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Abstract 
 

The Monte Carlo approach is a valuable and flexible 
computational tool in modern finance, and is one of 
numerical procedures used for solving option valuation 
problems. In recent years the complexity of numerical 
computation in financial theory and practice has 
increased and require more computational power and 
efficiency. Monte Carlo simulation is one of the 
numerical computation methods used for financial 
engineering problems. 

The drawback of Monte Carlo simulation is 
computationally intensive and time-consuming. In 
attempt to tackle such an issue, many recent applications 
of the Monte Carlo approach to security pricing 
problems have been discussed with emphasis on 
improvements in efficiency. This paper presents a novel 
approach combining system simulation with GA-based 
optimization to pricing options. This paper shows how 
the proposed approach can significantly resolve the 
option pricing problem. 
 
Keywords: Option Valuation, Financial Engineering, 
Monte Carlo Simulation, Genetic Algorithms 
 
1. Introduction 
 

As pointed out by Hull and White [19, p.237], many 
option pricings appear to present intractable pricing 
problems. Therefore, most of them lack straightforward 
closed form solutions. The various approaches including 
analytic approximations [3] [22] and numerical 
procedures [5] [9] [10] [27] have been suggested for 
calculating option prices when there is no closed form 
solutions. In recent years the complexity of numerical 
computation in financial theory and practice has 
increased enormously, putting more demands on 
computational speed and efficiency. One of the 
numerical computation procedures, the Monte Carlo 
approach, was suggested by Boyle [5], and has proved to 
be a valuable and flexible computational tool in modern 
finance. The method simulated the process generating 
the returns on the underlying asset and invokes the risk 
neutrality assumption to derive the value of the option. 

Numerical methods are used for a variety of purposes of 
finance. The Monte Carlo approach is a useful tool for 
many of numerical calculations, evidenced in part by the 
voluminous literature of successful applications, such as 
the stochastic volatility applications [11] [18] [20] [29], 
the valuation of mortgage-backed securities [28], the 
valuation of path-dependent options [21], the portfolio 
optimization [25], and the valuation of interest-rate 
derivative claims [8].  

The Monte Carlo approach is flexible and easy to 
implement and modify. In addition, the increased 
availability of powerful computers has enhanced the 
attractiveness of the approach. Anyhow, there are some 
disadvantages of the approach but in recent years 
progress has been made in overcoming them. One 
drawback is that for very complex problems a large 
number of replications may be required to obtain precise 
results. Different variance reduction techniques have 
been developed to increase precision. Two classical 
variance reduction techniques are the control variate 
approach and the antithetic variate approach. The 
introduction of an appropriate control variate provides a 
very efficient variance reduction technique. However, in 
some problems it may be difficult to find a suitable 
control variate. Another alternative approach, the 
antithetic variate is often easier to apply since it 
concentrates on the procedure used for generating the 
random deviates. Essentially this technique relies on the 
introduction of negative correlation between two 
estimates. The performance of antithetic variate is better 
than Monte Carlo approach, but not good as control 
variate approach. 

All these numerical approach have a dual objective of 
accuracy and computation speed. Therefore, improvements 
in numerical efficiency are of interest in solving option 
pricing problems for existing numerical procedures. The 
main purpose of this paper is to show how system 
simulation with optimization mechanism can be used to 
improve the efficiency of the numerical approach. And 
the result of our experiments has proved that our 
proposed approach has the better performance either in 
accuracy or speed of computation than Monte Carlo 
approach and antithetic variate approach. 
 



2. Methods for Option Evaluation   
 
2.1 System Simulation 
 

Real-world problems always contain too many 
uncertain factors to be simply described by decision 
models. Simulation is one of the possible ways to be 
used to model real-world problems. Many aspects are 
concerned when adopting simulation approach to a 
complex problem [26]. 
(1) It can be used to experiment with a new design or 

scheme before implementing it. 
(2) It can be used to enable the study of the internal 

interactions of a complex system or subsystem 
within a complex system. 

(3) It provides the analyst with a tool to conduct 
various experiments that can be done in real time. 

(4) Organizational and environmental changes can be 
simulated and the effect of these changes on the 
model’s behavior can be observed. 

(5) It can be used as a tool to validate analytic results. 
(6) Simulation provides a flexible mean to experiment 

with the system or its design. Such experiments can 
reveal and predict valuable information to the 
designer, user, manager and purchaser. 

(7) Simulation is a cost-effective tool for capacity 

planning and tuning of system or subsystems. 
In addition, system simulation has several major 

advantages as listed as follows [26]： 
(1) Flexibility: It permits controlled experiments. 
(2) Speed: It permits time compression operation of a 

system over extended period of time. 
(3) It permits sensitivity analysis. 

However, system simulation has some disadvantages. 
These are listed below [26]： 
(1) It may become expensive in terms of computer time 

and manpower. 
(2) There are some hidden critical assumptions that 

may affect the credibility of the simulation outputs. 
(3) It may encounter extensive development time. 
(4) It may encounter difficulties in model’s parameters 

initialization. 
(5) Not all of parameters are considered when 

developing system simulation. 
Although system simulation has those shortcomings 

as mentioned above, there are still some ways to 
improve these drawbacks. GAs can be adopted to 
enhance its lack of search efficiency to bring better 
outcomes. For input of parameters, the previous fixed 
parameters can be replaced with different statistic 
distribution to more closely reflect real world situations. 
The process of system simulation is shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2 Monte Carlo Simulation 
 

System simulation takes different environmental 
factors into consideration to produce different outcomes. 
We can observe the pattern of environmental changes by 
system simulation technique.System simulation provides 
an elastic environment and system to show the results 

that is valuable information for managers [2] [6]. 
There are three main methods for system 

simulation technique. They are Monte Carlo simulation 
[1] [2] [29] [31], trace-driven simulation [24] and 
discrete event simulation [24]. Monte Carlo simulation 
is a static system simulation technique and dose not 
include time factor. It’s widely used in statistic models 
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Fig. 1 The Concept of System Simulation 



whose property will not shift as time goes. It can also be 
used in non-probability expression (by statistic 
technique). It allows users to set up statistic distribution 
or object function along with randomly generated values 
and iterative computation to figure out all possible 
solutions. In this way, computers will test every set of 
inputs to achieve optimization. 

System simulation technique can reflect various 
kinds of solutions or projects under uncertainty [24]. Its 
solutions, however, are not necessarily the optimized 
ones. Combining with optimization techniques is then 
becoming worth developing. Some lectures in addition 
reveal that using GAs when optimizing can speed up the 
time to search for solution [31]. 

In the iterative simulative process, the statistic 
distributions in variables will be sampled with one new 
value during every system simulation. This action is a 
method to simulate risks. After all variables are given 
values, they will be the inputs of the optimization 
process. Monte Carlo simulation can be applied to 
optimization problems with uncertainty and huge search 
space. When combining system simulation and GAs, we 
can solve problems with uncertainty quickly by guiding 
the direction of expected solutions. This has been 
proposed in [30][32]. 
 
2.3 Genetic algorithms 
 

Optimization is a process of finding out an optimum 
solution from a problem where the searching space is 
likely enormous. Most of these problems contain many 
variables, which are restricted by some given constraints 
[13] [14] [22]. 

Genetic algorithm (GAs) is one of optimization 
algorithm [12] [25]. It uses fitness function to determine 
the direction of searching and does organism-like 
computation. It converts “The fittest survives” from 
Darwin to simulate reproduction, crossover and 
mutation of chromosomes. Through the above 
computation process, it selects out successful evolving 
chromosome, that is, the desired chromosome [16]. 
There are three basic operators in GAs computation 
process: 

1.Reproduction: it duplicates one chromosome 
directly. 

2.Crossover: it takes two chromosomes to exchange 
their genes to produce the other two chromosomes. 

3.Mutation: some genes in a single chromosome may 
change to produce the other different chromosome. 

After generations of reproduction, crossover and 
mutation, genes in chromosomes change and the 
chromosome is selected with the highest fitness value. It 
can promise a chromosome with better genes than 
before. In this way, GAs is a method to search for 
optimized solution and can be applied to problems with 
enormous solution space. The concept of GAs process is 
shown in Fig. 2. It uses a loop from fitness evaluation to 

stop condition along with mechanisms of reproduction, 
crossover and mutation to make a new solution (new 
generation) evolve. 

 

Fig. 2 The Genetic Algorithm Process 

 
2.4 Simulation Optimization 
 

Simulation optimization is an optimization in itself; 
however, it requires additional mechanism to make the 
entire optimization process much closer to real world [1]. 
The concept of simulation optimization can be 
conceptualized in Fig. 3.  
 
 
 
 
 
 
 
 
 

 
The optimization strategy is improved through 

generations. The improving process is, however, slightly 
different from other original GAs methods. It is 
influenced by the simulation model that iteratively 
sample values from statistic distributions of the 
optimization model. The iterative samplings are called 
iterations in this paper, and one single simulation 
consists of iterations. The amount of iterations in one 
single simulation can be arbitrary, however, the more the 
better. That’s because from statistic viewpoint, more 
sampling values can represent more statistic population 
and can reflect much closer to the real-world 
situation.The concept of simulation combined with GAs 
is illustrated in Fig. 4. 
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It can be briefly described that one single simulation 

equals to one chromosome in GAs, but simulation 
consists of additional computations, that is, iterations. 
As a result, the fitness value for each generation is no 
longer one value but statistical characteristics, such as 
mean, standard deviation, variation, skewness, kurtosis 
and so on. Usually the mean is a good choice for its 
stable property to stand for population. Therefore, the 
proposed methodology attempts to employ simulation- 
optimization concept in the option pricing problem. 
 
3. Methodology 
 
3.1 European Call Option Evaluation Model 
 

Consider European Call Option [17] dependent on a 
single market variable S (stock price) that provides a 
payoff at time T. Assume that interest rates are constant, 
and we can value the derivative as follows: 
(1) Sample a random path for S in a risk-neutral world. 

Using the properties of the lognormal distribution 
that we can generate the distribution of stock prices 
one period hence by forming the random variables,  

 
1+ts  = tS exp ( )20.5r t tσ σε− ∆ + ∆  (1) 

 
whereε  is a normally distributed random variable 
with zero mean and unit variance. tS  represents 
the current stock price and t∆  is the stock price 
changes in a small time. 

(2) Calculate the payoff from the European Call Option 
(i.e. Max [ TS -E, 0] ). E represents exercise price.  

(3) Repeat steps 1 and 2 to get many sample values of 
the payoff from the derivative in a risk-neutral 
world. 

(4) Calculate the mean of the sample payoffs to get an 
estimate of the expected payoff in risk-neutral 
world. 

(5) Discount the expected payoff at the risk-free rate to 
get an estimate of the value of the derivative.  

 

3.2 Simulation Optimization 
 

In this study we adopt simulation optimization 
method in order to research European call option pricing 
problems. Although system simulation has some 
advantages such as flexibility, speed, and sensitivity 
analysis etc., it may encounter difficulties in model’s 
parameters initialization and not all of parameters are 
considered when developing system simulation. Genetic 
algorithms could provide strong multi-dimensions 
search ability to find fitness parameters and an optimal 
combination from different parameters. Therefore, 
system simulation could integrate with genetic 
algorithms, not only to make up genetic algorithms 
without simulation framework, but also to express 
problems with high uncertainty to raise system fault 
tolerance ability. System simulation integrated with 
genetic algorithms will bring both sides advantages, not 
only to construct models more fit in real world, but also 
to find better decision information. 

The integration of system simulation and genetic 
algorithms procedure framework is shown in Fig. 5, and 
the execution steps are illustrated as blow:  
(1) To describe uncertain factors characters, then search 

fitness probability distribution, and determine 
simulation statistics parameters (ex. a mean value、
standard deviation). 

(2) Determine input variables, and settle adjustable 
variable’s range of value. 

(3) Generate a set of new adjustable variables with 
genetic algorithms. 

(4) To estimate new population’s fitness function. 
(5) To test if new population meet conditions? if not 

matched, then repeats step 4. 
(6) To simulate with a set of new adjustable variables. 
(7) Sampling with probability distribution and compute 

target value. 
(8) If target value out of range of adjustable variables, 

then repeat steps 3~8, otherwise go to the next step. 
(9) To check if simulation procedure is completed or not? 

If yes, then go to next step, otherwise repeat step 
6~9. 

(10) To check if target value is within the scope of 
simulation? If yes, then go to the next step, 
otherwise repeat step 3~10.  

(11) If the value is optimal, then end, otherwise repeat 
step 3~10 until the value is optimal. 

The simulation optimization methodology as 
mentioned above uses system simulation to do sampling 
and the genetic algorithms to find adjustable variables, 
which procedure is shown in Fig. 6. It could help to 
understand how system simulation integrated genetic 
algorithms method finds the best value. Here, the system 
simulation technique is Monte Carlo simulation. Its main 
concept is to sample very large size of data from the given 
statistic distribution (that is, stock price here) and they 
apply these values to the optimization solution mentioned 
before. Doing so will make the optimization process of 
simulation much closer to the real world situation.

Fig. 4 The Iteration Concept 
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4. The Experiments 
 

4.1 Data Sets 
 

Eq.1 is used to obtain the estimates of European call 
options values on dividend paying stocks.  

Let 
St  = the current stock price at time t (S = 25, 50, 75 

respectively)  
r  = the risk-free rate per quarter compounded 

continuously (r = 0.015), 
2σ  = the (assumed constant) variance rate per quarter 

on the underlying stock ( 2σ =0.025) 
Dt  = the dividend payable at time t (D = 0.25), 
E  = the exercise price of the option (E= 50), 
T  = the expiration date of the option. 

In this case, the assumption used is same as that 
mentioned in the Boyle’s article [5, p328-329]. It is 

assumed that time is measured in the unit of one quarter. 
Assume that St represents the stock price just after the 
quarterly dividend Dt has been paid. To set up the 
simulation method in this case a value of St+1 is 
generated. If this value is greater than Dt+1 then (St+1 - 
Dt+1) is used as the initial value in the beginning of the 
second period and the procedure continues until a value 
of ST is obtained. If at some stage St+m (m = 1,2,…(T-t-1)) 
is less than or equal to the corresponding dividend 
payment Dt+m, then the process stops. In this case 
another simulation trial is started again from time t. A 
series of simulation trials is carried out in this way and 
the expected value of Max [ST – E, 0] is found. This 
quantity is then discounted at the risk-free rate to yield 
an estimate of the option value [5].  
 
 
 

Fig. 6 The Process by Monte Carlo Integrated 
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4.2. Optimization Model Parameters Settings 
 

The proposed optimization model applies GAs 
evolutionary mechanisms; as a result, some parameters 
in a formal GAs model must be determined first. They 
are population size, crossover rate and mutation rate 
respectively. Because the model is a hybrid of GA and 
simulation techniques, the iteration number is a required 
parameter to be defined. All settings are specified as 
follows: 
 

Table 1 Model Parameter Settings 
Population size 50 
Crossover rate 0.5 
Mutation rate 0.06 
Iteration number 500 

 
The iteration number here is set to 500; however, the 

number can be variable. That is the optimization model 
which will stop the iterations when the expected statistic 
characteristics converge. Assigning a fixed value here is 
to make further comparison easier later on. 
 
4.3 The Comparison 
 

A comparison was made among the performance of 
the Monte Carlo approach, control variate, antithetic 
variates, and GA-Based optimization to pricing options. 
For this comparison, the estimates of option values on 
dividend paying stocks in the case of European call 
options were obtained. The data we used is same as that 
given in the Boyle’s article [5]. The results we obtained 
are compared with those results as listed in the article. 

Table 2 indicates the results of the simulation method 
for selected values of the underlying parameters. It is 
assumed that r = 0.015, 2σ = 0.025 per period, D = 0.25 
per period and E = 50. The estimates of options with 
even maturities ranging from 2 to 20 are provided. 

From the results as shown in Fig. 7, 8, 9, we can see 
the best performance is control variate, which provides a 
very efficient variance reduction technique in this 
problem. In some problems it may be difficult to find a 
suitable control variate. The alternative method, the 
antithetic variate method, is often easier to be applied 
since it concentrates on the procedure used for 
generating the random deviates, but its performance is 
not good as the proposed GA-Based methodology. 
 

5. Conclusion 
 

Although Monte Carlo simulation model provides a 
flexible tool to obtain numerical estimates of a European 
call option on a stock which pays discrete dividends, it is 
very time-consuming. Based on the example given in the 
Boyle’s article [5], when the current stock price is 50 
and option has 20 periods to maturity, the option value 
of the crude Monte Carlo estimate (5000 trials) is 17.190 
with standard deviation 0.479. Therefore, the 95 percent 
confidence limits are 17.190±0.958. Reducing the range 
of these confidence limits to ±0.05 would require 
increasing the number of trials from 5000 to 1,835,500. 
A number of effective techniques for reducing the 
variance of the estimates have been developed. One of 
the most effective methods is control variate. However, 
it is very difficult to find a suitable control variate in real 
case. 

In this paper, we propose the powerful approach 
based upon the coupling of a Monte Carlo simulation 
with a genetic algorithms-optimization procedure for 
solving complex option pricing problems. The genetic 
algorithm considers a population of chromosomes, each 
one encoding a different alternative design solution. For 
a given design solution, the Monte Carlo simulation 
allows us to evaluate the system performance over a 
specified mission time, in terms of a pre-defined net 
profit function. This latter constitutes the objective 
function to be maximized by the genetic algorithm 
through the evolution of the successive generations of 
the population. 

In order to avoid an explosion of Monte Carlo 
simulation runs and an overwhelming use of computer 
time, each potential solution proposed by the genetic 
algorithm is explored only by few hundreds Monte 
Carlo simulation. Due to the fact that during the genetic 
evolution the superior chromosomes appear repeatedly 
many times, statistically significant results for the 
solutions of interest (i.e. the best ones) are obtained. 
This approach coupled with the ‘evolutionary guidance’ 
in the search procedure by the genetic algorithms allows 
one to efficiently perform the analysis of a realistic 
system in reasonable computing times. 

In the future, we try to apply simulation optimization 
methodology to handle American call options problems. 
The problems of this kind of option, which can be 
exercised at any time during its life, would become more 
complicated and challenging.  

 



Table 2 Option values using Crude Monte Carlo , control variate, antithetic variate method, and GA-Based 
simulation; 5000 trial per estimate. 

S/E Number 

of 

periods 
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maturit
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estimate 

Standard 

deviation 
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Standard 

deviation 

of using 
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thetic 
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Standard 

deviation 

of using 

Anti-thetic 

variate 

method 

GA- 
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optimization 

Standard 

deviation of 

using 

GA-Based 

optimization 

0.50 2 0.004 0.002 0.003 0.00004 0.154433 0.001248 

 4 0.087 0.014 0.075 0.0002 0.730537 0.009494 

 6 0.273 0.031 0.266 0.001 1.404183 0.015707 

 8 0.539 0.047 0.542 0.001 2.247438 0.024833 

 10 0.879 0.066 0.869 0.002 3.304752 0.033606 

 12 1.202 0.081 1.222 0.003 4.26557 0.040313 

 14 1.547 0.094 1.591 0.004 5.180937 0.050361 

 16 1.897 0.108 1.964 0.006 6.046652 0.06431 

 18 2.281 0.130 2.330 0.007 6.586973 0.072767 

 20 2.873 0.157 2.689 0.010 

N/A 

8.116041 0.085043 

1.0 2 5.121 0.114 5.028 0.0003 5.093 0.06 7.797639 0.060528 

 4 7.427 0.170 7.251 0.001 7.254 0.092 11.037971 0.0814082 

 6 9.247 0.215 9.000 0.002 9.101 0.126 14.11116 0.100583 

 8 10.793 0.258 10.494 0.003 10.609 0.150 17.25313 0.12242 

 10 11.923 0.297 11.815 0.004 11.716 0.170 19.61279 0.151521 

 12 13.135 0.330 13.006 0.006 12.974 0.194 22.59007 0.188225 

 14 14.281 0.361 14.094 0.007 14.050 0.215 24.24747 0.208428 

 16 15.079 0.389 15.106 0.009 15.013 0.231 26.21128 0.224026 

 18 15.945 0.428 16.038 0.010 16.018 0.260 28.80928 0.25622 

 20 17.190 0.479 16.903 0.013 17.030 0.287 30.61221 0.284947 

1.5 2 26.445 0.240 26.369 0.0004 29.55248 0.127712 

 4 28.250 0.333 27.818 0.001 29.43402 0.156068 

 6 29.832 0.405 29.299 0.002 35.55066 0.207981 

 8 31.257 0.470 30.715 0.003 37.45568 0.235312 

 10 32.319 0.528 30.048 0.005 39.86465 0.256224 

 12 33.491 0.578 33.298 0.006 41.93361 0.283278 

 14 34.835 0.624 34.465 0.008 45.51148 0.30051 

 16 35.503 0.666 35.578 0.009 45.68854 0.347882 

 18 36.382 0.722 36.616 0.011 47.46086 0.372783 

 20 37.989 0.798 37.582 0.014 

N/A 

49.56996 0.418978 
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Fig. 7 The comparison of Standard deviation(S/E=0.5)  

 

S / E = 1.0

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16 18 20

Number of periods to maturity

O
pt

io
n 

st
an

da
rd

 d
ev

ia
ti
on

Crude Monte Carlo

Simulation Optimization

Control Variate Method 

Antithetic variate method

 

Fig. 8 The comparison of Standard deviation(S/E=1.0)  
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Fig. 9 The comparison of Standard deviation(S/E=1.5)  
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