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Abstract 

While scientific collaboration can be critical for a scholar, some collaborator(s) can be more 

significant than others, a.k.a. lifetime collaborator(s). This work-in-progress aims to 

investigate whether it is possible to predict/identify lifetime collaborators given a junior 

scholar's early profile. For this purpose, we propose a supervised approach by leveraging 

scholars' local and network properties. Extensive experiments on DBLP digital library 

demonstrate that lifetime collaborators can be accurately predicted. The proposed model 

outperforms baseline models with various predictors. Our study may shed light on the 

exploration of scientific collaborations from the perspective of life-long collaboration. 

Keywords:  Lifetime collaborator, academic information retrieval, scientific collaboration 

 

Introduction 

In the past decades, while scientific data is increasingly available and interdisciplinary studies are 

more important (Kong et al. 2019, Xia et al. 2017), scientific collaboration plays a more important 

role. Many prior efforts have been done to explore the mechanism of scientific collaborations (Haines 

et al. 2011, Liu et al. 2018, Fortunato et al. 2018). It has been proven that authoritative scholars can 

be more popular in a collaboration network, and a number of collaboration recommendation 

algorithms/systems have been proposed based on this finding (Tang et al. 2012, Xia et al. 2014). 

Scholars may experience many collaborations throughout their academic careers. However, the 

collaboration duration between two scholars may vary. Previous research has found that scientific 

collaborations are characterized by a high turnover rate juxtaposed with frequent “lifetime 

collaborator” (Petersen 2015). Lifetime collaborators can be more influential on scholars' academic 

performance. Due to the problem of academic information overload, it is not easy for scholars to find 

new collaborator, especially, a lifetime collaborator. Despite the importance of lifetime collaborator, 

there exist many open questions: Who is our lifetime collaborator? When we meet a new collaborator, 

can he/she become our lifetime collaborator in the future? Solving these problems can help scholars, 

especially junior ones, better manage and explore their academic network effectively. 

Against this background, in this work-in-progress, we present a preliminary study on lifetime 

collaborator prediction based on the early-stage scientific collaborations. Figure 1 illustrates an 
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example of the proposed problem. Besides the typical structural similarity indices, we proposed a set 

of novel features that can enhance a life-long collaboration prediction. These features address both 

scholars' network properties (e.g., node degrees), and scholar-specific local properties (e.g., research 

interest and collaboration frequency). Through extensive experiments on the DBLP data set, we find 

that by integrating the proposed features, our model can achieve better performance than baseline 

models. Meanwhile, the contribution of each factor is explored with a jackknife approach (Dong et al. 

2016). Moreover, we find that the collaboration frequency during the early collaboration stage plays a 

critical role in predicting lifetime collaborators. 

 

 

Figure 1.  An example of lifetime collaborator Prediction. 

K is the lifetime collaborator threshold (see Equation. 1). 

Bob will be Ada’s lifetime collaborator (n>K). 

Related Works 

A single scholar may not possess all the expertise or skills to tackle a complex scientific issue. 

Recently, scientific collaboration is becoming increasingly important. Meanwhile, interdisciplinary 

collaborations are far more common (Haines et al. 2011). Due to the importance of scientific 

collaboration, it has been extensively investigated by scholars in various disciplines including 

information science, social science, and computer science. 

Scientific collaboration network extracted from scholarly big data is a typical way to explore the 

collaboration mechanism (Xia et al. 2017). Many network-based properties have been utilized to 

recommend scientific collaboration (Xia et al. 2014, Tsai & Lin 2016). For example, Tsai & Lin 

(2016) propose to predict collaboration for junior scholars based on network-based features, 

affiliation, geographic, and content information. 

However, scientific collaborations may last for a long time which results in the phenomenon of 

lifetime collaborator (Petersen 2015). It has been proven that lifetime collaborator can benefit scholars 

in productivity and citations. Therefore, we propose to explore the phenomenon of lifetime 

collaborator which is a novel problem. At the same time, previous studies mainly focus on the 

mesoscopic features of scientific collaboration networks i.e., structural hole, or macroscopic features, 

while the microscopic information are overlooked (Sinatra et al. 2016). Thus, we have proposed and 

utilized additional local features. 

The lifetime collaborator prediction can be treated as a classification task and many machine learning 

tools have been developed to solve such problem (Arapakis & Leiva 2016). Although many machine 

learning methods have achieved great success in prediction and classification, every algorithm has its 

own shortcomings in terms of prediction accuracy and time consumption (Fard et al. 2016). Thus, in 

this work, we take advantages of various machine learning approaches for lifetime collaborator 

prediction. 
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Lifetime Collaborator Prediction 

We aim to develop powerful predictors to identify lifetime collaborators based on the early-stage 

collaborations. In this section, we introduce the proposed method in detail. 

Problem Statement 

We focus on the lifetime collaborator prediction problem based on the early-stage collaboration data. 

Given a scientific collaboration network G = (V, E, W), each link e = (i,j) ∈ E denotes collaboration 

relationships between scholars i and j. The weight of link w ∈ W denotes collaboration times between 

scholars i and j. Given scholar i and his/her collaborators, our goal is to predict the whether wij will 

reach the lifetime collaborator threshold value Ki (see Eq. 1) in the future time t′= t + ∆t. Here, time t 

denotes the early collaboration stage between scholars i and his/her collaborators. In this paper, we 

take t = 3 and ∆t = 30. In other words, we use first three-year collaboration records between scholars i 

and j to predict whether j is i’s lifetime collaborator thirty years later. It is worth mentioning that it 

does not mean that a lifetime collaborator has to last at least thirty years. We set ∆t as 30 because it is 

long enough to distinguish a lifetime collaborator. Then, the proposed problem is transferred to a 

binary classification task. 

Lifetime Collaborator Definition 

We define the lifetime collaborator based on the super tie in scientific collaboration network proposed 

by previous work (Petersen 2015), where the link weight distribution is utilized to define a super tie 

threshold. The scholar-specific lifetime collaborator threshold Ki is calculated based on the outlier 

statistics arguments of link weight distribution. Specifically, the threshold scholar-specific Ki is given 

by: 

𝑲𝒊  = (⟨𝑾𝒊⟩ −  1)ln𝐒𝒊                                                                       (1) 

where Si is the number of collaborators of scholar i, ⟨Wi⟩ = Si
-1 ∑ 𝑾𝒊𝒋

𝐒𝒊
𝒋=1  is the average collaboration 

times between scholar i and his/her collaborator j. This definition has been proven to be reasonable 

and effective by Peterson with the publication on PNAS (Petersen 2015). Based on the definition, the 

lifetime collaborator threshold Ki is nonparametric which depends only on the information of ⟨Wi⟩ 
and Si. Thus, collaborators with link weight 𝑾𝒊𝒋  ≥ Ki are defined as the lifetime collaborators of 

scholar i. 

Input Features  

We propose a series of features that may be useful to predict the lifetime collaborator. Previous 

research in scientific collaboration recommendation has proposed many effective features (Tsai & Lin 

2016, Pecli et al. 2018). In this paper, we select four typical features as the baseline model:  

 Common Neighbors (CN): The CN indicates the number of common neighbors between scholars i 

and j. To some extent, high CN means two scholars are closely related with each other in scientific 

collaboration networks.  

 Jaccard Coefficient (JC): The JC measures similarity between finite sample sets. Here, the finite 

sample set is the co-author set. 

 Katz Weight (KW): The KW is a node similarity measurement which considers the local path 

between two nodes. Here, the local paths are the collaboration network path of two given scholars. 

 Random Walk with Restart (RWR): The RWR is a similarity index based on random walk which 

is an extension of PageRank algorithm. It has been proven to be effectively in recommendation 

systems. Note that the RWR is calculated with the largest component containing all investigated 

scholars extracted from the whole DBLP data set. 

Although these features have been proven to be significant in link prediction problem (Tsai & Lin 

2016), they may not fit the lifetime collaborator prediction. These features merely consider network 
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properties, while scholars’ local properties are overlooked. With the availability of scholarly data we 

can infer more scholars’ local features based on publication records. Therefore, we propose additional 

features, including: 

 Research Interest (RI): The RI is proposed to measure how similar two scholars’ research interests 

are. In order to calculate the RI, we first crawl the publication records including titles and abstracts 

of scholars i and j separately before they start collaborating with each other. Then, we obtain the 

publication corpus Ci (or Cj) of scholar u (or v) by integrating his/her papers together. We take 

advantage of the Latent Dirichlet Allocation (LDA) to Ci (or Cj) to get scholar i (or j)’s research 

topic distribution vector. Finally, we calculate the RI based on the cosine similarity of their topic 

distribution vectors. 

 Academic Age (AA): The AA is proposed to describe the career stage of a given scholar. In reality, 

scholars have different collaboration strategies at different academic stages. For example, a PhD 

student will collaborate many times with his/her advisor. The student may become a colleague of 

his/her advisor, which may result in a life-long collaboration relationship. 

 Number of Publications (NP): The NP is used to measure the academic achievement of a scholar 

based on the fact that fruitful scholars tend to be more collaborative.  

 Number of Collaborators (NC): The NC is used to measure collaboration preference. A higher 

NC means that the scholar is more collaborative. Note that these above features are calculated 

exactly at the time when two scholars begin their collaboration. 

 Collaboration Frequency (CF): The CF is proposed to measure how frequently two scholars 

collaborate with each other during the early collaboration stage. Specifically, we identify the 

collaboration times during the first three years of their collaboration. A higher CF may bring a 

stable collaboration relationship in the future.  

Prediction via Machine Learning 

The lifetime collaborator prediction can be treated as a binary problem. Scholar j either is the lifetime 

collaborator or not the lifetime collaborator of scholar i. With the development of machine learning, 

there exist several classification methods for supervised classification. Specifically, we apply our 

proposed features to many advanced classification algorithms in order to predict the lifetime 

collaborators. These algorithms are Logistic Regression (LR), Random Forest (RF), Stochastic 

Gradient Decent (SGD), Support Vector Machine (SVM), Early Stage Prediction (ESP), and eXtreme 

Gradient Boosting (Xgboost). The ESP method is designed based on the idea in reference. 

Experimental Results 

Data Description 

We use DBLP digital library as our research data set. Since it takes a life-long time to identify the 

lifetime collaborator as test set, we extract scholars whose academic age is more than 30 years as the 

target scholars. In other words, their first publications should be published earlier than 1986. 

Meanwhile, they should have no publication record in the most recent five years (from 2011 to 2016). 

In order to eliminate scholars who leave the academic society at their early careers (Sinatra et al. 

2016), we limit our analysis to scholars who: 

 have published at least one paper every five years,  

 (have authored at least 10 papers,  

 held their academic career for a minimum of 20 years.  

Finally, as shown in Table 1, we screen out 5,631 scholars. Then, we extract all their collaborators 

which include 86,081 scholars. The average collaboration times (link weight W) is 4.125. The 

number of lifetime collaborators is 15,194 calculated based on Equation 1. 
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Table 1. Statistics of experimental data set 

Scholars Collaborators1 Lifetime Collaborators <W> 

5,631 86,081 15,194 4.125 

 

Experimental Design 

To predict lifetime collaborators, we divide the dataset into two non-overlapping subsets. The first sub 

set is the training set and the second is the test set. The test set is 20% of the whole dataset. 

Meanwhile, the k-fold (k=5) cross validation is adopted in the experiments to enhance the stability 

and fidelity of evaluation results. For a given scholar, we divided his/her collaborators into two kinds, 

i.e., lifetime collaborators (positive samples) and others (negative samples). It is worth mentioning 

that the positive and negative samples are unbalanced. For example, if scholar i has ten collaborators, 

only two scholars are the positive samples (lifetime collaborator) and the rest eight scholars are 

negative samples (none-lifetime collaborator). All the input features are normalized into [0, 1] in 

order to avoid the data imbalance with the min-max normalization approach. The prediction results 

are evaluated with four typical metrics including Accuracy, Precision, Recall, and F1. All experiments 

are performed on a 64-bit Windows-based operation system, with a 4-duo and 2.6-GHz Intel Xeon 

CPU, 128-G Bytes memory. 

Predictor Comparison 

Table 2. Comparison of baseline model and proposed model with various predictors in terms of 

accuracy, precision, recall, and F1. 

Predictor Features Accuracy Precision Recall F1 

LR 
Baseline 0.8106 0.7862 0.5816 0.6203 

All_F 0.8016 0.7816 0.6134 0.6152 

RF 
Baseline 0.8743 0.7425 0.6543 0.6524 

All_F 0.8842 0.7318 0.6734 0.6354 

SGD 
Baseline 0.8213 0.7689 0.6126 0.6524 

All_F 0.8331 0.7858 0.6515 0.6852 

SVM 
Baseline 0.9022 0.7851 0.6563 0.6583 

All_F 0.9112 0.7828 0.6815 0.6701 

ESP 
Baseline 0.8854 0.7888 0.6675 0.5927 

All_F 0.9013 0.7998 0.6901 0.6234 

Xgboost 
Baseline 0.9106 0.7922 0.6616 0.6503 

All_F 0.9216 0.8165 0.6874 0.6852 

 

 

Table 2 shows the performance of different predictors on DBLP data set. In the table, the baseline 

model takes CN, JC, KW, and RWR as the input features. As can be seen from this table, all 

predictors have at least 80% accuracy, 73% precision, 57% recall, and 61% F1. This indicates that the 

lifetime collaborator can be well predicted with our proposed model. The Xgboost predictor achieves 

the highest accuracy (91.06%) and precision (79.02%). However, the recall rate for all predictors 
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merely ranges from 57.34% to 67.34%, which indicates that the baseline model is not sensitive 

enough to predict all the possible lifetime collaborators.  

The All_F model takes all baseline feature as well as RI, AA, NP, NC, CF as input features. By 

comparison, we can see that the All_F model could achieve better performance than baseline model, 

which demonstrates the effectiveness of our proposed features. Meanwhile, the Xgboost still achieves 

the best performance with accuracy 92.16% and 81.65% precision. From Table 2, we can gain the 

conclusion that lifetime collaborators can be well predicted with our proposed model. The proposed 

features can improve the performance of lifetime collaborator prediction than baseline model. 

Factor Contribution Analysis 

 

 

Figure 2.  Feature contribution comparison in terms of accuracy, precision, recall, 

and F1 with adding or removing strategies. The left and right sides of the figure 

depict the effects of removing strategy and adding strategy, respectively. The baseline 

feature includes CN, JC, KW, and RWR. 

 

We have utilized a total of six features, including the baseline model, as follows: baseline (CN, JC, 

KW, and RWR), RI, AA, NO, and CF that may determine a life-long collaboration relationship. In 

order to reveal the significance of each proposed feature, we employ the “jackknife” approach (Dong 

et al. 2016) with two cases:  

 Removing one factor and predicting with the rest factors (Removing);  

 Using only one factor to do prediction (Adding).  
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Based on this approach, we can explore the individual contribution that each feature supports to the 

overall prediction problem. At the same time, we utilize the Xgboost as the predictor in this 

experiment.  

Figure 2 shows the results of accuracy, precision, recall, and F1 with jackknife approach based on 

Xgboost. We can find that our proposed All F model achieves better performance than the adding and 

removing factor strategies in most cases. In subfigure 2 (a), 16% drops in accuracy (from 0.92 to 0.76) 

by the removal of CF feature. Meanwhile, the accuracy of adding strategy with CF feature almost 

remains unchanged. These indicates that the CF feature has significant impact on lifetime collaborator 

prediction. The experiment also shows that the proposed novel features can be important to enhance 

the prediction precision, recall and F1. 

Conclusion 

In this work, we try to predict the lifetime collaborator of a given scholar based on the early-stage 

collaboration data. In order to solve this novel problem, we propose a number of features that may be 

useful to predict a life-long collaboration relationship. Through extensive experiments on the DBLP 

data set, we find the model by leveraging the proposed novel features outperform the baseline model. 

This finding is also consistent by using factor analysis via jackknife approach.  

In future work, we will investigate more sophisticated graphical and local features while proposing 

novel learning model to further enhance the predication performance. Meanwhile, we would like to 

take advantages of network representation learning methods to acquire scholar vectors for similarity 

calculation. 
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