Journal of Information Systems Education
Volume 5, Number 3

AN OBJECT-ORIENTED INFORMATION SYSTEMS COURSE

Dr. T.M. Rajkumar

Department of Decision Sciences
School of Business Administration
Miami University

Oxford, OH 45056

ABSTRACT: An Object-oriented information systems course taught at the senior
level is described. C++ is used as the language to teach object-orientation. In
addition to the language, analysis and design concepts are integrated into the course.
A topic outline for the course is described. Course materials used to teach such a
course andthe projects assigned are presented. Concepts thatneedto be stressed such
as encapsulation, inheritance and polymorphism are reviewed. The impact of OO
approaches on databases, software development are discussed. The teaching of C++
in a DOS based environment as opposed to using GUI based methods is briefly

discussed.

KEYWORDS: Object-Oriented Programming, Object-Oriented Analysis, Object -Oriented Design,

C++, CIS Curriculum

INTRODUCTION

In the last few years, there has been
growing enthusiasm, for object-oriented
(0-O) approaches to information systems.
There have been significant advancements
in all areas of object-oriented information
systems from programming to analysis,
design and development.

Acceptance also has come in the
business world where commercial
applications in banking, CASE, and CAD/
CAM are being developed using object-
oriented techniques. For example,
Brooklyn Union gas has developed standard
business applications such as billing using
0-O approaches [1]. Since there are
currently some 5000 programmers in
various companies developing systems
based on object technology, it can be
concluded that this technology is both
proven and mature [2]. It is therefore
essential that this technology be introduced
and taught in the MIS curriculum.

There are at least two ways in which
object-orientation can be taught within the
MIS area. The firstis to teach a little bit of

object-orientation in every MIS course; for
example Cain [3] proposes that the systems
analysis and design course introduce object-
oriented analysis (OOA) and design. The
COBOL course can introduce object-
oriented programming (OOP) terminology
while teaching related programming topics
such as variable types and subprograms.

The database course can then
introduce object-orientation with respect
to databases and semantic data modeling.
Though this is a valid approach, the student
sees object-orientation in bits and pieces
and does not see the overall benefits and
structure of object-orientation. In addition,
concepts such as encapsulation, inheritance
etc. have to be reintroduced in each course.
This leads to unnecessary repetition.

A possibly better approach is to teach
object-orientation concepts in a separate
course. Such an approach would allow the
concepts related to object-oriented
information systems to be presented once,
and allow comparisons with traditional
structured approaches to be made. A more
compelling reason is that the student is

better able to appreciate the benefits of
object-orientation once the student has
analyzed, designed and developed asystem
using the object-oriented approach. The
aim of this paper is to present the structure
of such a course and elaborate on the
concepts that need to be stressed. The next
section discusses the outline of such a
course.

COURSE OUTLINE

Students enrolling in this course
should ideally be seniors and have had at
least the COBOL, Database, Systems
Analysis and Systems Design courses. Such
prerequisite allows one to structure the
course into the following major sections:

Introduction: (1 week)

In this section the common concepts
of object-orientation such as what is an
object, methods, and features such as
encapsulation, inheritance, and
polymorphism can be introduced to the
student.

Page 9

Journal of Information Systems Education
Volume 5, Number 3

Programming: (8 weeks)

In this section of the course the
student is introduced to an object-oriented
language. This is necessary so that the
studentcanimplement some sample object-
oriented systems. The author has used
C++.For better or worse, C++ is the object-
oriented language of choice among
software developers in the industry [2].
The first 4 weeks of this section is used to
bring the students up to speed in C, and the
second 4 weeks can be used to introduce
the object-oriented aspects of C++ in
specific. The course does not assume
knowledge of C and it is essential that the
students know C to be able to program in
C++, since the object-oriented features of
C++ are built as extensions of the C
language.

Analysis and Design: (4 weeks)

In this section of the course, the
student is introduced to various analysis
and design techniques that use object-
orientation. The limitation of approaches
that use structured methodology for
analysis and design is firstdiscussed. Newer
approaches such as Yourdon and Coad’s
analysis method and Booch’s design
method are then taught. Since, there is no
agreement currently in the literature that
the above two methods are the standard
methods used, other techniques such as the
responsibilities and collaboration approach
of Wirf-Brock et al [4] are identified and
very briefly discussed. The effect of object-
orientation on the maintenance and other
phases of the life cycle is also brought out.

anage sues: (1 week)

In this section, issues such as
education, training, project management,
and difficulties are discussed.

A drawback to the above approach is
that the studentis not exposed to the object-
oriented database perspective. This is
difficult to achieve within the 14 week
span of a semester. If C did not have to be
taught, and the instructor has to only teach
C++, then it may be feasible to bring in the
object-oriented database issues. The above
outline is summarized in Table 1 and has
been used by the author successfully to
teach the QOIS course.

COURSE MATERIALS

anguage

There are a wide variety of O-O
languages such as Simula, Smalltalk, Eiffel
and C++ in which O-O development can
take place. Even language independent/
neutral approaches to object development
such as SOM from IBM are available [5].
The last few years have been marked by
the increasing popularity and acceptance
of C++ by a large group of programmers.

C++ is used in thousands of projects
in industry [2,6]. Because of the
predominance of C++ in industry it is
essential to teach QOIS through the C++
language. The author has used Turbo C++
for DOS as the specific language of choice.
Other choices exist such as Borland C++,
or Microsoft C++ or even the freely
available GNU G++. Turbo C++ has been

Table 1: COURSE OUTLINE

Topic Concepts Time
Introduction Basic Concepts 1 week
Programming C 4 weeks
Programming C++ 4 weeks
Analysis Yourdon and Coad's Methodology 2 weeks
Design Booch's Methodology 2 weeks
Management Managing O-O Technology 1 Week

used because it makes minimal demands
on the hardware required to run the system
(38658X, IMB RAM and occupies 6 MB of
hard disk space). The others make a more
hefty demand on the computer and can be
run efficiently only from the network (For
example, Borland C++ requires 20 MB of
disk space and Microsoft C++ at least 14
MB).

Books

There are very few good C++ books
on the market that are oriented towards the
business student. In addition, most books
assume a working knowledge of C and are
oriented to help move the C programmer to
program in C++. The author uses a book by
Chirlian [7].

This book teaches C++ from the
basics, and covers C++ with a business
oriented example (banking). The initial
parts of the book is not very business
oriented and students have some difficulty
with the initial chapters (some of the C
concepts). Other good books that teach
C++ from the beginning and can be used
are those by Ammeraal [8] and Lippman
[9].

For the analysis and design aspects,
two books are recommended. These are
books by Yourdon and Coad [10] and
Booch [11]. These are recommended
because they match the techniques that are
taught in the course. Additional books such
as those by Shlaer and Mellor [11] and
Wirfs-Brock [4], are also appropriate. As
developments in this arca are rapidly taking
place, this section of the course needs to be
supplemented with readings from journal
articles.

IEEE Computer, IEEE Software,
Communications of the ACM, among other
journals; carry summary and research
articles in this rapidly progressing field.
Rather than have the student read the article,
the author has provided summary papers
for the students to read.

In the management section entire
articles are assigned for reading from
current periodicals such as Datamation. In
addition, the instructor can bring in his/her
perspective and have the student present

Page 10

Journal of Information Systems Education
Volume 5, Number 3

their experiences with projects that they
are doing for the class.

Projects

Projects are assigned throughout the
course. As the course is fast paced and the
work load great, all projects are assigned as
team projects. The programming projects
are given mainly from the exercises in the
books. In the C part of the course student
teams are required to convert a COBOL
program to C. This is to emphasize the
differences in approaches and allow
comparison between the two languages. In
addition, before the C++ part of the course
begins, students are required to turn in a
design (not code) for a banking / ATM
application.

This enables each student to
appreciate the design differences between
regular design and object-oriented design.
The banking example is chosen because
the Chirlian book uses the banking example
to demonstrate C++. The student teams
are made to recode a C project using C++
and object-oriented techniques to further
crystallize the differences in approaches.
Furthermore a final project (an application
program of their choice) is required of all
student teams.

For the analysis and design parts of
the course, little is required to be turned in
except a few exercises from the book. The
students are however required to turn in
their analysis and design with the final
application project assignment. Students
have the hardest time in analysis and design
part of the course. The thought process
used here is different from that used in the
traditional structured approaches. In
retrospect, increased attention has to be
paid to this phase of the course.

In teaching object-oriented
programming, analysis and design,
emphasis in the course is not placed on the
syntax of the language or diagramming
tools; but on the concepts of object-
orientation. Emphasis is placed on why
these concepts are important and how they
differ from traditional languages and
techniques. The pitfalls that must be
avoided and the difficulties with the

approach are stressed. The next section
briefly discusses some of the concepts that
are emphasized.

In teaching object
oriented programming,
analysis and design,
emphasis in the course
is not placed on the
syntax of the language
or diagramming tools;
but on the concepts of
object orientation.

CONCEPTS

Even though object-orientation has
been around for many years there is still no
unique definition of the term object. Object-
orientation has been applied in different
areas of information systems such as
programming, artificial intelligence,
operating systems, and database systems.
Similar concepts have been called different
terms in each of these areas and the same
term may be used with different meanings
[13]. For some standardized definitions
and discussions of the various approaches
refer to Snyder [13]. In general, itis agreed
that three of the concepts: encapsulation,
inheritance, and polymorphism are
important. These are presented next.

Encapsulation is the ability to gather
into one place all aspects related to a given
abstraction of a real world object [14]. In
C++ this means embodying both data and
functions within an object through the
mechanism of a class. The advantage of
encapsulation is that we can modify the
implementation while the calling programs
that use the class remain unaware of the
change. This is possible because
implementation is separated from the
interface. Encapsulation makes possible
information hiding by representing the
internal representation of a class type
through private variables and functions. If
we consider a pixel on a screen as a class,
its location and color properties can be
represented with variables such as x, y, and

color. Functions such as get-x, set-x, get-
color and set-color can be used by the pixel
class to retrieve and set its properties.
Colormay be internally implemented using
the red, green, blue technique or using the
hue, saturation and value technique. The
user of the class is oblivious to the
implementation. Any change made
internally to the representation of color is
immaterial to the external classes. The
color of the pixel is then said to be
encapsulated within the pixel class. A
diagram representing the pixel class and its
interface is shown in Figure 1.

Objects communicate by invoking
the functions in the classes. Hence, O-O
analysis provide tools for depicting
communication between objects. The most
important difference between O-O analysis
and structured analysis methods stem from
the encapsulation notion [15]. Structured
analysis methods provide tools to create
functional decomposition of operations and
to model end to end processing sequences.
A functional decomposition violates
encapsulation since operations can directly
access the data of many entities and is not
subordinate to any one entity. This view is
not consistent with the O-O notion of
encapsulation. Hence, O-O analysis
technique provide new tools to model
operations as belonging exclusively within
the object [15]. In a requirements
specification using classes, nouns represent
candidate classes, and verbs represent the
methods or object behavior. By comparing
the methods description for broad classes,
other abstract classes can be identified.

-0 design may be defined as a
technique which, unlike functional design
bases the decomposition into modules on
the classes of the objects and not on what
function the system performs [16]. In
contrast, data flow analysis requires
designers to first ask the question what the
system does. O-O design tries to avoid
such questions and poses a different
perspective on the designer.

Inberitance enables objects to share
resources by specifying subtype
relationships. Classes can be organized in
a hierarchy and a derived class can inherit
selected data members and member

Page 11

Journal of Information Systems Education
Volume 5, Number 3

functions from higher classes. Derived
Figure 1: ENCAPSULATION class.?s can add new data decl.arations and
functions. For example, consider a person

class with name and social security number
as data. A student class can be declared to
- inherit these properties and in addition

] Private‘Variables declare the major and gpa data values. A

| Set-x derived class can also redefine other

X functions allowing customization to take
I Set-y J é | place. For example, the faculty class can
ot 7l inherit the properties from the class person

| but in addition can redefine the get-name
method to allow customization for faculty.

Figure 2 shows the inheritance diagram for

[Get-x l Get-x the person, student, faculty classes.
Get-y
Get-color Sharing the implementation through

[Get-y I Set-x a hierarchy results in improved
gggolor maintenance by reducing source code
] duplication and reduced executable code
size [13]. In the analysis phase, object
Pixel Class diagrams provide an object classification
and identifies potential inheritance
relationships [9]. In the design process, it
is mecessary to identify where in the class
hierarchy the specific class should be
located to maximize reuse. The location of
the class in the hierarchy depends on
answers to such questions as: 1) Is this part
Figure 2: INHERITANCE of the user interface; 2) Does the class have
similar behavior to other classes in the
system? [17]. The heuristics of placing
classes are weak, iterative and often
nonoperational [18]. An additional

difficulty with inheritance is that
Person g::,".;.c.m maintainers of O-O code often have to
{ get-name [trace through chains of dependencies
created by the inheritance [19].

A derived class in C++ that inherits
from two or more base classes exhibits

[] multiple inheritance. For example, a

graduate student whois a teaching assistant

-

I Set-cold

Code for operations

{ Get-colqr

[get-soctsec-no |

Student Faculty can derive data and members from both a
Dept faculty class and a student class. It leads to
g gf d @E Salary potential problems. For example; if there is

areturn_address function in both the faculty

et-major =
EI] get-dept | class, and the student class; the graduate
student class may not be able to identify the

et-apa Et%;@& | return_address function that it should use.

In addition; new features are usually a
complex synthesis rather than a simple
combination of inherited features [20].
Hence; it is not easy to create uniform

mechanisms that usefully combine the
methods of multiple inheritance classes

Inheritance

Page 12

Journal of Information Systems Education
Volume 5, Number 3

[21]. Multiple inheritance is riddled with
potential problems and should be used
judiciously [22].

Polymorphism

Polymorphism enables a function
name to be shared within a class hierarchy
allowing each class in the hierarchy to
implement the action in a manner
appropriate to itself.

Polymorphism is implemented in
C++ through virtual functions. Virtual
functions enable specification of many
versions of the same function through a
class hierarchy. The particular version of
the function to be run is determined at run
time. For example, a bank may provide
both commercial and personal loans. The
payments that are due on the two types of
loans may be calculated using different
algorithms due to differing requirements.
In such a case, the get-payment function is
designed as a virtual function as shown in
Figure 3. The desired algorithm for this
function is determined at run time based on
the type of loan object.

This feature of selecting the code to
perform the function at the time the function
is invoked is called dynamic binding. This
concept is important during the design
phase since virtual methods allow for class
customization. When building a class, the
class designer should see which
characteristicmight be changed in aderived
class [22]. These functions can then be
embedded in virtual methods.
Polymorphism can also lead to difficulties
in maintenance if the designers do not
always use polymorphism consistently so
that all methods for a particular function do
similar things [19].

In addition to these three concepts, a
number of newer concepts are being
implemented in C++. These include
concepts such as templates (generic code)
and exception handling. Templates are
similar to macro expansion facilities. They
allow the user to define the “shape” of a
function or class and leave the specifics of
the implementation to the compiler.
Templates can be declared on functions
and classes. Function templates can be
used to describe algorithms defined on a

wide variety of types. By specifying the
type when the program is being written, the
algorithm for that type can be generated by
the compiler. Class templates are useful to
define generic classes such as a linked list.
By defining the parameter to the template
to be an application class such as an
employee, the programmer can generate a
linked list of employees. Templates are
useful for reuse, as similar code can be
generated for multiple objects. In the
design phase this leads to choosing and
using the right template as this instantiates
the code the object would use.

Commercial libraries using the
template approach are yet to appear.
Exception bandling provides a facility for
dealing with difficult situations such as
failed initialization (constructors and
destructors in C++) and error handling in
overloaded operations. However, there
are no compilers currently that support this
in C++. Analysis and design issues
surrounding templates and exception
handling are still in the research phase.

IMPACT OF OBJECT-
ORIENTATION ON IS

Object-oriented approaches are
present not only in programming, butin all
the traditional areas of information systems.
Among others, O-O approaches affect 1)
Software development process, 2) Database
management Systems and 3) Operating
systems. These are discussed briefly in this
section.

ware peyv:

Object-orientation implies serious
rethinking of the software development
process [23]. In the classical approach, the
phases of design, implementation test are
separate steps to be executed in sequence
on the whole system. In OOP, the approach
is different. The design-implementation-
testapplies to the life cycle of the individual
classes but not necessarily to the life cycle
of the project as a whole. This departure is
a consequence of the reusability principle
which necessitates the designer to rely on

Figure 3: POLYMORPHISM

Loan
Address

l virtual get-payments]
B

I

Personal loan

$0C-38C-N0
mort-payment

get soc-sec-no

Polymorphism

|

Commercial Ioan]
Name

loan paM

[t fame |

get-payments

Page 13

Journal of Information Systems Education
Volume 5, Number 3

classes thathave already been implemented
and tested before higher classes are tested.
Hence, a bottom up approach is preferred
for object-oriented development with
general purpose utility models being built
first. Specific modules are built last.

Generalization also implies that the
object classes have to be built so that the
classes can be inherited and reused in other
applications. Such generalization costs
additional money, and funding has to be
appropriated not only from the current
project but the next few projects. This
necessitates a shift in emphasis for
management from a short term to long
term emphasis, profit to investment,
program to system, program elements to
software component. These shifts are
summarized in Table 2.

atabase age t Systems

With multimedia objects such as
sound, image and video becoming more
prevalent, database management systems
based on O-O approaches that can store,
query and retrieve these types of objects
are being developed. In addition, a
combination of these data types can be
present in a complex object. A complex
object such as a slide in a class room
presentation system or a geographic
information system may contain text,
graphical images, and sound annotations.

Object-oriented data base
management systems (OODBMS)
manipulate complex objects, provide views,
concurrency control and recovery on
objects. OODBMS support some kind of
an object-oriented programming language.
The data definition language, data
manipulation language etc. are then
imbedded in the OOP language. The OOP
language can be used to define, retrieve,
store and manipulate these objects. The
OOP language allows inheritance and
polymorphism to be handled within the
data model. It supports easy addition of
new objects and classes. This implies that
changes to implementations dictated by
the environmentsuch as hardware upgrades
or performance tuning can be made without
requiring system changes.

Table 2: SHIFT REQUIRED IN MANAGERIALEMPHASIS IN THE
SOFTWARE DEVELOPMENT APPROACH
Traditional ! Obiect-Ori]]
Results Tools/Libraries
Department Organization
Profit Investment
Project System
Short Term Long Term
Program Elements Software Components
TopDown Bottom Up
Views in OODBMS provide remember the application to run to

generalizations on the concept of
abstraction and encapsulation. Views hide
the system implementation, provide the
interface and present the information in
terms of objects and relationship that occur
in the users applications.

Concurrency and recovery
mechanisms in OODBMS operate at the
granularity of the objects in the users model
rather than at the level of files or records.
This is important as OODBMS support
cooperative transactions whichinclude long
and nested transactions. A transaction that
allows multiple reviewers of a journal
paper to add their comments to the same
document is an example of a long
transaction. A transaction on a bill of
material that is composed of other
subassemblies is an example of a nested
transaction. The transaction on the lower
level subassemblies may commit before
the main transaction commits. QODBMS
handle such requirements by providing
soft locks that inform the initiator of a
violated lock.

Object-Oriented O ing S

Object-orientation is starting to
appear in operating systems and on the
desktop interface that users see. This
results in user friendly interfaces. In the
object-oriented approach, objects in the
operating system provide services
appropriate for the abstraction. Client
processes issue requests for the services
that these objects provide. Users of such O-
O operating systems do not have to

manipulate the object. They can just click
on the object, and the operating system will
determine the appropriate program to
execute.

Objects are classified in O-O
operating systems in terms of the services
they provide. The services provided by the
objects are available at the interface as
menu choices. Users can then visually
determine the set of applicable operations
on an object by selecting the objects menu.
Only the applicable operations are
available. The rest of the choices are either
dimmed or not present.

Traditionally operating systems
provide file handling support, and
distinguish between executable and data
files. In the object-oriented approach this
distinction vanishes. The application and
the data of the application merge and
become one. This allows applications to
be embedded within one another. For
example, one can embed a spreadsheet
within a word processing document and
vice versa; even if the two products come
from different vendors.

COMPARISON OF C++ TO OTHER
GUI BASED O0-O TOOLS

This course has emphasized text
based programming in a DOS environment.
This approach makes minimal demands on
computing resources and teaches QOP in
an environment (DOS) that students are
most used to. This approach helps keep the
student focused on OOP and eliminates the

Page 14

Journal of Information Systems Education

Volume 5, Number 3

learning of additional syntaxes and
commands of a new application
programming interface.

Graphical user interfaces (GUI) such
as Windows, Macintosh, and Presentation
manager are becoming the standard today.
Developing even a simple program such as
a “Hello World” program in a Windows
environment may take up to 100 lines. The
greater part of the code has little to do with
displaying the “Hello World” text but is
code to manage the screen and write to the
Windows application programming
interface (API). In addition, programs in
these environments are event driven, which
means that the code will be divided into
many small sections to handle specific
events such as a mouse click, rather than
the linear sequential programs that the
student is used to. In the absence of any
tools, learning the windows API and event
based programming techniques would be
an unnecessary burden in teaching this
course. However, GUI based environments
such as Actor, Visual Basic and Visual
C++ help develop Windows applications
and event based programming without the
need to learn the Windows APL.

Visual Basic provides a forms/tools
oriented environment to develop programs.
Itallows us to draw like a paint program the
windows, buttons, list boxes etc. on the
screen. These objects can be customized
for the specific application. Code can be
attached to these objects to respond to
events suchasmouse clicks and key presses.
Visual Basic includes support for object
linking and embedding (OLE). This allows
applications generated in Visual Basic to
use data from any other application in
Windows that support OLE,

In addition, the database features of
the language allow easy development of
client-server applications. The ease of use
of Visual Basic enables a user to generate
a Windows programs that may take up to
an hour in C++. Unfortunately, Visual
Basic is not truly object-oriented. Objects
in Visual Basic have the notion of properties
and methods. The methods are used to
access the properties of objects. However,
objects in Visual Basic do not support
either inheritance or polymorphism. Hence,
while it is very useful to develop graphical

interfaces and client server programs, it is
notreally useful to teach object-orientation
concepts.

Visual C++ addresses this weakness
in Visual Basic by providing a graphical
environment to an object-oriented
language. Visual C++ provides App studio
a collection of resource editors for dialog
boxes, menus, cursors etc. This
environment generates C++ code for the
dialog boxes, menus etc. that can be edited
to suit the application. In addition, it has a
collection of pre-built class library
containing classes of objects that can be
customized and reused in the application.
Usage of this class library can reduce the
amountof code needed for abasic Windows
program and developing graphical
interfaces. Using Visual C++ in an object-
oriented information systems course is a
viable alternative. This was not used by the
author as the software was not available at
the time this course was taught.

. GUI based environments
suchas Actor, Visual Basic
and Visual C++helpdevelop
Windows applications and
event based programming
withoutthe needtolearnthe
Windows API.

CONCLUSION

An outline for an OOIS course as
taught by the author has been provided.
Rationale for the specific topics and the
order in which they have been taught has
been provided. The course has been one of
the most challenging and stimulating the
author has ever taught. Students coming
out of the course have generally been very
positive about the course (though they
complain about the workload). Students
also have the satisfaction that they have
learned a very practical subject at the
cutting edge of technology. Students
leaving the course also realized that this is
afield thatis still evolving and that continual
updating of the knowledge a necessity.

REFERENCES

1. Davis, J., Morgan, T. “Object-
Oriented Development at Brooklyn

Union Gas”, IEEE Sofiware, Jan.
93, pp. 67-74.

2. Jacobson, I, “Is Object Technology
Software’s Industrial Platform?”,
IEEE Software, Jan. 93, pp. 24-30.

3. Cain, W.P. “Object-Oriented
Programming and the CIS
Curriculum”, Journal of Information
Systems Education, Vol. 3, No. 1,
pp. 2-7.

4. R. Wirfs-Brock, B. Wilkerson, and
L. Weiner, “Designing Object-
Oriented Software”, Englewood
Cliffs: Prentice Hall, 1990.

5. 0S8/2 Technical Library System
Object Model Guide and Reference,
Document S10G6309. IBM CORP,
Armonk, NY, 1991.

6. Stuffman, H., “Towards a Less
Objected Oriented View of C++7,

Dr, Dobb’s Journal, Dec. 1992, pp.
35-39.

7. Chirlian, P.M. “Programming in
C++”, Columbus: Merrill Publishing

Company, 1990.

8. Ammeraal, L., “C++ for

Programmers”, New York: John
Wiley, 1991,

9. Lippman, S.B., “C++ Primer”,
Reading, MA: Addison Wesley,
1991.

10. Yourdon, E. and Coad, P. “QObject-

Oriented Analysis”, Englewood
Cliffs: Prentice Hall, 1991.

11. Booch, G. “Object-Oriented
Analysis and Design”, Benjamin
Cummings, 1992,

12. S. Shlaer, and S.J. Mellor, “Qbject-
i 1S lvsis —
Modeling the World in Data”.
Englewood Cliffs: Yourdon Press,
1988.

13. Snyder, A. “The Essence of Objects:
Concepts and Terms”, [EEE
Software, Jan 93, pp.31-42.

14. Rosen, J.P. “What Orientation
Should ADA Objects Take”,

Page 15

Journal of Information Systems Education

Volume 5, Number 3

Communications of the ACM, Nov. 19. Wilde, N., Mathews, P., and Huitt,
92, Vol. 32, No. 11, pp. 71-82. R., “Maintaining Object-Oriented
15. Fichman, R.G., Kemerer, CF., Software”, JEEE Software, Jan. 93,
“Object-Oriented and Conventional pp. 75-80.
Analysis and Design 20. Wegner, P. “Dimensions of Object-
Methodologies.” IEEE Computer, Oriented Modeling”, JEEE
Oct. 92, pp. 22-39. Computer, Oct. 92; pp. 12-20.
16. Meyer, B., “Reusability: The Case 21. Taylor, D.A,, and Cargill, T.
for Object-Oriented Design”, IEEE “Qbject-Ori ”,
Software, Mar. 87, 0o. 50-64. Reading: Addison Wesley, 1991 p.
17. Lorenz, M., “O-O Development 59.
Methodology”, Englewood Cliffs: 22. Sessions, R. “Class Construction in
Prentice Hall, 1993. C and C++”, Englewood Cliffs:
18. Monarchi, D.E., and Pubr, G.I, “A Prentice Hall, 1992.
Research Typology for Object- 23. Mandrino, D. and Meyer, B.

Oriented Analysis and Design,”
Communications of the ACM, Sep.
92, Vol. 35, No. 9, pp. 35-47.

Software Enginecring”, Englewood
Cliffs, Prentice Hall, 1992.

AUTHOR’S BIOGRAPHY

T.M. Rajkumar is an Assistant Professor of Information Systems at Miami University.
He obtained his Ph.D. from Texas Tech University. He is the DPMA faculty advisor at Miami
University. His research and teaching interests are in multimedia, CASE and object-oriented
technology.

Page 16

ISCCID Epsi6

Serving Information Systems Educators

Information Systems & Computing
Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1993 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

