 82-90.

Cavusoglu, H., Mishra, B., & Raghunathan, S. (2005). The value of intrusion detection systems in
information technology security architecture. Information Systems Research, 16(1), 28-46.

Cavusoglu, H., Raghunathan, S., & Yue, W. T. (2008). Decision-theoretic and game-theoretic approaches
to IT security investment. Journal of Management Information Systems, 25(2), 281-304.

Chong, J. K., Camerer, C. F., & Ho, T. H. (2006). A learning-based model of repeated games with
incomplete information. Games and Economic Behavior, 55(2), 340-371.

Chung, Y. C., Wu, M. C., Chen, Y. C., & Chang, W. K. (2012). A hot query bank approach to improve
detection performance against SQL injection attacks. Computers & Security, 31(2), 233-248.

Cox, D. R. (2018). Analysis of survival data. New York, NY: Routledge.

Cremonini, M., & Nizovtsev, D. (2009). Risks and benefits of signaling information system characteristics
to strategic attackers. Journal of Management Information Systems, 26(3), 241-274.CWE. (2018).
About CWE. Retrieved from https://cwe.mitre.org/about/index.html

Da Veiga, A., & Eloff, J. H. (2010). A framework and assessment instrument for information security
culture. Computers & Security, 29(2), 196-207.

Fielder, A., Panaousis, E., Malacaria, P., Hankin, C., & Smeraldi, F. (2016). Decision support approaches
for cyber security investment. Decision Support Systems, 86, 13-23.

Fudenberg, D., Drew, F., Levine, D. K., & Levine, D. K. (1998). The theory of learning in games (vol. 2).
Cambridbge, MA: MIT Press.

Galbreth, M. R., & Shor, M. (2010). The impact of malicious agents on the enterprise software industry.
MIS Quarterly, 34(3), 595-612.

Gao, X., Zhong, W., & Mei, S. (2014). A game-theoretic analysis of information sharing and security
investment for complementary firms. Journal of the Operational Research Society, 65(11), 1682-
1691.

Goyal, S., Ahuja, M., & Guan, J. (2018). Information systems research themes: a seventeen-year data-
driven temporal analysis. Communications of the Association for Information Systems, 43, 404-431.

Hardin, J. W., & Hilbe, J. M. (2002). Generalized estimating equations. Chapman and Hall/CRC.

437 Examining Exploitability Risk of Vulnerabilities: A Hazard Model

Volume 46 10.17705/1CAIS.04618 Paper 18

Hartono, E., Holsapple, C. W., Kim, K. Y., Na, K. S., & Simpson, J. T. (2014). Measuring perceived
security in B2C electronic commerce website usage: A respecification and validation. Decision
Support Systems, 62, 11-21.

Hedström, K., Kolkowska, E., Karlsson, F., & Allen, J. P. (2011). Value conflicts for information security
management. The Journal of Strategic Information Systems, 20(4), 373-384.

Higgs, J. L., Pinsker, R. E., Smith, T. J., & Young, G. R. (2016). The relationship between board-level
technology committees and reported security breaches. Journal of Information Systems, 30(3), 79-
98.

Hinz, O., Nofer, M., Schiereck, D., & Trillig, J. (2015). The influence of data theft on the share prices and
systematic risk of consumer electronics companies. Information & Management, 52(3), 337-347.

Ho, T. H., & Zhang, J. (2008). Designing pricing contracts for boundedly rational customers: Does the
framing of the fixed fee matter? Management Science, 54(4), 686-700.

Hong, Y., Pavlou, P. A., Wang, K., & Shi, N. (2016). On the role of fairness and social distance in
designing effective social referral systems. MIS Quarterly, 41(3), 16-038.

Hosmer, D. W., Lemeshow, S., & May, S. (2011). Applied survival analysis: Regression modeling of time
to event data (2nd ed.). Hoboken, NJ: Wiley.

Hua, J., & Bapna, S. (2013). The economic impact of cyber terrorism. The Journal of Strategic Information
Systems, 22(2), 175-186.

Huang, C. C., Lin, F. Y., Lin, F. Y. S., & Sun, Y. S. (2013). A novel approach to evaluate software
vulnerability prioritization. Journal of Systems and Software, 86(11), 2822-2840.

Hui, K., Vance, A., & Zhdanov, D. (2016). Securing digital assets. MIS Quarterly. Retrieved from
https://www.misqresearchcurations.org/blog/2017/5/10/securing-digital-assets-1

Ioannou, C. A., & Romero, J. (2014). A generalized approach to belief learning in repeated games.
Games and Economic Behavior, 87, 178-203.

Kaspersky. (2016). Kaspersky security bulletin—overall statistics for 2016. Retrieved from
https://kasperskycontenthub.com/securelist/files/2016/12/Kaspersky_Security_Bulletin_2016_Revie
w_ENG.pdf

Kharif, O. (2017). 2016 was a record year for data breaches. Bloomberg. Retrieved from
https://www.bloomberg.com/news/articles/2017-01-19/data-breaches-hit-record-in-2016-as-dnc-
wendy-s-co-hacked

Kim, K., Chung, K., & Lim, N. (2019). Third-party reviews and quality provision. Management Science,
65(6), 2695-2716

Kshetri, N. (2013). Cyber-victimization and cybersecurity in China. Communications of the ACM, 56(4),
35-37.

Li, X. (2014). Relational contracts, growth options, and heterogeneous beliefs: A game-theoretic
perspective on information technology outsourcing. Journal of Management Information Systems,
31(2), 319-350.

Lin, D. Y., & Wei, L. J. (1989). The robust inference for the Cox proportional hazards model. Journal of the
American statistical Association, 84(408), 1074-1078.

Manion, A. (2012). Vulnerability severity using CVSS. Carnegie Mellon University. Retrieved from
https://insights.sei.cmu.edu/cert/2012/04/-vulnerability-severity-using-cvss.html

McAfee. (2016). Mobile threat report what’s on the horizon for 2016. Retrieved from
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf

Mell, P., Scarfone, K. A., & Romanosky, S. (2007). The common vulnerability scoring system (CVSS) and
its applicability to federal agency systems. Retrieved from
https://csrc.nist.gov/publications/detail/nistir/7435/final

National Institute of Standards and Technology. (2015). NVD details: CVE-2014-0160. Retrieved from
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160

Communications of the Association for Information Systems 438

Volume 46 10.17705/1CAIS.04618 Paper 18

National Institute of Standards and Technology. (2016). NVD details: CVE-2014-6271. Retrieved from
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6271

NVD. (2018). National vulnerability database. Retrieved from https://nvd.nist.gov/vuln/full-listing

Onarlioglu, K., Buyukkayhan, A. S., Robertson, W., & Kirda, E. (2015). Sentinel: Securing legacy Firefox
extensions. Computers & Security, 49, 147-161.

Orbis. (2016). Multi-factor authentication (MFA)—global market outlook (2016-2022). Retrieved from
http://www.orbisresearch.com/reports/index/multi-factor-authentication-mfa-global-market-outlook-
2016-2022

Osborne, M. J., & Rubinstein, A. (1994). A course in game theory. Cambridge, MA: MIT Press.

OWASP. (2017a). OWASP top 10—2017: The ten most critical web application security risks. Retrieved
from https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf

OWASP. (2017b). Risk rating methodology. Retrieved from:
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Palsetia, N., Deepa, G., Khan, F. A., Thilagam, P. S., & Pais, A. R. (2016). Securing native XML
database-driven web applications from XQuery injection vulnerabilities. Journal of Systems and
Software, 122, 93-109.

Ransbotham, S., Mitra, S., & Ramsey, J. (2012). Are markets for vulnerabilities effective? MIS Quarterly,
36(1), 43-64.

Rasmusen, E., & Blackwell, B. (1994). Games and information. Cambridge, MA: Blackwell.

Samtani, S., Chinn, R., Chen, H., & Nunamaker Jr, J. F. (2017). Exploring emerging hacker assets and
key hackers for proactive cyber threat intelligence. Journal of Management Information Systems,
34(4), 1023-1053.

Sen, R. (2018). Challenges to cybersecurity: Current state of affairs. Communications of the Association
for Information Systems, 43, 22-44.

Sen, R., & Heim, G. R. (2016). Managing enterprise risks of technological systems: An exploratory
empirical analysis of vulnerability characteristics as drivers of exploit publication. Decision
Sciences, 47(6), 1073-1102.

Simon, H. A. (1972). Theories of bounded rationality. Decision and Organization, 1(1), 161-176.

Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics, 69(1),
99-118.

Spears, J. L., & Barki, H. (2010). User participation in information systems security risk management. MIS
Quarterly, 34(3), 503-522.

Stahl, D. O. (2000). Rule learning in symmetric normal-form games: Theory and evidence. Games and
Economic Behavior, 32(1), 105-138.

Sterman, J. D., Henderson, R., Beinhocker, E. D., & Newman, L. I. (2007). Getting big too fast: Strategic
dynamics with increasing returns and bounded rationality. Management Science, 53(4), 683-696.

Symantec. (2018). Internet security threat report. Retrieved from
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf

Talukder, A. K., & Chaitanya, M. (2008). Architecting secure software systems. Amsterdam: Auerbach.

Temizkan, O., Kumar, R. L., Park, S., & Subramaniam, C. (2012). Patch release behaviors of software
vendors in response to vulnerabilities: An empirical analysis. Journal of Management Information
Systems, 28(4), 305-338.

Verizon. (2012). Verizon 2012 data breach investigations report. Retrieved from
http://www.verizonenterprise.com/resources/reports/es_data-breach-investigations-report-
2012_en_xg.pdf

439 Examining Exploitability Risk of Vulnerabilities: A Hazard Model

Volume 46 10.17705/1CAIS.04618 Paper 18

Wagner, D., & Schweitzer, B. (2016). The growing threat of cyber-attacks on critical infrastructure. The
Huffington Post. Retrieved from http://www.huffingtonpost.com/daniel-wagner/the-growing-threat-of-
cyb_b_10114374.html

Wang, T., Kannan, K. N., & Ulmer, J. R. (2013). The association between the disclosure and the
realization of information security risk factors. Information Systems Research, 24(2), 201-218.

Webb, J., Ahmad, A., Maynard, S. B., & Shanks, G. (2014). A situation awareness model for information
security risk management. Computers & Security, 44, 1-15.

Wu, Y., Feng, G., & Fung, R. Y. (2018). Comparison of information security decisions under different
security and business environments. Journal of the Operational Research Society, 69(5), 747-761.

Wu, Y., Feng, G., Wang, N., & Liang, H. (2015). Game of information security investment: Impact of attack
types and network vulnerability. Expert Systems with Applications, 42(15-16), 6132-6146.

Xu, H. (2018). Is more information better? An economic analysis of group-buying platforms. Journal of the
Association for Information Systems, 19(11), 1130-1144.

Younis, A., Malaiya, Y. K., & Ray, I. (2016). Assessing vulnerability exploitability risk using software
properties. Software Quality Journal, 24(1), 159-202.

Zafar, H., & Clark, J. G. (2009). Current state of information security research in IS. Communications of
the Association for Information Systems, 24, 557-596.

Communications of the Association for Information Systems 440

Volume 46 10.17705/1CAIS.04618 Paper 18

Appendix

Table A1. Summary of Model Statistics and Goodness of Fit

 N Events Censored Likelihood ratio (χ2)

Vulnerability attributes model 53752 9198 44554 953.01***

Vulnerability types model 53752 9198 44554 483.73***

***significant at p < 0.001, **significant at p < 0.01, *significant at p < 0.05

Table A2. Robustness Check: Analysis of Generalized Estimating Equations for the Vulnerability Attributes
Model

Variable Coefficient (β) SE X2 Hazard ratio

Access vector (remote) 0.28 0.08 7.58 1.32*

Access complexity (high/medium) -0.19 0.06 13.03 0.83**

Authentication (single/multiple) -0.22 0.09 16.85 0.80**

Confidentiality (partial/complete) 0.97 0.27 6.30 2.64*

Integrity (partial/complete) 0.9 0.27 12.64 2.46**

Availability (partial/complete) 0.15 0.3 0.83 1.16

Affected product type (OS) 0.61 0.22 0.52 1.84

Affected product type (hardware) 0.2 0.13 0.98 1.22

Number of affected software versions 0.51 0.05 0.29 1.67

Number of past exploits 0.31 0.09 0.20 1.36

Year 0.26 0.11 0.06 1.30

Firm size 0.14 0.2 19.45 1.15**

Firm R&D -1.97 1.27 43.99 0.14***

***significant at p < 0.001, **significant at p < 0.01, *significant at p < 0.05

Table A3. Robustness Check: Analysis of Cox Regression with Repeated Events for the Vulnerability
Attributes Model

Variable Coefficient (β) SE X2 Hazard ratio

Access vector (remote) 0.25 0.1 4.29 1.28*

Access complexity (high/medium) -0.39 0.14 6.41 0.68*

Authentication (single/multiple) -0.29 0.09 25.81 0.75***

Confidentiality (partial/complete) 0.81 0.19 13.95 2.25**

Integrity (partial/complete) 0.9 0.24 11.08 2.46**

Availability (partial/complete) 0.37 0.1 0.57 1.45

Affected product type (OS) 0.72 0.17 0.96 2.05

Affected product type (hardware) 0.21 0.22 1.03 1.23

Number of affected software versions 0.58 0.01 0.84 1.79

Number of past exploits 0.11 0.08 0.59 1.12

Year 0.44 0.11 0.11 1.55

Firm size 0.25 0.35 30.80 1.28***

Firm R&D 2.51 1.31 42.71 12.30***

***significant at p < 0.001, **significant at p < 0.01, *significant at p < 0.05

441 Examining Exploitability Risk of Vulnerabilities: A Hazard Model

Volume 46 10.17705/1CAIS.04618 Paper 18

Table A4. Robustness Check: Analysis of Maximum Likelihood Estimates for the Vulnerability Attributes
Model using Three Levels

Variable Coefficient (β) SE X2 Hazard ratio

Access vector (remote) 0.17 0.09 63.19 1.19***

Access vector (adjacent network) -1.62 0.41 43.17 0.20***

Access complexity (high) -0.22 0.09 15.10 0.80**

Access complexity (medium) -0.13 0.10 0.59 0.88

Authentication (multiple) -0.51 0.08 30.86 0.60***

Authentication (single) -0.81 1.04 0.40 0.44

Confidentiality (complete) 0.88 0.36 31.86 2.41***

Confidentiality (partial) 0.29 0.14 19.04 1.34**

Integrity (complete) 0.84 0.10 26.18 2.32***

Integrity (partial) 0.27 0.13 12.20 1.31**

Availability (complete) 0.18 0.10 0.57 1.20

Availability (partial) 0.66 0.17 49.08 1.93***

Affected product type (OS) 0.59 0.15 0.62 1.80

Affected product type (hardware) 0.29 0.09 0.03 1.34

Number of affected software versions 0.42 0.03 0.93 1.52

Number of past exploits 0.35 0.03 0.90 1.42

Year 0.40 0.01 0.44 1.49

Firm size 0.70 0.14 62.74 2.01***

Firm R&D -3.05 1.20 39.12 0.05***

***significant at p < 0.001, **significant at p < 0.01, *significant at p < 0.05

Table A5. Robustness Check: Analysis of Generalized Estimating Equations for the Vulnerability Types Model

Variable Coefficient (β) SE X2 Hazard ratio

Vulnerability type (cross-site scripting) -1.71 0.08 2.40 0.18*

Vulnerability type (access control issue) -0.8 0.01 15.94 0.45**

Vulnerability type (info leak/disclosure) -1.64 0.21 14.61 0.19**

Vulnerability type (resource management error) -0.74 0.08 7.71 0.48*

Vulnerability type (cryptographic issue) -2.39 0.04 8.04 0.09*

Vulnerability type (SQL injection) -0.23 0.09 8.62 0.79*

Vulnerability type (numeric error) -0.59 0.25 18.68 0.55**

Vulnerability type (code injection) 0.35 0.21 2.59 1.42*

Vulnerability type (cross-site request forgery) -1.18 0.18 36.20 0.31***

Affected product type (OS) 0.22 0.03 0.59 1.25

Affected product type (hardware) 0.31 0.08 0.92 1.36

Number of affected software versions 0.19 0.15 0.77 1.21

Number of past exploits 0.21 0.22 0.58 1.23

Year 0.39 0.05 0.91 1.48

Firm size 0.61 0.37 22.86 1.84***

Firm R&D -3.88 1.71 12.39 0.02**

***significant at p < 0.001, **significant at p < 0.01, *significant at p < 0.05

Communications of the Association for Information Systems 442

Volume 46 10.17705/1CAIS.04618 Paper 18

Table A6. Robustness Check: Analysis of Cox Regression with Repeated Events for the Vulnerability Types
Model

Variable Coefficient (β) SE X2 Hazard ratio

Vulnerability type (cross-site scripting) -1.9 0.05 14.58 0.15**

Vulnerability type (access control issue) -0.89 0.13 11.92 0.41**

Vulnerability type (info leak/disclosure) -1.4 0.05 5.09 0.25*

Vulnerability type (resource management error) -0.73 0.11 56.91 0.48***

Vulnerability type (cryptographic issue) -3.01 0.15 49.49 0.05***

Vulnerability type (SQL injection) -0.29 0.17 3.25 0.75*

Vulnerability type (numeric error) -0.77 0.13 5.06 0.46*

Vulnerability type (code injection) 0.21 0.21 17.93 1.23**

Vulnerability type (cross-site request forgery) -1.04 0.1 14.01 0.35**

Affected product type (OS) 0.19 0.04 0.48 1.21

Affected product type (Hardware) 0.19 0.12 0.79 1.21

Number of affected software versions 0.09 0.19 0.17 1.09

Number of past exploits 0.27 0.07 0.96 1.31

Year 0.6 0.04 0.07 1.82

Firm size 0.42 0.22 4.18 1.52*

Firm R&D -3.08 1.39 11.02 0.05**

***significant at p < 0.001, **significant at p < 0.01, *significant at p < 0.05

443 Examining Exploitability Risk of Vulnerabilities: A Hazard Model

Volume 46 10.17705/1CAIS.04618 Paper 18

About the Authors

Yaman Roumani received his PhD degree in Information Systems from Kent State University. He is an
Associate Professor in the Department of Decision and Information Sciences at Oakland University. His
current research interests include information security, data breaches, risk assessment and digital
transformation. Roumani's research has been published in numerous conference proceedings including
the International Conference on Information Systems (ICIS) and the Hawaii International Conference on
System Sciences (HICSS). His research has appeared in European Journal of Information Systems,
Information and Management, Communications of the Association for Information Systems, Computers &
Security and Journal of Systems and Software.

Joseph K. Nwankpa is an Assistant Professor in the Department of Information Systems and Analytics in
the Farmer School of Business at Miami University, Oxford, Ohio. He holds a PhD from Kent State
University in Information Systems. His primary research focuses on ERP systems, software security,
digital business strategy, IT adoption and accounting Information Systems. His research has appeared in
European Journal of Information Systems, Information and Management, Communications of the
Association for Information Systems, Computers and Security, Annals of Operations Research,
Information Resources Management Journal and in proceedings of various Information Systems
conferences including the Americas Conference on Information Systems (AMCIS), the Hawaii
International Conference on System Sciences (HICCS), the International Conference on Information
Systems (ICIS) and Institute for Operations Research and the Management Sciences (INFORMS).

Copyright © 2020 by the Association for Information Systems. Permission to make digital or hard copies of
all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and full citation on
the first page. Copyright for components of this work owned by others than the Association for Information
Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission to
publish from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-
mail from publications@aisnet.org.

	Examining Exploitability Risk of Vulnerabilities: A Hazard Model
	Recommended Citation

	Roumani, Yaman; Nwankpa, Joseph: Examining Exploitability Risk of Vulnerabilities: A Hazard Model, Communications of the Association for Information Systems

