
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2003 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-9-2003

The Mathematical Programming and the Rule Extraction from The Mathematical Programming and the Rule Extraction from

Layered Feed-forward Neural Networks Layered Feed-forward Neural Networks

Rua-Huan Tsaih

Hsiou-Wei Lin

Wen-Chyan Ke

Cheng-Chang Lee

Follow this and additional works at: https://aisel.aisnet.org/iceb2003

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2003 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301391279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2003
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2003?utm_source=aisel.aisnet.org%2Ficeb2003%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

The Mathematical Programming and the Rule Extraction from Layered
Feed-forward Neural Networks

1Ray Tsaih, 2Hsiou-Wei Lin, 2Wen-Chyan Ke, 1Cheng-Chang Lee

1Department of Management Information Systems, National Chengchi University, Taipei, Taiwan,
E-mail:tsaih@mis.nccu.edu.tw, czlee@mis.nccu.edu.tw

2Department of International Business, National Taiwan University, Taipei, Taiwan,
E-mail:plin@ccms.ntu.edu.tw, wenchyan@mis.nccu.edu.tw

Abstract
We propose a mathematical programming method-

ology for identifying and examining regression rules
extracted from layered feed-forward neural networks.
The area depicted in the rule premise covers a convex
polyhedron in the input space, and the adopted approxi-
mation function for the output value is a multivariate
polynomial function of x, the outside stimulus input.
The mathematical programming analysis, instead of a
data analysis, is proposed for identifying the convex
polyhedron associated with each rule. Moreover, the
mathematical programming analysis is proposed for
examining the extracted rules to explore features. An
implementation test on bond pricing rule extraction
lends support to the proposed methodology.

Keywords: Rule extraction, Neural Networks,

Mathematical programming, Bond-pricing

1. Extracting Regression Rules from Neural
Networks

Rumelhart and his colleagues in [3] proposed a
learning algorithm, named the Back-Propagation learn-
ing algorithm, for training layered feed-forward neural
networks. Since then, varieties of Artificial Neural
Networks (ANN) have been widely used in many fields.
However, in many applications, it is desirable to extract
knowledge or rules from the trained ANN for the pur-
pose of exhibiting a high degree of comprehensibility of
ANN and gaining a better understanding of the problem
domain. More precisely, it is desirable to have a solid
way of extracting rules from a well-known ANN, like
layered feed-forward neural networks, and then examin-
ing these extracted rules to gain more information about
the problem domain.

In literature, there are some recent studies related to
extracting rules from the trained ANN. For instance,
[7], [8] and [10] extract rules from a trained ANN for
classification problems; [6] and [5] from a trained ANN
for regression problems. In their paper [5, p.1279],
Saito and Nakano state “one future direction for knowl-
edge-extraction technique is enabling to deal with neural
networks of real-valued outputs.” Thus, in this study
we focus upon developing a solid way of extracting and
analyzing regression rules that deal with the real-valued
outputs.

From the literature, the rules extracted from the

trained ANN for regression problem most typically take
the following syntax:
 If (premise), then (action). (1)
The premise is a Boolean expression that must be evalu-
ated as true for the rule to be applied. For example, a
rule premise is x ∈ {x: 0.2 ≤ x1 + 2x2 ≤ 10.2}, where x is
the outside input vector. The action clause consists of a
statement or a series of statements, and is executed only
when the premise is true. For example, a rule action is
that the output value y is approximated by g(x). The
approximation function g(x) can be a piece-wise linear
function (cf. [6].) or a multivariate polynomial function
whose power values could not be restricted to integers
(cf. [5].). Specifically, the regression rules take the
following syntax:

 If (x ∈ the ith Area), then (y’ = gi(x)), (2)
where y’ is the approximation of the output value y.
The Area depicted in the premise covers a region in the
input space. This type of rules is acceptable because of
its similarity to the traditional statistical approach of
parametric regression. The treatment of many topics
using traditional statistical approach aims to strip away
nonessential details and to reveal the fundamental as-
sumptions and the structure of reasoning.

To identify the premise of a single rule, [6] and [5]
focus on a way of data analysis on the training sample
set or the generated sample set. The generated sample
set contains data instances yielded from the trained ANN.
With either training or generated sample set for extract-
ing rules, the amount of data instances is finite, and the
premise of a resulted rule covers merely discrete points,
instead of an area. Impractically, to really catch the
rules embedded in the trained ANN, the size of the data
set should reach infinity. Besides, [6] and [5] have not
provided a solid way of examining the extracted rules to
gain useful information for the problem domain.

Here we propose the mathematical programming
methodology for not only identifying regression rules
extracted from layered feed-forward neural networks,
but also examining the extracted rules to gain useful
information. The Area depicted in the rule premise
covers a convex polyhedron in the input space, and the
adopted approximation function g(x) is a multivariate
polynomial function of x. The mathematical program-
ming analysis, instead of a data analysis, is suggested for
identifying the convex polyhedron associated with each
rule. The mathematical programming analysis is also
used to examine the extracted rules to explore features.

This paper is organized as follows. Section 2 gives
details of the proposed method. Section 3 presents a
study of applying the proposed method to the
bond-pricing. Finally, Section 4 offers some conclu-
sions and future work.

2. The Proposed Mathematical Program-
ming methodology

Figure 1: The feed-forward neural network with one
hidden layer and one output node.

Without losing the generality, we take the network

shown in Figure 1 as an illustration of the proposed
methodology. The network is a three-layer
feed-forward neural network with one output node. In
Figure 1, y denotes the output value of the neural net-
work, and xt ≡ (x1, x2,… , xm) whereas xi denotes the i-th
outside stimulus input, with i from 1 to m, where m is
the amount of stimulus input. 2wj

t ≡ (2wj1, 2wj2,… , 2wjm)
stands for the weights between the j-th hidden node and
the input layer, with j from 1 to p, where p is the amount
of used hidden nodes, and 3w

t ≡ (3w1, 3w2,… , 3wp) stands
for the weights between the output node and all hidden
nodes. 2θj is the bias of the j-th hidden node and 3θ is
the bias of the output node. The activation function

tanh(t) ≡
tt

tt

ee
ee

−

−

+
−

 is used in all hidden nodes and the

linear activation function is used in the output node.
That is, for the c-th input cx, the activation value of the
j-th hidden node chj and the output value cy are computed
as in equations (3) and (4).

 chj = tanh(
m

i 1=
∑ 2wji

cxi + 2θj) (3)

 cy =
p

j 1=
∑ 3wj

chj + 3θ (4)

To extract comprehensible multivariate polynomial
rules from the layered feed-forward neural network with
the tanh(t) activation function, an approximation of the

tanh(t) function is necessary. The following way of
approximation is proposed. Assume that we are inter-
ested in the first and second ordered differential infor-
mation. Then, the following function g(t) is proposed
to approximate tanh(t):

 g(t) ≡

−≤−
≤≤−−

≤≤+
≥

κ
κββ

κββ
κ

tif
tiftt

tiftt
tif

 1
0

0
 1

2
21

2
21 (5)

where (β1, β2, κ) ≡ arg(ttgt d))()(tanh(min 2

,, 21
∫

∞

∞−
−

κββ
, sub-

ject to β1κ + β2κ
2
= 1). g(t) is continuous at boundaries

of four polyhedrons (t = κ, t = 0, t = -κ), because
−→κt

lim

β1 t + β2 t
2
 = 1,

+→0
lim
t

β1 t + β2 t
2
 = 0,

−→0
lim
t

β1 t - β2 t
2
 = 0,

and
+−→ κt

lim β1 t - β2 t
2
 = -1.

With the numerical analysis of Sequential Quadratic
Programming (cf. [9].), we obtain β1 ≅ 1.0020101308531,
β2 ≅ -0.251006075157012, κ ≅ 1.99607103795966, and

ttgt d))()(tanh(min 2

,, 21
∫

∞

∞−
−

κββ
 ≅ 0.00329781871956464.

g(tj + 2θj) =

−−≤−

≤−≤−−

−

−+

−

−≤≤−

+

++

+
−≥

jj

jjj

j

jj

jj

jjj

j

jj

jj

jj

tif

tif

t

t

tif

t

t

tif

θκ

θθκ

β

θββ

θβθβ

θκθ

β

θββ

θβθβ
θκ

2

22

2
2

221

2
2221

22

2
2

221

2
2221

2

 1

)2(

)(

)2(

)(
 1

 (6)

For the j-th hidden node, let tj ≡ 2wj
t x. Thus

tanh(2wj
t x + 2θj) can be approximated with g(tj + 2θj),

which is defined in equation (6). In other words, for
the j-th hidden node, the activation value is approxi-
mated with a polynomial form of single variable tj in
each of four separate polyhedrons in the x space. For
example, if x ∈ {x: -2θj ≤ 2wj

t x ≤ κ - 2θj}, then tanh(2wj
t

x + 2θj) is approximated with β1 2θj + β2 2θj
2
+ (β1 + 2 β2

2θj) tj + β2 tj
2
. Thus, a comprehensible regression rule

associated with a trained feed-forward neural network
with p hidden nodes is like:

If x ∈ {x: -2θj ≤ 2wj

t x ≤ κ - 2θj for all j}, then y’ = 3θ

+
p

j 1=
∑ 3wj (β1 2θj + β2 2θj

2
+ (β1 + 2 β2 2θj) tj + β2 tj

2
).

To have a better representation of the area depicted in

the rule premise, let us further introduce some notations.
For the j-th hidden node, set ιj be 1 when the situation κ -
2θj ≤ tj holds; 2 when -2θj ≤ tj ≤ κ - 2θj holds; 3 when -κ -
2θj ≤ tj ≤ -2θj holds; or 4 when tj ≤ -κ - 2θj holds. Also,

set ωj1 ≡ 2wj
t, ωj2 ≡

− t
j

t
j

w
w

2

2 , ωj3 ≡

− t
j

t
j

w
w

2

2 , ωj4 ≡ -2wj
t,

υj1 ≡ κ - 2θj, υj2 ≡ (-2θj, 2θj - κ)
t
, υj3 ≡ (-2θj - κ, 2θj)

t
, υj4 ≡ κ

2w1 2w2 2wp

3θ

2θ1 2θ2 2θp

y

x1 x2 xm

3w

+ 2θj, gj1(tj) ≡ 1, gj2(tj) ≡ β1 2θj +β2 2θj
2
+ (β1 + 2 β2 2θj) tj

+ β2 tj
2
, gj3(tj) ≡ β1 2θj - β2 2θj

2
+ (β1 - 2 β2 2θj) tj - β2 tj

2
,

and gj4(tj) ≡ -1. Let ι ≡ (ι1, ι2, ..., ιp) with ιj ∈ {1, 2, 3, 4}

for every j, 1Aι ≡

p

2

1

2

1

ι

ι

ι

pω

ω
ω

M
, and 1bι ≡ (υ1ι1

, υ2ι2
, … , υpιp

)
t
.

Thus, for example, the premise x ∈ {x: -2θj ≤ 2wj
t x ≤ κ -

2θj ∀ j = 1, 2, ..., p} can be expressed as x ∈ {x: 1Aι x ≥
1bι with ιj = 2 for every j}.

In practice, the independent variables may have some
constraints, and they are usually linear as shown in
equation (7), where aij and 2bi are given constants. Let

2A ≡

nmnn

m

m

aaa

aaa
aaa

L
MOMM

L
L

22

22221

11211

 and 2b ≡ (2b1, 2b2, … , 2bn)
t
.

Thus equation (7) can be expressed as 2A x ≥ 2b.

 ai1 x1 + ai2 x2 + ... + aim xm ≥ 2bi, i = 1, 2, ..., n (7)

In sum, there are 4
p
 polyhedrons in the input space

where the corresponding output value y is approximated
with a multivariate polynomial function. The potential
rule associated with the ι-th polyhedron {x: Aι x ≥ bι} in
the input space is similar to the one shown in equation

(8), where Aι ≡

A
A

2

1 ι , bι ≡

b
b

2

1 ι .

 If x ∈ {x: Aι x ≥ bι} then y' = 3θ +
p

j 1=
∑ 3wj gjιj

(tj) (8)

However, some of these 4
p
 potential rules are null.

The Simplex algorithm (cf. [2].) can be applied to iden-
tify the null rules. If {x: Aι x ≥ bι} is empty, the rule
associated with the ι-th polyhedron is null. {x: Aι x ≥
bι} is a convex polyhedral set in the input space because
Aι x ≥ bι consists of linear inequality constraints. Fur-
thermore, {x: Aι x ≥ bι} is non-empty if the linear pro-
gramming (LP) problem (9) has an optimal solution. In
other words, if LP problem (9) has an optimal solution,
then the rule associated with the ι-th polyhedron {x: Aι x
≥ bι} exists. Otherwise, that rule fails to exist. The
process of extracting existing rules is summarized in
Table 1.

 Minimize: constant
 Subject to: Aι x ≥ bι (9)

Table 1: The process of rule extraction.
Step 1: Input all weights and biases of the trained

feed-forward neural network to form 1Aι and
1bι.

Step 2: Input the constraints associated with the inde-
pendent variables to form 2A and 2b.

Step 3: For each of the 4
p
 potential rules, says

If Aι x ≥ bι, then y' = 3θ +
p

j 1=
∑ 3wj g jιj

(tj)

where Aι ≡

A
A

2

1 ι and bι ≡

b
b

2

1 ι , examine

whether the corresponding LP problem has an
optimal solution. If the corresponding LP
problem has an optimal solution, then the rule
exists. Otherwise, that rule fails to exist.

 Minimize:
kx

y
∂
∂ '

 Subject to: Aι x ≥ bι (10)

 Maximize:
kx

y
∂
∂ '

 Subject to: Aι x ≥ bι (11)
Features embedded in the feed-forward neural net-

work can be explored via further analyzing the existing
rules. Take as an illustration the exploration of the re-
lation between y' and the k-th independent variable xk.
The null hypothesis H0 states there is no relation be-
tween y' and xk, while an alternative hypothesis H1 ar-

gues
kx

y
∂
∂ '

> 0, and another alternative hypothesis H2 is

that
kx

y
∂
∂ '

< 0. For the ι-th polyhedron {x: Aι x ≥ bι},

{ }ιι bxAxx ≥∈∂
∂

kx
y'

 > 0 if the minimal solution to the optimi-

zation problem (10) is greater than zero, and

{ }ιι bxAxx ≥∈∂
∂

kx
y'

 < 0 if the maximal solution to the opti-

mization problem (11) is less than zero. Because of the

approximation stated in equation (5),
kx

y
∂
∂ '

 =

p

j 1=
∑ 3wj

k

jj

x
t

∂
∂)(g

 and

k

jj

x
t

∂
∂)(g

=

−−<

<−<−−
−

−

−<<−
+

+
−>

jj

jjj
jjk

jjk

jjj
jjk

jjk

jj

tif

tif
tw

w

tif
tw

w
tif

θκ

θθκ
β

θββ

θκθ
β

θββ
θκ

2

22
22

2212

22
22

2212

2

 0

2

)2(

2

)2(
 0

.(12)

Thus, the optimization problems (10) and (11) are LP
problems, and accordingly, they can be solved via the
Simplex algorithm.

As for identifying features such as

<>
∂
∂

><
∂
∂

ji
k

ji
k

xxif
x

y

xxif
x

y

 0
'

 0
'

2

2

2

2

, the proposed method is as fol-

lows. For instance, let 2

2 '

kx
y

∂
∂

 be a negative constant at

the [3,3,3,3]-th polyhedron. Thus “ 2

2 '

kx
y

∂
∂

> 0 if xi < xj”

is not true at the [3,3,3,3]-th polyhedron, and “ 2

2 '

kx
y

∂
∂

< 0

if xi > xj” is true at the [3,3,3,3]-th polyhedron if and
only if the LP problem (13) has an optimal solution.
 Minimize: constant
 Subject to: A[3,3,3,3] x ≥ b[3,3,3,3], xi > xj (13)

3. The Rule Extraction in the Bond-Pricing
Application

This section adopts a case of bond-pricing to ex-
amine the proposed methodology. The domain knowl-
edge with respect to the bond pricing model has been
well established and thus serves to help investigating the
learning process. In equation (14), bond price at time t,
denoted by Pt, is governed by four factors: (1) rt, the
market rate of interest at time t; (2) F, the face value of
the bond, which generally equals 100; (3) T0, term to
maturity at time t = 0; and (4) C, periodic coupon pay-
ment, which equals F rc.

 Pt ≡ ∑
=

−+

0

1)1(

T

k
tk

tr
C

+ tT
tr

F
−+ 0)1(

 (14)

By assuming one coupon payment per year (that is,
coupon payments are made every 12 months), there are
five well-known theorems with respect to bond prices
which have been derived as follows: [3]
1. If a bond's market price increases, then its yield must

decrease; conversely, if a bond's market price de-
creases, then its yield must increase. That is,

t

t

r
P

∂
∂

<0.

2. If a bond's yield does not change over its life, then its
discount or premium will decrease as its life gets

shorter. That is,
tt

t

rT
P
∂∂

∂ 2

<0, where Tt ≡ T0 - t is the

term to maturity at time t.
3. If a bond's yield does not change over its life, then the

size of its discount or premium will decrease at an in-
creasing rate as its life gets shorter. That is,

<>
∂
∂

><
∂
∂

tc
t

t

tc
t

t

rrif
T
P

rrif
T
P

 0

 0

2

2

2

2

.

4. A decrease in a bond's yield will raise the bond's price
by an amount which is greater in size than the corre-
sponding fall in the bond’s price, and the fall will oc-
cur if there is an equal-sized increase in the bond's

yield. That is, 2

2

t

t

r
P

∂
∂

>0.

5. The amount change in a bond's price due to a change
in its yield will be higher if its coupon rate is higher.

That is,
tc

t

rr
P
∂∂

∂ 2

<0. (Note: This theorem does not

apply to bonds with a life of one year or to bonds that
have no maturity date, known as consols, or perpetui-
ties.)

We generate the training samples from a hypothetical

period of 80 trading days, during which we derive rt
from a normal random number generator of N(2%,
(0.1%)2). Then we use six hypothetical combinations
of terms to maturity and contractual interest rate as de-
picted in Table 2, and generate the data with eighty
measures of t, with t = 1/80, 2/80, … , 80/80 via equation
(14). Thus we have 480 training samples with input
variables Tt, rc and rt, and the desired output value of Pt,
where Tt ≡ T0 - t is the term to maturity at time t. The
constraints of these input variables are listed in equation
(15).

 (1 ≤ Tt ≤ 4) AND (0 ≤ rc ≤ 0.030)
 AND (0.016 ≤ rt ≤ 0.023) (15)

Table 2: Six hypothetical short-term bonds. Assume
coupon payments are made annually.

Term to maturity (T0) Contractual interest rate (rc)
2 0.0%
4 1.5%
2 3.0%
4 0.0%
2 1.5%
4 3.0%

We adopt the Back Propagation learning algorithm to

train 100 feed-forward neural networks, each of which
has 4 hidden nodes and different initial weights and bi-
ases. The final weights and biases of the feed-forward
neural network with the minimum sum of square error
are as follows: 3θ = 98.571, 2θ1 = -1.565, 2θ2 = 0.335, 2θ3
= -1.310, 2θ4 = -2.341, 3w

t = (-5.531, -1.995, 4.625,
-0.871), 2w1

t = (0.393, -36.344, 15.955), 2w2
t = (0.145,

-40.733, -36.784), 2w3
t = (0.409, 45.318, -62.477), and

2w4
t = (0.027, 50.463, 100.840). We take this neural

network as an illustration. Thus
 t1 = 0.393 Tt - 36.344 rc + 15.955 rt (16)
 t2 = 0.145 Tt - 40.733 rc - 36.784 rt (17)
 t3 = 0.409 Tt + 45.318 rc - 62.477 rt (18)
 t4 = 0.027 Tt + 50.463 rc + 100.840 rt (19)

−≤−=
≤≤−++−=

≤≤−+−=
≥=

431.0 000.1)(
561.10.431 251.0216.0953.0)(

561.3.5611 251.0788.1183.2)(
561.3 000.1)(

1114

1
2

11113

1
2

11112

1111

tiftg
tiftttg

tiftttg
tiftg

 (20)

−≤−=
−≤≤−++=

≤≤−+=
≥=

331.2 000.1)(
335.02.331 251.0170.1363.0)(

661.10.335- 251.0834.0307.0)(
661.1 000.1)(

2224

2
2

22223

2
2

22222

2221

tiftg
tiftttg
tiftttg

tiftg

 (21)

−≤−=
≤≤−++−=

≤≤−+−=
≥=

686.0 000.1)(
310.10.686 251.0344.0882.0)(

306.3.3101 251.0660.1744.1)(
306.3 000.1)(

3334

3
2

33333

3
2

33332

3331

tiftg
tiftttg

tiftttg
tiftg

 (22)

≤−=
≤≤+−−=
≤≤−+−=

≥=

345.0 000.1)(
341.2.3450 251.0173.0970.0)(
337.4.3412 251.0177.2721.3)(

337.4 000.1)(

4444

4
2

44443

4
2

44442

4441

tiftg
tiftttg
tiftttg

tiftg

 (23)
 y' = 98.571 - 5.531 g1ι1

(t1) - 1.995 g2ι2
(t2)

 + 4.625 g3ι3
(t3) - 0.871 g4ι4

(t4) (24)

Among the 256 (44) potential rules associated with

this neural network, there are only eleven existing rules
shown in Table 3. Namely, the other 245 potential
rules are null. In Table 3, two polyhedrons are adjacent
if they have adjacent values in one index and same val-
ues in the other indexes. Table 4 displays the amount
of training samples contained in the corresponding
polyhedron of each existing rule. Rules 3, 4, 5, 9, 10,
and 11 provide the information of y in polyhedrons
which contain no training samples.

In practice, we may be interested in features of first
and second order differentiations of bond price; namely,

the general principles about
cr

y
∂
∂ '

,
tr

y
∂
∂ '

,
tT

y
∂
∂ '

,
ct rT

y
∂∂

∂ '2

,

tt rT
y
∂∂

∂ '2

,
tc rr

y
∂∂

∂ '2

, 2

2 '

tT
y

∂
∂

, 2

2 '

cr
y

∂
∂

 and 2

2 '

tr
y

∂
∂

. Then,

from the eleven existing rules, we can examine the cor-
responding features embedded in the feed-forward neu-
ral network. Table 5 reports the result of such exami-

nation, indicating that
cr

y
∂
∂ '

 > 0 and
tr

y
∂
∂ '

 < 0 are true in

all polyhedrons. Namely, the result lends support to the

two rules. The rules of
ct rT

y
∂∂

∂ '2

 > 0,
tt rT

y
∂∂

∂ '2

 < 0,

tc rr
y
∂∂

∂ '2

 < 0 and 2

2 '

tr
y

∂
∂

 > 0 are true in almost all poly-

hedrons.
The above learning process, nevertheless, is subject

to a Type I error [1] for
ct rT

y
∂∂

∂ '2

> 0. Specifically,

ct rT
y
∂∂

∂ '2

> 0 is not unequivocal in the bond-pricing field.

There are some relationships between Tt and rc by intui-
tion; for example, the price increases if Tt and rc both
increase and the price decreases if Tt and rc both de-
crease. But we do not know exactly whether the price
increases or decreases when Tt decrease while rc in-

creases, or vice versa. Thus
ct rT

y
∂∂

∂ '2

> 0 is not an un-

equivocal characteristic in the bond-pricing field.

Table 3: The coefficients in each multivariate polynomial associated with each existing rule.
ι Coefficients

Rule No.
ι1 ι2 ι3 ι4 Constant Tt rc rt Tt rc Tt rt rc rt Tt

2
 rc

2
 rt

2

R1 2 2 3 2 109.193 -3.526 403.598 -387.214 -1.955 -46.049 -4459.398 0.419 5605.512 7785.223

R2 2 2 3 3 106.798 -3.470 506.882 -180.822 -3.154 -48.446 -8908.414 0.418 4492.314 3339.985

R3 2 3 3 2 109.081 -3.623 430.899 -362.559 9.905 -35.338 -7460.240 0.398 3944.009 6430.268

R4 2 3 3 3 106.686 -3.568 534.183 -156.168 8.706 -37.735 -11909.255 0.397 2830.810 1985.030

R5 3 2 3 3 99.997 -0.057 191.007 -42.152 76.108 -83.242 -5688.151 -0.010 824.626 2633.130

R6 3 3 2 2 98.294 2.277 390.772 -604.042 3.154 48.446 8908.414 -0.418 -4492.314 -3339.985

R7 3 3 3 2 102.280 -0.210 115.025 -223.889 89.168 -70.135 -4239.977 -0.031 276.322 5723.413

R8 3 3 3 3 99.885 -0.154 218.308 -17.498 87.968 -72.532 -8688.992 -0.031 -836.877 1278.175

R9 3 3 4 2 101.734 -0.861 42.876 -124.422 46.161 -10.845 2334.218 -0.225 -2107.996 1191.714

R10 3 3 4 3 99.339 -0.805 146.159 81.969 44.962 -13.241 -2114.797 -0.225 -3221.195 -3253.524

R11 4 3 3 2 102.538 0.260 71.541 -204.800 49.537 -52.737 -5850.108 0.184 2110.166 6076.841

Table 4: The amount of training samples in the corresponding polyhedron of each rule.
 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11
Amount of training samples 1 79 0 0 0 80 240 80 0 0 0

Table 5: The explored features.

tT
y

∂
∂ '

cr
y

∂
∂ '

tr
y

∂
∂ '

ct rT
y
∂∂

∂ '2

tt rT
y
∂∂

∂ '2

tc rr
y
∂∂

∂ '2

2

2 '

tT
y

∂
∂

2

2 '

cr
y

∂
∂

2

2 '

tr
y

∂
∂ Char-

acteris
tic

>0 <0 >0 <0 >0 <0 >0 <0 >0 <0 >0 <0 >0 <0 >0 <0 >0 <0
R1 No Yes Yes No No Yes No Yes No Yes No Yes Yes No Yes No Yes No
R2 No Yes Yes No No Yes No Yes No Yes No Yes Yes No Yes No Yes No
R3 No Yes Yes No No Yes Yes No No Yes No Yes Yes No Yes No Yes No
R4 No Yes Yes No No Yes Yes No No Yes No Yes Yes No Yes No Yes No
R5 No Yes Yes No No Yes Yes No No Yes No Yes No Yes Yes No Yes No
R6 No No Yes No No Yes Yes No Yes No Yes No No Yes No Yes No Yes
R7 No No Yes No No Yes Yes No No Yes No Yes No Yes Yes No Yes No
R8 No Yes Yes No No Yes Yes No No Yes No Yes No Yes No Yes Yes No
R9 No Yes Yes No No Yes Yes No No Yes Yes No No Yes No Yes Yes No
R10 No Yes Yes No No Yes Yes No No Yes No Yes No Yes No Yes No Yes
R11 Yes No Yes No No Yes Yes No No Yes No Yes Yes No Yes No Yes No

Table 6: The results of the examining rules

Characteristic
 Rule

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 Ratio(%)1

cr
y

∂
∂ '

>0 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100.00

tr
y

∂
∂ '

<0 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100.00

tt rT
y
∂∂

∂ '2

<0 Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes 90.91

tc rr
y
∂∂

∂ '2

<0 Yes Yes Yes Yes Yes No Yes Yes No Yes Yes 81.82

tc
t

rrif
T

y
><

∂
∂

 ,0
'

2

2
-

3
 - - - - Yes Yes - - - No 66.67

tc
t

rrif
T

y
<>

∂
∂

 ,0
'

2

2
Yes Yes Yes Yes No No No No No No - 40.00

2

2 '

tr

y

∂

∂
> 0 Yes Yes Yes Yes Yes No Yes Yes Yes No Yes 81.82

Ratio
2
 100 100 100 100 83.33 42.86 85.72 83.33 66.67 66.67 83.33 −

1. (The number of "Yes") / (The total number of "Yes" and "No") in one characteristic.
2. (The number of "Yes") / (The total number of "Yes" and "No") in one rule.
3. There is not a polyhedron that rc > rt or rc < rt.

The corresponding features extracted from the

trained neural network can be compared with the ones
derived from the well-known bond pricing theorems.
Such a comparison can help us gain out knowledge
about the bond-pricing, and also investigate whether the
learning is effective.

Table 6 shows the result of comparing features em-
bedded in the neural networks with the ones derived
from these well-known theorems. This table demon-
strates that these rules have a mean of 100.00%

((100.00+100.00)/2) in satisfaction of both features
cr

y
∂
∂ '

> 0 and
tr

y
∂
∂ '

 < 0, and a mean of 72.24%

((90.91+81.82+66.67+40.00+81.82)/5) in satisfaction of

other four features. Moreover, each rule has an average
satisfaction of 82.90 % on these six features. The re-
sults of the extracted rules are proved positive.

4. Conclusions and Future Work

In this study, we propose a mathematical program-
ming methodology for extracting and examining regres-
sion rules from layered feed-forward neural networks.
The mathematical programming analysis, instead of a
data analysis, is proposed for identifying the premises of
multivariate polynomial rules. Also, the mathematical
programming analysis is claimed with the aim to explore
features from the extracted rules. The proposed method-
ology can provide regression rules and features not only
in the polyhedrons with data instances, but also in the
polyhedrons without data instances.

Furthermore, the proposed method can be applied to
any non-linear rules and features, as long as the adopted
approximating function holds the proper nonlinear in-
formation. The approximating function g(x) used in
equation (5) here is designed as a piece-wise second
order nonlinear function due to the assumption that we
are interested in only the first and second order differen-
tial information. With respect to the bond-pricing ap-
plication, features with the first and second ordered
characteristics can be explored from extracted rules.
Generally, g(x) can be a piece-wise higher order nonlin-
ear function, and the proposed method can be applied to
the new g(x).

In contrast with Setiono et al. [6] , the approximating
function used in equation (5) has a better total absolute
error than the one associated with the approximating
function proposed in Setiono et al. [6]. With the data-
set used to extract rules approaches infinity, our total
absolute error almost equals 0.124056, while theirs al-
most equals 0.142338 [6].

Issues worthy of future studies include the applica-
tion of the proposed methodology to real world data,
how to delete redundant constraints from the premise of
a rule, and how to integrate extracted rules.

References
[1] Hogg, R. V., Tains, E. A. (1997). Probability and statistical
inference-5th ed., New Jersey: Prentice Hall, pp. 394-455.

[2] Hillier, F. and Lieberman, G., (2001). Introduction to Op-
erations Research, 7th ed., Singapore: McGraw Hill, pp.
109-189

[3] Malkiel, B. G., (1962). "Expectations, bond prices, and the
term structure of interest rates." Quarterly Journal of Econom-
ics, Vol 76, No. 2, pp.197-218.

[4] Rumelhart, D.E., Hinton, G.E., and Williams, R. (1986).
"Learning internal representation by error propagation." Paral-
lel Distributed Processing. Cambridge, MA: MIT Press, Vol. 1,
pp. 318-362.

[5] Saito, K., and Nakano R. (2002). "Extracting regression
rules from neural networks." Neural Network, Vol. 15, No. 10,
pp. 1297-1288.

[6] Setiono, R., Leow, W. K., and Zurada, J. M. (2002). "Ex-
traction of rules from artificial neural networks for nonlinear
regression," IEEE Transactions on Neural Networks, Vol. 13,
No. 3, pp. 564-577.

[7] Setiono, R., and Liu. H. (1997). "NeuroLinear: From neural
networks to oblique decision rules." Neurocomputing, Vol. 17,
No. 1, pp. 1-24.

[8] Taha, I. A., and Ghosh, J. (1999). "Symbolic interpretation
of artificial neural networks." IEEE Transactions on Knowl-
edge and Data Engineering, Vol. 11, No. 3, pp.448-463.

[9] The MathWorks, Inc. (2002). Optimization Toolbox User’s
Guide. [Online]. Available: http://www.mathworks.com/access

/helpdesk/help/pdf_doc/optim/optim_tb.pdf

[10] Zhou, R. R., Chen, S. F., and Chen, Z. Q. (2000). "A sta-
tistics based approach for extracting priority rules from trained
neural networks." In: Proceedings of the IEEE-INNS-ENNS

International Join Conference on Neural Network, Como, Italy,
Vol. 3, pp. 401-406.

	The Mathematical Programming and the Rule Extraction from Layered Feed-forward Neural Networks
	f-TsaihRay.doc

