Journal of Information Systems Education
Volume 4, Number2

CHECK DIGITS: DOMAIN IMPLEMENTATION IN
MICROCOMPUTER DATABASES

Richard Hartley

James Scott
Roger Hayen

Central Michigan University
College of Business
Office and Information Systems

Grawn 320B

Mt. Pleasant, MI 48859

ABSTRACT: Students studying their first systems learn that many businesses use
serial numbers to identify such entities as customers, employees, and products.
Sequentially numbered identifiers are prone to substitution and transposition errors
during data entry. The addition of a check digit allows a business to continue to use
their serial numbers (with modification) and provides identifiers less prone to
undetectable data entry errors.

Project oriented systems courses often utilize 4GL tools to implement student designs.
With such tools students can reduce the development time considerably over the time
requiredusing 3GLprocedural programming languages, this allows students to focus
on design considerations rather than procedural programming technigues. However,
in real life as well as in student projects, some functions cannot be implemented
without the use of a procedural language. This article provides instructors material
for illustrating how check digits can be incorporated into a microcomputer database
application using the procedural language components of two popular database
systems.

KEYWORDS: Data Validation, Programming, 4GL, 3GL, Check digits, Self-Checking Numbers.

INTRODUCTION

Within our advanced systems
analysis and design course students visit
actual businesses where they document a
current application, and design a new
application. As part of the system design
students learn to define a-domain of values
for each attribute following guidelines
taught in previous classes. (1,2,3,4) For
example in an accounts receivable
application the attribute CUST_ID in the
entity PAYMENT would normally have as
its domain all the CUST_ID’s in the table
CUSTOMERS. A validity test is then
constructed by checking to see if the

CUST_IDinaparticularPAYMENT record
exists in the CUSTOMER table.

Many of the companies that the
students contact create their own
identification numbers for entities such as
customers, products, and employees, using
serial numbers. As students develop
systemstheyrealize that suchidentification
numbers are difficult to validate because
substitution and transposition errors
frequently yield other valid identification
numbers. (1,5) If customer number 131 is
enteredas 113 itmay still be a valid number
but possibly incorrect number as the number
113 may be assigned to another customer.

In a relational database this error leads to

problems with referential integrity as
records in different tables for the same
customer could contain incorrect customer
identifiers. The use of self-checking
numbers is one solution. However the
implementation is notas clear. The student
projects . are developed using
microcomputer database packages such as
R:BASE, dBASE, and PARADOX. The
studentsare encouragedtodevelopasmuch
of each application as is possible using
only the 4GL component of the database.
They are discouraged from using the
procedural language component because
we want them to focus on the effective use
of 4GLtools in this course. By the students
. .

Page 17

Journal of Information Systems Education
Volume 4, Number 2

taxing the 4GL tools to the limit, they learn
both the strengths and weaknesses of this
approach to applications development.

SELF-CHECKING NUMBERS

A self-checking number isone which
contains digits that may be utilized to
determine the validity of thenumber. Credit
card numbers, bank account numbers, and
the ISBN numbers used in library systems
all utilize check digits. The incorporation
of self-checking numbers into
microcomputer databases can provide the
basis for discussions of entity identifiers,
data validation, data types, the need for a
procedural language component in a
microcomputer database, and the use of
entry/exit procedures in a 4GL form
generator. (6,7)

Check digits are used widely on
mainframe systems where the algorithm
for computing the check digit is added to
procedural program code and maintained
in application libraries. Several methods
of creating check digitshave beendiscussed
in the literature. (8,9) The modulus eleven
methodology will be used to illustrate the
implementation of self-checking numbers
in microcomputer systems.

To calculate a check digit, each
position of the identifier is multiplied by a
weight. We use arithmetic weights
beginning with two for the units position
and increasing by one for each succeeding
position. The modulus of the sums is then
subtracted from eleven and the resultis the
check digit(s). Naturally, mod 11 will
yield the values zero through ten. The
analyst must decide at the outset what
should be done with the numbers that yield
a two digit check digit. The options are to
1) use two digit positions for the check
digit (00-10), 2) use a single digit position
but use a letter for the number 10, or 3) do
not use any identifiers that yield a check
digit value of 10.

GENERATING CHECK DIGITS

The implementation of a check digit
algorithm is specific to each relational
database product. Tables 1 and 2 are
examplesofthe procedural code fordBASE

andR:BASE. (10,11) Assumingthatrecord
Page 18

Table 1: Procedural Code for dBASE IV

P I T T T e T e T PP e e a2 AR R L SR TS SR S A T S 2R TR R T 2 L 1o

* Enter a five digit identifier.

sk kiR kokkokk kR ikkkkkkkkkikkkpkik ik kkkk kR kb EkkkkE

INPUT ““Enter a five digit number: ** CUST_ID

e oo e e ok e ook ok e o ok ok ok ek kol kol ok ok kb ko kb R kkok R sk sk ke dk kb R kR kR kR kR Rk

* Separate the digits.

kR kkRkkRkRRRk kR Rk Rk ek kR kkRkk ke kkk T T T T 2 2 T
NUM_CUST=INT(CUST_ID)

DIGIT1=INT(NUM_CUST/10000)

DIGIT2=MOD(INT(NUM_CUST/1000),10)
DIGIT3=MOD(INT(NUM_CUST/100),10)
DIGIT4=MOD(INT(NUM_CUST/10),10)

DIGIT5=MOD(NUM_CUST,10)

kkkkkpkkrkkkkkEkkkk¥k dkkkkkkR kb ki kkkkkkpkkfkkkkkkikkkkkkk

* Determine the check digits.

YT 2T E ISP RSS2 2224 S22 SRS 22222222 222 22 22t 2 LAttt et ld L)

CHKDGT—MOD(6*DIGIT1+5‘DIGIT2+4*DIGIT3+3"‘DIGIT4+2*DIGIT5 11)

k% 222222222 22 t2dld dkkkkkikkkkkkkkkkkkkkkkk
* Append the check digits to the original identification number.

P T STI I I T e P s L2 2RSS I 22 222222222222 2222222222t i ittt

IF CHKDGT = 10 THEN
CUST_ID =NUM_CUST + “*-X*’

ELSE

CUST_ID = NUM_CUST + ““->’ + CHR(CHKDGT)
ENDIF

Table 2: Procedural Code for R:BASE 3.1

*()
*(Accept a five digit text identifier)
*()
FILLIN CUST_ID=5 USING ‘‘Enter a customer identifier: ¢
*(
*(Parse the customer identifier into 5 fields and convert each)
*(to an integer value.)
*(

)
SET VAR DIGIT1 TO (SGET(.CUST_ID, 1,1))
SET VAR DIGIT2 TO (SGET(.CUST_ID, 1,2))
SET VAR DIGIT3 TO (SGET(.CUST_ID,1,3))
SET VAR DIGIT4 TO (SGET(.CUST_ID, 1,4))
SET VAR DIGITS5 TO (SGET(.CUST_ID, 1,5))
SET VAR DIGIT1 INT DIGIT2 INT DIGIT3 INT DIGIT4 INT DIGIT5 INT

*)

*(Compute the check digit.)

*()

SET VAR CHKDGT TO
(MOD(6*DIGIT1+5*DIGIT2+4*DIGIT3+3*DIGIT4+2*DIGITS5,11))

*)

*(Append the appropriate check digit to the original number.)

¥)

IF CHKDGT = 10 THEN

SET VAR CUST_ID TO (CUST_ID + “-X”’)
ELSE

SET VAR CUST_ID TO (CUST_ID + *-” + CTXT(CHKDGT))
ENDIF

Journal of Information Systems Education
Volume 4, Number2

identifiers are maintained as character data,
the first stepisto break the identifier into as
many integer elements as there are digits in
the identifier. The second step is the
calculation of the check digit(s). The last
step is combines the original identifier and
the computed check digit (oran *‘X*’ if the
check digit is *“10”).

INITIAL ASSIGNMENT OF A
CHECK DIGIT

Identification numbers may be
assigned independent of the data entry

process or as part of data entry. Using the

algorithms as they are written, the user
would determine the check digit fora single
requested identifying serial number. (The
link to the procedural code isaccomplished
by the DO statement of dBASE or the RUN
statement of R:BASE in the application
menu.) The user would then add new
customers, products, etc. using the identifier
with the check digit.

Performing the computation of the
check digit for eachserialnumberasneeded
iscumbersome. A more workable approach
would be for the user to assign identifiers
from a list of valid but as yet unassigned
identifiers. Such a list could be produced
withminormodificationstothe above code.
The addition of a WHILE loop would
produce a page of numbers from which to
make customer identifier assignments for
new customers, The user could be prompted
for a starting number and the quantity of
identifiers desired. (Ideally, the starting
number would be determined from the data
already in the database.) As a number is
used from the sheet, the user would draw a
line through the number indicating that the

number had been assigned.
10200-3 10205-2
10201-5 10206-4
10202-7 10207-6
10203-9 10208-8
10204-0 10209-X
SYSTEM COMPUTATION OF THE
CHECK DIGIT DURING DATA
ENTRY

If identifying numbers are to be
assigned by the system then the computation
of the check digit would be done during

data entry. The developer has two choices
in developing data entry screens: write a
procedural language program or use a 4GL
form generator. With the procedural
language approach, the developer writes a
routine that determinesthe highestidentifier
already used, increments the serial number
portion of the identifier by one, and
computes the check digit for that number.

Some microcomputer
databases now support a
data type that computes
the next available serial
number ..., however none
can currently generate
check digits.

When a 4GL form generator is used,
the developer has limited control over the
data during data entry. (12,13) Some
microcomputer databases now support a
data type that computes the next available
serial number (called AUTONUMBER in
R:BASE), however none can currently
generate check digits.

Productssuch as R: BASE offerentry/
exit procedure capability (EEP) for each
field of a form. (13) EEP’s provide the
capability of executing procedural
statements before accepting data into a
field and after the user has exited the field.
If the 4GL supports EEP’s then an entry
procedure can be defined to perform the
same algorithm as illustrated in the
procedural language approach.

METHODS OF VERIFYING DATA

If all identifiers are entered with an
attached check digit, then the table
containing the primary entity (such as
CUSTOMERS) will constitute an accurate
domain of identifier values. As data for
another entity are entered, such as
PAYMENTS, the CUSTOMERS table may
be used to test the validity of CUST_ID.
Substitution and transposition errors will
notgenerally yieldanothervalid CUST_ID
as would frequently happen if the check
digit had not been utilized. In a procedural
programming approach the identifying

number might be verified at the time of

. entry by recalculation of the check digit

followed by a comparison with the check
digit entered.

IDENTIFIERS CONTAINING
ALPHABETIC CHARACTERS

Users may have chosen to utilize
abbreviations of customer names for
identifiers or actual model numbers of
products. How can a check digit be
computed for such identifiers?

The process begins by converting
each letter to its ASCII equivalent numeric
value so that it can be multiplied by a
weight. This can be done by using the
character-to-ASCII function of your
database product, (ichar(string) in R: BASE,
val(string) in dBASE). This will yield the
numbers 65 to 90 for the letters A to Z and
the numbers 48 to 57 for the digits 0t0 9.
(The ASCII code table can be found in the
manuals for your particular database
product.) By subtracting 55 from the ASCII
value of each letter and by subtracting 48
from the ASCII value of each number, we
arrive at a series of numbers from 1 to 36.
Each of these values are multiplied by their
respective weight and summed. The final
step is to determine the check digit using
modulus 37. (Thirty-seven is the closest
prime number greater than the number of
values represented.) This exercise can be
used to further discuss the ASCII code
table by asking students how a check digit
could be computed if the identifier
contained lower case letters or special
characters.

RECOMMENDATIONS

1. Use self-checking numbers wherever
a serial number is used for
identification of an entity. Without
the check digit, serial number
identifiers are prone to errors
because of the substitution or
transposition of digits.

2. While 4GL’s make rapid system
development possible, students need
to be aware that a procedural
language component is frequently
necessary to handle functions not
provided by the database vendor.

Page 19

Journal of Information Systems Education
Volume 4, Number 2

- Future 4GL’s will utilize EEP’s to
provide an easier integration of
procedural language code into 4GL
forms generation products.

3. A new data type for specifying the
generation of serial numbers with
check digits would be beneficial to
application developers using 4GL

" tools. '

CONCLUSIONS

Check digits provide an instructor
with three opportunities. First, they provide
an opportunity to discuss the problems

associated with using serial numbers as *

keys. Second, they give a real-world
application for using procedural language
within a microcomputer database systen.
Third, they demonstrate a method for
implementing domains. ~This article
provides a method for instructing students
in the use of check digits and algorithms for
their implementation.

REFERENCES

Stamper, David, _axahaﬁ_e&gnﬁ

Management - An Applied
Approach, Mitchell McGraw-Hill,
1990, pp 298, 308-311, 405-406

Date, C.J,, Relational Database:

Selected Writings, Addlson—Wesley,’
1988, pp. 460-1

Codd, E.F., The Relational Model
for Database Management, Addison-
Wesley, 1990, pp 43-50

Codd, E.F., Domains, Keys and

Referential Integrity in Relational
Databases, InfoDB, May 1988, C.J.
White Consulting, San Jose, CA.

Whitten, Jeffrey L., Bentley, Lonnie
D., and Barlow, Victor M., Systems
Anﬂy&&&ms_gn_mm Second
Edition, Trwin, 1989, p. 552
Fleming, Candace C. and vonHalle,
Barbara, Handbook of Relational
Database Design, Addison-Wesley
Publishing Company, 1989, pp 214-

- 10.
C 11
12.

13.

232

Tasker, Dan, In Search of Fourth
Generation Data, Datamation, July -
1, 1987, pp. 61-2

Eliason, Alan L., Introduction to

Systems Design, McGraw-Hill,

1989, pp 487-9

Murray, Thomas J., Computer

Based Information Systems,
Richard D. Irwin, 1985, pp, 73-7

Microrim, R:BASE User’s Manual,
1990; third edition, Chapter 2 p. 44,
Chapter 6, p. 37

Ashton-Tate, dBASE IV Reference
Manual, 20101 Hamilton Avenue,
Torrance, CA 90502

Infoworld, Multiuser Programmable
Databases - Part I, November 12,
1990

Infoworld, Multiuser Pr !
Database - Part II, January 14, 1991,
pp 45-60

AUTHORS' BIOGRAPHIES

Richard L. Hartley, Ph.D., is an assistant professor of information systems at Central Michigan
University. He has done extensive consulting in microcomputer database systems. He teaches system
analysis and design, COBOL programming, and database design courses.

James P. Scott, Ph.D., is an associate professor of information systems at Central Michigan University.
He teaches database management and beginning systems design.
Roger Hayen, Ph.D., is a professor in the Office and Information Systems Department of the College
of Business Administration at Central Michigan University. He has experience as an international consultant
in the training for and development of decision support systems.

Page 20

ISCCID Epsi6

Serving Information Systems Educators

Information Systems & Computing
Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1992 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

