View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by AIS Electronic Library (AlSeL)

Association for Information Systems

AIS Electronic Library (AlSeL)

ICEB 2003 Proceedings International Conference on Electronic Bu?ligggs)

Winter 12-9-2003

The Mathematical Programming and the Rule Extraction from
Layered Feed-forward Neural Networks

Rua-Huan Tsaih
Hsiou-Wei Lin
Wen-Chyan Ke

Cheng-Chang Lee

Follow this and additional works at: https://aisel.aisnet.org/iceb2003

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AlSeL). It has been accepted for inclusion in ICEB 2003 Proceedings by an authorized administrator of AIS
Electronic Library (AlSeL). For more information, please contact elibrary@aisnet.org.

https://core.ac.uk/display/301391279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2003
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2003?utm_source=aisel.aisnet.org%2Ficeb2003%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

The Mathematical Programming and the Rule Extraction from Layered
Feed-forward Neural Networks

'Ray Tsaih, *Hsiou-Wei Lin, “Wen-Chyan Ke, 'Cheng-Chang Lee
'Department of Management Information Systems, National Chengchi University, Taipei, Taiwan,
E-mail:tsaih@mis.nccu.edu.tw, czlee@mis.nccu.edu.tw
*Department of International Business, National Taiwan University, Taipei, Taiwan,
E-mail:plin@ccms.ntu.edu.tw, wenchyan@mis.nccu.edu.tw

Abstract

We propose a mathematical programming method-
ology for identifying and examining regression rules
extracted from layered feed-forward neural networks.
The area depicted in the rule premise covers a convex
polyhedron in the input space, and the adopted approxi-
mation function for the output value is a multivariate
polynomial function of x, the outside stimulus input.
The mathematical programming analysis, instead of a
data analysis, is proposed for identifying the convex
polyhedron associated with each rule. Moreover, the
mathematical programming analysis is proposed for
examining the extracted rules to explore features. An
implementation test on bond pricing rule extraction
lends support to the proposed methodology.

Keywords: Rule extraction, Neural Networks,
Mathematical programming, Bond-pricing

1. Extracting Regression Rules from Neural
Networks

Rumelhart and his colleagues in [3] proposed a
learning algorithm, named the Back-Propagation learn-
ing algorithm, for training layered feed-forward neural
networks. Since then, varieties of Artificial Neural
Networks (ANN) have been widely used in many fields.
However, in many applications, it is desirable to extract
knowledge or rules from the trained ANN for the pur-
pose of exhibiting a high degree of comprehensibility of
ANN and gaining a better understanding of the problem
domain. More precisely, it is desirable to have a solid
way of extracting rules from a well-known ANN, like
layered feed-forward neural networks, and then examin-
ing these extracted rules to gain more information about
the problem domain.

In literature, there are some recent studies related to
extracting rules from the trained ANN. For instance,
[7], [8] and [10] extract rules from a trained ANN for
classification problems; [6] and [5] from a trained ANN
for regression problems. In their paper [5, p.1279],
Saito and Nakano state “one future direction for knowl-
edge-extraction technique is enabling to deal with neural
networks of real-valued outputs.” Thus, in this study
we focus upon developing a solid way of extracting and
analyzing regression rules that deal with the real-valued
outputs.

From the literature, the rules extracted from the

trained ANN for regression problem most typically take
the following syntax:
If (premise), then (action). (1)

The premise is a Boolean expression that must be evalu-
ated as true for the rule to be applied. For example, a
rule premise is x I {x: 0.2 £ x; + 2x, £ 10.2}, where x is
the outside input vector. The action clause consists of a
statement or a series of statements, and is executed only
when the premise is true. For example, a rule action is
that the output value y is approximated by g(x). The
approximation function g(x) can be a piece-wise linear
function (cf. [6].) or a multivariate polynomial function
whose power values could not be restricted to integers
(cf. [5].). Specifically, the regression rules take the
following syntax:

If (xT the i™ Area), then (v’ = gi(x)), 2)
where y’ is the approximation of the output value y.
The Area depicted in the premise covers a region in the
input space. This type of rules is acceptable because of
its similarity to the traditional statistical approach of
parametric regression. The treatment of many topics
using traditional statistical approach aims to strip away
nonessential details and to reveal the fundamental as-
sumptions and the structure of reasoning.

To identify the premise of a single rule, [6] and [5]
focus on a way of data analysis on the training sample
set or the generated sample set. The generated sample
set contains data instances yielded from the trained ANN.
With either training or generated sample set for extract-
ing rules, the amount of data instances is finite, and the
premise of a resulted rule covers merely discrete points,
instead of an area. Impractically, to really catch the
rules embedded in the trained ANN, the size of the data
set should reach infinity. Besides, [6] and [5] have not
provided a solid way of examining the extracted rules to
gain useful information for the problem domain.

Here we propose the mathematical programming
methodology for not only identifying regression rules
extracted from layered feed-forward neural networks,
but also examining the extracted rules to gain useful
information. The Area depicted in the rule premise
covers a convex polyhedron in the input space, and the
adopted approximation function g(x) is a multivariate
polynomial function of x. The mathematical program-
ming analysis, instead of a data analysis, is suggested for
identifying the convex polyhedron associated with each
rule. The mathematical programming analysis is also
used to examine the extracted rules to explore features.

This paper is organized as follows. Section 2 gives
details of the proposed method. Section 3 presents a
study of applying the proposed method to the
bond-pricing. Finally, Section 4 offers some conclu-
sions and future work.

2. The Proposed Mathematical Program-
ming methodology

X1 X2 Xm

Figure 1: The feed-forward neural network with one
hidden layer and one output node.

Without losing the generality, we take the network
shown in Figure 1 as an illustration of the proposed
methodology. The network is a three-layer
feed-forward neural network with one output node. In
Figure 1, y denotes the output value of the neural net-
work, and x' © (xy, Xa,..., X;) Whereas x; denotes the i-th
outside stimulus input, with i from 1 to m, where m is
the amount of stimulus input. 2wj[O Wi, 2Wase o5 2Wjm)
stands for the weights between the j-th hidden node and
the input layer, with j from 1 to p, where p is the amount
of used hidden nodes, and ;W' ° (wy, sws,..., 3W,) stands
for the weights between the output node and all hidden
nodes. 0 is the bias of the j-th hidden node and ;q is
the bias of the output node. The activation function
et _ -t
e +e
linear activation function is used in the output node.
That is, for the c-th input .x, the activation value of the
Jj-th hidden node ./4; and the output value .y are computed
as in equations (3) and (4).

is used in all hidden nodes and the

tanh(?) ©

ch; = tanh(%1 Wi Xi + 20)))
£

&= .a] swjch 50 @
=

To extract comprehensible multivariate polynomial
rules from the layered feed-forward neural network with
the tanh(#) activation function, an approximation of the

tanh(#) function is necessary. The following way of
approximation is proposed. Assume that we are inter-
ested in the first and second ordered differential infor-
mation. Then, the following function g(¢) is proposed
to approximate tanh(f):

il ift3k

2()° ":jblf+b2r2 if0EtEK)
ibit-byt* if-KEI£0
-1 if tE-k

where (by, by, k) © arg(brr})ink (‘i (tanh(¢) - g(¢))*dt , sub-

jectto bk + b2k2= 1). g(?) is continuous at boundaries

of four polyhedrons (¢ = k, ¢ = 0, ¢ = -K), because lim
t®k”

bll+b2t2:1, 1imb1t+b2t2=0, limblt-b2t2=0,
® 0" ®0
and lim blt—b212=-l.
®-k*

With the numerical analysis of Sequential Quadratic
Programming (cf. [9].), we obtain b; @1.0020101308531,
b, @-0.251006075157012, k @1.99607103795966, and

min c‘i(tanh(t)- g(0)’dt € 0.00329781871956464.

il ift;3k-,q;

-:-(blzq,/ +Dh, zqiz)

i +(by+2b,,9,);, if-.q;£¢t,£K-,0q,
g+20) =] +by} ©)

':'(blzq/' - byog;%)

: +(by - 2b,,q,)t; if - k-,q; £t E-,0;

i - b’
$-1 ift; £-k-,0q;

For the j-th hidden node, let ¢ ° 2wj[x. Thus
tanh(;w;' X + ,0) can be approximated with g(#; + »Q)),
which is defined in equation (6). In other words, for
the j-th hidden node, the activation value is approxi-
mated with a polynomial form of single variable ¢ in
each of four separate polyhedrons in the x space. For
example, if x T {x: -0 £ 2wjtx £ k - ,0;}, then tanh(zw,-t
X + ,0;) is approximated with b;,0; +b, 2q/-2+ (b, +2 b,
20) 4 + b, tjz. Thus, a comprehensible regression rule
associated with a trained feed-forward neural network
with p hidden nodes is like:

IfxT {x: -0, £ ;W x £ K - ,q; for all j}, then " = 3q

P
+ él sw; (01,0, + b, 2(3]/27L (by +2b,,q) £+, tjz)'
=

To have a better representation of the area depicted in
the rule premise, let us further introduce some notations.
For the j-th hidden node, set i;be 1 when the situation K -
»0; £ #; holds; 2 when -,q; £ ¢, £ K - ,0; holds; 3 when -k -
20, £ t; £ -,0; holds; or 4 when ¢, £ -k - ,0; holds. Also,

é,w’ u é,w’ u

t 2" 2" t

set W, © Lw,, Wp© @ L0, W3 @ [U,V\g»4° W),
& :2W;0 & :2W;0

t t
U © K-20;, Up® (205 20 - K), U ° (=20 - K, 205, Ux® K

2
+,0;, %/l(tj) ° 1, got) ° by 2q/2+b2 20; + (b, +2 b, Q) 2?/
+ 0, ¢4, gn(t) © by 20 - by 20 + (b -2b229j)lj'bzlj;
and gu(t;) © -1. Leti © (iy, iy, ..., i) withi;l {1,2,3,4}

t

. 2
for every J, lAi ° : Lrj) and lbi ° (ulil: u2i29 (KXY} upip)'

Thus, for example, the premise x T {x: -0 £ W' x £k -
20" j=1,2, .., p} can be expressed as xT {x: A x3
1bi with i;=2 for every j}.

In practice, the independent variables may have some
constraints, and they are usually linear as shown in
equation (7), where a;and ,b; are given constants. Let

éall Azt 4im U

e u

adar Ay o Aoy t
2A° g 3 and ,b® (b, 202, ..., 2by).

¢ G

élrﬂ 2% AR ¢ u

Thus equation (7) can be expressed as ,Ax 2 ,b.
apxitapxot ot aimx,3 obyi=1,2,.,n (7)

In sum, there are 4" polyhedrons in the input space
where the corresponding output value y is approximated
with a multivariate polynomial function. The potential
rule associated with the i-th polyhedron {x: A;x 3 b;} in
the input space is similar to the one shown in equation
(8), where A0 540 o 870
€2A0 é&bg

- 14
Ifx1 {x:A; x3 b} theny’ =30+ 3 5w, gji/_(tj) (8)
j=1 y

However, some of these 4” potential rules are null.
The Simplex algorithm (cf. [2].) can be applied to iden-
tify the null rules. If {x: Ajx 3 b;} is empty, the rule
associated with the i-th polyhedron is null. {x: A;x 3
b;} is a convex polyhedral set in the input space because
A;x 3 b; consists of linear inequality constraints. Fur-
thermore, {x: A;x 3 b;} is non-empty if the linear pro-
gramming (LP) problem (9) has an optimal solution. In
other words, if LP problem (9) has an optimal solution,
then the rule associated with the i-th polyhedron {x: A; x
3 b} exists. Otherwise, that rule fails to exist. The

process of extracting existing rules is summarized in
Table 1.

Minimize: constant
Subject to: Ajx 3 by %)

Table 1: The process of rule extraction.

Step 3: For each of the 4" potential rules, says

p
IfAix3 bj, theny'=3q+ a ;w, g (1)
j=1 :

& AU é b u .
where A; ° = o and b; °© 2 1, €xamine

€ Al e pu

€24 ex20{

whether the corresponding LP problem has an
optimal solution. If the corresponding LP
problem has an optimal solution, then the rule
exists. Otherwise, that rule fails to exist.

Step 1: Input all weights and biases of the trained
feed-forward neural network to form ;A; and
1bi.

Step 2: Input the constraints associated with the inde-
pendent variables to form ,A and ,b.

Minimize:
e
Subject to: Ajx 3 by (10)
Maximize: Rl
T
Subject to: Ajx 3 by (11)

Features embedded in the feed-forward neural net-
work can be explored via further analyzing the existing
rules. Take as an illustration the exploration of the re-
lation between y' and the k-th independent variable x;.
The null hypothesis H, states there is no relation be-
tween)' and x;, while an alternative hypothesis H; ar-

'
gues Al > 0, and another alternative hypothesis H, is
k
1

that ——< 0. For the i-th polyhedron {x: A;jx 3 b;},

Xk
s > 0 if the minimal solution to the optimi-
ﬂxk xi{x‘A‘x3b\}
zation problem (10) is greater than zero, and
s < 0 if the maximal solution to the opti-
ﬂxl" xi{x‘A‘x3h‘}
mization problem (11) is less than zero. Because of the
approximation stated in equation (5), ﬂﬂ =
Xk
I (t:
a sw Tes(t;) and
J= e
10 if t;>k- 0,
:
..2ij(b|+2b22qj) .
(t: | -.0:<t; <k-,0:
ﬂg/ (t/)::, +22ijb2tj U(20, <; 20 '(12)
Tes i 2wy (b - 2b5,0;)

i if - K-,0; <t; <-,q;
b= 2,wybt 4 20, <1 <20
}0 if‘t./<_k'2q]'

Thus, the optimization problems (10) and (11) are LP

problems, and accordingly, they can be solved via the
Simplex algorithm.

As for identifying features such as
i 2.0
A
i 1];26"' , the proposed method is as fol-
.I. y

1 >0 if x; <x;
T ﬂka J
ﬂzy'

2
X

lows. For instance, let

be a negative constant at

2
the [3,3,3,3]-th polyhedron. Thus “% >0 ifx; <x”
Xk
7y
is not true at the [3,3,3,3]-th polyhedron, and “ﬂ—yz <0
Xk

if x; > x;” is true at the [3,3,3,3]-th polyhedron if and
only if the LP problem (13) has an optimal solution.
Minimize: constant
Subject to: A33331X 3 b3z, X > x; (13)

3. The Rule Extraction in the Bond-Pricing
Application

This section adopts a case of bond-pricing to ex-
amine the proposed methodology. The domain knowl-
edge with respect to the bond pricing model has been
well established and thus serves to help investigating the
learning process. In equation (14), bond price at time ¢,
denoted by P,, is governed by four factors: (1) r, the
market rate of interest at time #; (2) F, the face value of
the bond, which generally equals 100; (3) 7, term to
maturity at time ¢ = 0; and (4) C, periodic coupon pay-
ment, which equals F r,.

To
& (14)
k= (1+7) (1+r)"

By assuming one coupon payment per year (that is,
coupon payments are made every 12 months), there are
five well-known theorems with respect to bond prices
which have been derived as follows: [3]

1. If a bond's market price increases, then its yield must
decrease; conversely, if a bond's market price de-
creases, then its yield must increase. That is,

B <0.

|17

2. If a bond's yield does not change over its life, then its
discount or premium will decrease as its life gets
1P
I,
term to maturity at time 7.
3. If a bond's yield does not change over its life, then the
size of its discount or premium will decrease at an in-
creasing rate as its life gets shorter. That is,
19°P
tor?

'|' ﬂth

f 17
4. A decrease in a bond's yield will raise the bond's price
by an amount which is greater in size than the corre-
sponding fall in the bond’s price, and the fall will oc-
cur if there is an equal-sized increase in the bond's
TP
2

/i
5. The amount change in a bond's price due to a change
in its yield will be higher if its coupon rate is higher.
1°P,

.1

(o]
t

shorter. That is,

<0, where T, ° T, - t is the

<0 ifr>n

>0 ifr.<rn

yield. That is, >0.

That is,

<0. (Note: This theorem does not

apply to bonds with a life of one year or to bonds that
have no maturity date, known as consols, or perpetui-
ties.)

We generate the training samples from a hypothetical
period of 80 trading days, during which we derive r,
from a normal random number generator of N(2%,
(0.1%)%. Then we use six hypothetical combinations
of terms to maturity and contractual interest rate as de-
picted in Table 2, and generate the data with eighty
measures of t, with = 1/80, 2/80, ..., 80/80 via equation
(14). Thus we have 480 training samples with input
variables T}, r. and r,, and the desired output value of P,,
where T, © T, - ¢t is the term to maturity at time z. The
constraints of these input variables are listed in equation

(15).

(1 £T,£4) AND (0 £ r, £ 0.030)
AND (0.016 £ 7, £ 0.023) (15)

Table 2: Six hypothetical short-term bonds. Assume
coupon payments are made annually.

Term to maturity (7p) | Contractual interest rate (7.)

2 0.0%

1.5%

3.0%

0.0%

1.5%

AN

3.0%

We adopt the Back Propagation learning algorithm to
train 100 feed-forward neural networks, each of which
has 4 hidden nodes and different initial weights and bi-
ases. The final weights and biases of the feed-forward
neural network with the minimum sum of square error
are as follows: 30 =98.571, ,q; = -1.565, »,(» = 0.335, »,03
= -1.310, ,0, = -2.341, ;W' = (-5.531, -1.995, 4.625,
-0.871), »w;" = (0.393, -36.344, 15.955), ,w,' = (0.145,
-40.733, -36.784), ;w3' = (0.409, 45.318, -62.477), and
ow, = (0.027, 50.463, 100.840). We take this neural
network as an illustration. Thus

£, =0.393 T,-36.344 r.+ 15.955 r, (16)
t,=0.145 T,- 40.733 r. - 36.784 r, (17)
t3=0.409 T, + 45318 r. - 62.477 r, (18)
t4=0.027 T,+ 50.463 r. + 100.840 r, (19)

i g1 (t;) =1.000 if t 3 3.561

120 (t)=-2.183+1.788¢, - 0.2514,° if 1.561£1, £3.561
-:-g13(t1):-0.953+0.216t1 +0.2511,° if - 0.431£¢4 £1.561
fgia(t)=-1.000 if t £-0.431

(20)
1221(62) =1.000 if t, 3 1.661
122 (12) =0.307+0.8341, - 0.2515,° if -0.335 £ 1, £1.661
-:-g23 (12) =0.363+1.170t, +0.2511,> if - 2.331£ 1, £-0.335
fg24(t2) =-1.000 if t, £-2.331

(21)

1g31(2)=1.000

F g (ts) =~ 174441660t - 02511,
£ gss(15) =- 0.882+0.3441, +0.2511
§gsa(ty) =- 1.000

if 1, % 3306
if1310£1, £3.306
if - 0.686£ 1, £1.310
if t, £-0.686

(22)
i ga(t4) =1.000
dgun(ts) =-372142177, - 0251,
£ gus(t4) =-0970- 0173, +0251,”

ity ® 4337
if 2.341£ 1, £4.337
if 0.345E 1, £2.341

:fg44 ([4) =- IOOO l](.t4 £ 0345
(23)
¥ =98.571-5.531 gy (1) - 1.995 gy (1)
+4.625 g3i3(t3) -0.871 g4i4(t4) (24)

Among the 256 (4*) potential rules associated with
this neural network, there are only eleven existing rules
shown in Table 3. Namely, the other 245 potential
rules are null. In Table 3, two polyhedrons are adjacent
if they have adjacent values in one index and same val-
ues in the other indexes. Table 4 displays the amount
of training samples contained in the corresponding
polyhedron of each existing rule. Rules 3, 4, 5, 9, 10,
and 11 provide the information of y in polyhedrons
which contain no training samples.

In practice, we may be interested in features of first
and second order differentiations of bond price; namely,
LA A A 94

—_— , —

the general principles about , ,)
. I 97 T

ﬂZyv ﬂZyv ﬂzyv ﬂzyv ﬂzy'

LA 7 % I VA 7 T’
from the eleven existing rules, we can examine the cor-
responding features embedded in the feed-forward neu-
ral network. Table 5 reports the result of such exami-
& > 0 and k
r. fIr.
all polyhedrons. Namely, the result lends support to the
2 2.0
The rules of ﬂ_y > 0, ﬂ_y
79 7.1,

and

Then,

nation, indicating that <0 are true in

two rules. <0,
ﬂzy'

2

2
Iy <0 and
Tlrcﬂrl ﬂ’?
hedrons.

The above learning process, nevertheless, is subject
ﬂzy'

.

> 0 are true in almost all poly-

to a Type I error [1] for

> (. Specifically,

ﬂZyv
17,9
There are some relationships between 7; and r, by intui-
tion; for example, the price increases if 7, and 7. both
increase and the price decreases if 7; and r, both de-
crease. But we do not know exactly whether the price
increases or decreases when 7, decrease while r, in-
ﬂzyl
9.
equivocal characteristic in the bond-pricing field.

> 0 is not unequivocal in the bond-pricing field.

Thus > (0 is not an un-

creases, or vice versa.

Table 3: The coefficients in each multivariate polynomial associated with each existing rule.

Rul N [Coefficients

i1]i,]is]iaf C OS t T, r. r T,r. T,r, r.r th cm rtz
R1 2(213|2| 109.193| -3.526| 403.598| -387.214| -1.955| -46.049| -4459.398(0.419| 5605.512| 7785.223
R2 2(213|3| 106.798| -3.470| 506.882| -180.822| -3.154| -48.446| -8908.414(0.418| 4492.314] 3339.985
R3 2(3|3|2| 109.081| -3.623| 430.899| -362.559| 9.905| -35.338| -7460.240 0.398| 3944.009| 6430.268
R 4 2(3|3|3| 106.686| -3.568| 534.183| -156.168| 8.706(-37.735| -11909.255 0.397| 2830.810| 1985.030
R5 312{3|3] 99.997| -0.057| 191.007| -42.152| 76.108| -83.242| -5688.151| -0.010| 824.626| 2633.130
R6 3(312|12| 98.294| 2.277| 390.772| -604.042| 3.154| 48.446] 8908.414| -0.418| -4492.314| -3339.985
R7 3(3(3|2| 102.280| -0.210] 115.025(-223.889| 89.168| -70.135| -4239.977| -0.031| 276.322 5723.413
R8 3(3(3|3] 99.885| -0.154| 218.308 -17.498| 87.968| -72.532| -8688.992| -0.031 -836.877| 1278.175
R9 3(3|4|2| 101.734| -0.861| 42.876| -124.422] 46.161| -10.845| 2334.218| -0.225| -2107.996 1191.714
R10 [3|3|4/3] 99.339[-0.805| 146.159] 81.969| 44.962(-13.241 -2114.797(-0.225| -3221.195| -3253.524
R11 [4]|3|3|2] 102.538] 0.260[71.541| -204.800| 49.537| -52.737| -5850.108| 0.184| 2110.166| 6076.841

Table 4: The amount of training samples in the corresponding polyhedron of each rule.
R1 R2 R3 R4 RS R6 R7 R8 R9 R10 R11

Amount of training samples | 1 79 0 0 0 80 240 80 0 0 0

Table 5: The explored features.

' ' 7y 7y
17, , 7, I
>() <0 >() <0 >0 <0
No Yes No | Yes Yes | No
No Yes Yes Yes | No
No Yes Yes Yes | No
No Yes Yes Yes | No
No Yes Yes Yes | No
No Yes No No | Yes
No Yes Yes Yes | No
No Yes Yes Yes | No
No Yes Yes Yes | No
No Yes Yes No | Yes
Yes Yes Yes Yes | No
Table 6: The results of the examining rules
Charactervin Kule R1 R2 R3 R4 R5 R6 R7 RS R9 R10 | R11 Ratio(%)1
ﬂ&r >0 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100.00
ﬂﬂy—r <0 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100.00
t
2.0
Ty <0 Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes 90.91
17397
ﬂ-Z yl
—1] 1 <0 Yes Yes Yes Yes Yes No Yes Yes No Yes Yes 81.82
Ve i
2.0
gTyz <0,if'r, >1, ? - - - - Yes | Yes - - - No 66.67
2 0
l); >0,if 7, <7, Yes Yes Yes Yes No No No No No No - 40.00
1-[2 yv
o >0 Yes Yes Yes Yes Yes No Yes Yes Yes No Yes 81.82
14
Ratioz 100 100 100 100 | 83.33 | 42.86 | 85.72 | 83.33 | 66.67 | 66.67 | 83.33 -

1. (The number of "Yes") / (The total number of "Yes" and "No") in one characteristic.
2. (The number of "Yes") / (The total number of "Yes" and "No") in one rule.

3. There is not a polyhedron that r.> r,or r. <r,

The corresponding features extracted from the
trained neural network can be compared with the ones
derived from the well-known bond pricing theorems.
Such a comparison can help us gain out knowledge
about the bond-pricing, and also investigate whether the
learning is effective.

Table 6 shows the result of comparing features em-
bedded in the neural networks with the ones derived
from these well-known theorems. This table demon-
strates that these rules have a mean of 100.00%

((100.00+100.00)/2) in satisfaction of both features Al
e
> 0 and k < 0, and a mean of 72.24%

7t

((90.91+81.82+66.67+40.00+81.82)/5) in satisfaction of

other four features.
satisfaction of 82.90 % on these six features.
sults of the extracted rules are proved positive.

Moreover, each rule has an average
The re-

4. Conclusions and Future Work

In this study, we propose a mathematical program-
ming methodology for extracting and examining regres-
sion rules from layered feed-forward neural networks.
The mathematical programming analysis, instead of a
data analysis, is proposed for identifying the premises of
multivariate polynomial rules. Also, the mathematical
programming analysis is claimed with the aim to explore
features from the extracted rules. The proposed method-
ology can provide regression rules and features not only
in the polyhedrons with data instances, but also in the
polyhedrons without data instances.

Furthermore, the proposed method can be applied to
any non-linear rules and features, as long as the adopted
approximating function holds the proper nonlinear in-
formation. The approximating function g(x) used in
equation (5) here is designed as a piece-wise second
order nonlinear function due to the assumption that we
are interested in only the first and second order differen-
tial information. With respect to the bond-pricing ap-
plication, features with the first and second ordered
characteristics can be explored from extracted rules.
Generally, g(x) can be a piece-wise higher order nonlin-
ear function, and the proposed method can be applied to
the new g(x).

In contrast with Setiono et al. [6] , the approximating
function used in equation (5) has a better total absolute
error than the one associated with the approximating
function proposed in Setiono et al. [6]. With the data-
set used to extract rules approaches infinity, our total
absolute error almost equals 0.124056, while theirs al-
most equals 0.142338 [6].

Issues worthy of future studies include the applica-
tion of the proposed methodology to real world data,
how to delete redundant constraints from the premise of
a rule, and how to integrate extracted rules.

References

[1] Hogg, R. V., Tains, E. A. (1997).Pr obabi | ity

i nfeBStemced. , PrédticeHall pp.r3%l-d5§. :

[2] Hillier, F. and Lieberman, G., (2001). Introduction to Op-
erations Research, 7th ed., Singapore: McGraw Hill, pp.
109-189

[3] Malkiel, B. G., (1962). "Expectations, bond prices, and the
term structure of interest rates." Quarterly Journal of Econom-
ics, Vol 76, No. 2, pp.197-218.

[4] Rumelhart, D.E., Hinton, G.E., and Williams, R. (1986).
"Learning internal representation by error propagation." Paral-
lel Distributed Processing. Cambridge, MA: MIT Press, Vol. 1,
pp- 318-362.

[5] Saito, K., and Nakano R. (2002). "Extracting regression
rules from neural networks." Neural Network, Vol. 15, No. 10,
pp. 1297-1288.

[6] Setiono, R., Leow, W. K., and Zurada, J. M. (2002). "Ex-
traction of rules from artificial neural networks for nonlinear
regression," IEEE Transactions on Neural Networks, Vol. 13,
No. 3, pp. 564-577.

[7] Setiono, R., and Liu. H. (1997). "NeuroLinear: From neural
networks to oblique decision rules." Neurocomputing, Vol. 17,
No. 1, pp. 1-24.

[8] Taha, I. A., and Ghosh, J. (1999). "Symbolic interpretation
of artificial neural networks." IEEE Transactions on Knowl-
edge and Data Engineering, Vol. 11, No. 3, pp.448-463.

[9] The MathWorks, Inc. (2002). Optimization Toolbox User’s
Guide. [Online]. Available: http://www.mathworks.com/access

/helpdesk/help/pdf doc/optim/optim_tb.pdf

[10] Zhou, R. R., Chen, S. F., and Chen, Z. Q. (2000). "A sta-
tistics based approach for extracting priority rules from trained
neural networks." In: Proceedings of the IEEE-INNS-ENNS

International Join Conference on Neural Network, Como, Italy,
Vol. 3, pp. 401-406.

and statistical

	The Mathematical Programming and the Rule Extraction from Layered Feed-forward Neural Networks
	f-TsaihRay.doc

