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Abstract 
We propose a mathematical programming method-

ology for identifying and examining regression rules 
extracted from layered feed-forward neural networks.  
The area depicted in the rule premise covers a convex 
polyhedron in the input space, and the adopted approxi-
mation function for the output value is a multivariate 
polynomial function of x, the outside stimulus input.  
The mathematical programming analysis, instead of a 
data analysis, is proposed for identifying the convex 
polyhedron associated with each rule.  Moreover, the 
mathematical programming analysis is proposed for 
examining the extracted rules to explore features.  An 
implementation test on bond pricing rule extraction 
lends support to the proposed methodology. 

 
Keywords: Rule extraction, Neural Networks, 

Mathematical programming, Bond-pricing 
 
1. Extracting Regression Rules from Neural 
Networks 

Rumelhart and his colleagues in [3] proposed a 
learning algorithm, named the Back-Propagation learn-
ing algorithm, for training layered feed-forward neural 
networks.  Since then, varieties of Artificial Neural 
Networks (ANN) have been widely used in many fields.  
However, in many applications, it is desirable to extract 
knowledge or rules from the trained ANN for the pur-
pose of exhibiting a high degree of comprehensibility of 
ANN and gaining a better understanding of the problem 
domain.  More precisely, it is desirable to have a solid 
way of extracting rules from a well-known ANN, like 
layered feed-forward neural networks, and then examin-
ing these extracted rules to gain more information about 
the problem domain. 

In literature, there are some recent studies related to 
extracting rules from the trained ANN.  For instance, 
[7], [8] and [10] extract rules from a trained ANN for 
classification problems; [6] and [5] from a trained ANN 
for regression problems.  In their paper [5, p.1279], 
Saito and Nakano state “one future direction for knowl-
edge-extraction technique is enabling to deal with neural 
networks of real-valued outputs.”  Thus, in this study 
we focus upon developing a solid way of extracting and 
analyzing regression rules that deal with the real-valued 
outputs. 

From the literature, the rules extracted from the 

trained ANN for regression problem most typically take 
the following syntax: 
 If (premise), then (action). (1) 
The premise is a Boolean expression that must be evalu-
ated as true for the rule to be applied.  For example, a 
rule premise is x ∈ {x: 0.2 ≤ x1 + 2x2 ≤ 10.2}, where x is 
the outside input vector.  The action clause consists of a 
statement or a series of statements, and is executed only 
when the premise is true.  For example, a rule action is 
that the output value y is approximated by g(x).  The 
approximation function g(x) can be a piece-wise linear 
function (cf. [6].) or a multivariate polynomial function 
whose power values could not be restricted to integers 
(cf. [5].).  Specifically, the regression rules take the 
following syntax: 

 If (x ∈ the ith Area), then (y’ = gi(x)), (2) 
where y’ is the approximation of the output value y.  
The Area depicted in the premise covers a region in the 
input space.  This type of rules is acceptable because of 
its similarity to the traditional statistical approach of 
parametric regression.  The treatment of many topics 
using traditional statistical approach aims to strip away 
nonessential details and to reveal the fundamental as-
sumptions and the structure of reasoning. 

To identify the premise of a single rule, [6] and [5] 
focus on a way of data analysis on the training sample 
set or the generated sample set.  The generated sample 
set contains data instances yielded from the trained ANN.  
With either training or generated sample set for extract-
ing rules, the amount of data instances is finite, and the 
premise of a resulted rule covers merely discrete points, 
instead of an area.  Impractically, to really catch the 
rules embedded in the trained ANN, the size of the data 
set should reach infinity.  Besides, [6] and [5] have not 
provided a solid way of examining the extracted rules to 
gain useful information for the problem domain. 

Here we propose the mathematical programming 
methodology for not only identifying regression rules 
extracted from layered feed-forward neural networks, 
but also examining the extracted rules to gain useful 
information.  The Area depicted in the rule premise 
covers a convex polyhedron in the input space, and the 
adopted approximation function g(x) is a multivariate 
polynomial function of x.  The mathematical program-
ming analysis, instead of a data analysis, is suggested for 
identifying the convex polyhedron associated with each 
rule.  The mathematical programming analysis is also 
used to examine the extracted rules to explore features. 



 

  

This paper is organized as follows.  Section 2 gives 
details of the proposed method.  Section 3 presents a 
study of applying the proposed method to the 
bond-pricing.  Finally, Section 4 offers some conclu-
sions and future work. 
 
2. The Proposed Mathematical Program-
ming methodology 

 
Figure 1: The feed-forward neural network with one 
hidden layer and one output node. 

 
Without losing the generality, we take the network 

shown in Figure 1 as an illustration of the proposed 
methodology.  The network is a three-layer 
feed-forward neural network with one output node.  In 
Figure 1, y denotes the output value of the neural net-
work, and xt ≡ (x1, x2,… , xm) whereas xi denotes the i-th 
outside stimulus input, with i from 1 to m, where m is 
the amount of stimulus input.  2wj

t ≡ (2wj1, 2wj2,… , 2wjm) 
stands for the weights between the j-th hidden node and 
the input layer, with j from 1 to p, where p is the amount 
of used hidden nodes, and 3w

t ≡ (3w1, 3w2,… , 3wp) stands 
for the weights between the output node and all hidden 
nodes.  2θj is the bias of the j-th hidden node and 3θ is 
the bias of the output node.  The activation function 

tanh(t) ≡ 
tt

tt

ee
ee

−

−

+
−

 is used in all hidden nodes and the 

linear activation function is used in the output node.  
That is, for the c-th input cx, the activation value of the 
j-th hidden node chj and the output value cy are computed 
as in equations (3) and (4). 

 chj = tanh(
m

i 1=
∑ 2wji

 
cxi + 2θj) (3) 

 cy = 
p

j 1=
∑ 3wj

 
chj + 3θ (4) 

To extract comprehensible multivariate polynomial 
rules from the layered feed-forward neural network with 
the tanh(t) activation function, an approximation of the 

tanh(t) function is necessary.  The following way of 
approximation is proposed.  Assume that we are inter-
ested in the first and second ordered differential infor-
mation.  Then, the following function g(t) is proposed 
to approximate tanh(t): 

 g(t) ≡ 
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where (β1, β2, κ) ≡ arg( ttgt d))()(tanh(min 2
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κββ
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ject to β1κ + β2κ
2 
= 1).  g(t) is continuous at boundaries 

of four polyhedrons (t = κ, t = 0, t = -κ), because 
−→κt

lim  

β1 t + β2 t
2
 = 1, 

+→0
lim
t

β1 t + β2 t
2
 = 0, 

−→0
lim
t

β1 t - β2 t
2
 = 0, 

and 
+−→ κt

lim β1 t - β2 t
2
 = -1. 

With the numerical analysis of Sequential Quadratic 
Programming (cf. [9].), we obtain β1 ≅ 1.0020101308531, 
β2 ≅ -0.251006075157012, κ ≅ 1.99607103795966, and 

ttgt d))()(tanh(min 2

,, 21
∫

∞

∞−
−

κββ
 ≅  0.00329781871956464. 

g(tj + 2θj) =
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For the j-th hidden node, let tj ≡ 2wj
t x.  Thus 

tanh(2wj
t x + 2θj) can be approximated with g(tj + 2θj), 

which is defined in equation (6).  In other words, for 
the j-th hidden node, the activation value is approxi-
mated with a polynomial form of single variable tj in 
each of four separate polyhedrons in the x space.  For 
example, if x ∈ {x: -2θj ≤ 2wj

t x ≤ κ - 2θj}, then tanh(2wj
t 

x + 2θj) is approximated with β1 2θj + β2 2θj
2 
+ (β1 + 2 β2 

2θj) tj + β2 tj
2
.  Thus, a comprehensible regression rule 

associated with a trained feed-forward neural network 
with p hidden nodes is like: 

 
If x ∈ {x: -2θj ≤ 2wj

t x ≤ κ - 2θj for all j}, then y’ = 3θ 

+
p

j 1=
∑ 3wj (β1 2θj + β2 2θj

2 
+ (β1 + 2 β2 2θj) tj + β2 tj

2
). 

 
To have a better representation of the area depicted in 

the rule premise, let us further introduce some notations.  
For the j-th hidden node, set ιj be 1 when the situation κ - 
2θj ≤ tj holds; 2 when -2θj ≤ tj ≤ κ - 2θj holds; 3 when -κ - 
2θj ≤ tj ≤ -2θj holds; or 4 when tj ≤ -κ - 2θj holds.  Also, 

set ωj1 ≡ 2wj
t, ωj2 ≡ 
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t, 

υj1 ≡ κ - 2θj, υj2 ≡ (-2θj, 2θj - κ)
t
, υj3 ≡ (-2θj - κ, 2θj)

t
, υj4 ≡ κ 
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+ 2θj, gj1(tj) ≡ 1, gj2(tj) ≡ β1 2θj +β2 2θj
2
+ (β1 + 2 β2 2θj) tj 

+ β2 tj
2
, gj3(tj) ≡ β1 2θj - β2 2θj

2
+ (β1 - 2 β2 2θj) tj - β2 tj

2
, 

and gj4(tj) ≡ -1.  Let ι ≡ (ι1, ι2, ..., ιp) with ιj ∈ {1, 2, 3, 4} 

for every j, 1Aι ≡ 
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t
.  

Thus, for example, the premise x ∈ {x: -2θj ≤ 2wj
t x ≤ κ - 

2θj ∀ j = 1, 2, ..., p} can be expressed as x ∈ {x: 1Aι x ≥ 
1bι with ιj = 2 for every j}. 

In practice, the independent variables may have some 
constraints, and they are usually linear as shown in 
equation (7), where aij and 2bi are given constants.  Let 

2A ≡ 
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 and 2b ≡ (2b1, 2b2, … , 2bn)
t
.  

Thus equation (7) can be expressed as 2A x ≥ 2b. 
 
 ai1 x1 + ai2 x2 + ... + aim xm ≥ 2bi, i = 1, 2, ..., n (7) 
 

In sum, there are 4
p
 polyhedrons in the input space 

where the corresponding output value y is approximated 
with a multivariate polynomial function.  The potential 
rule associated with the ι-th polyhedron {x: Aι x ≥ bι} in 
the input space is similar to the one shown in equation 

(8), where Aι ≡ 







A
A

2

1 ι , bι ≡ 







b
b

2

1 ι . 

 If x ∈ {x: Aι  x ≥ bι} then y' = 3θ +
p

j 1=
∑ 3wj gjιj

(tj) (8) 

However, some of these 4
p
 potential rules are null.  

The Simplex algorithm (cf. [2].) can be applied to iden-
tify the null rules.  If {x: Aι x ≥ bι} is empty, the rule 
associated with the ι-th polyhedron is null.  {x: Aι x ≥ 
bι} is a convex polyhedral set in the input space because 
Aι x ≥ bι consists of linear inequality constraints.  Fur-
thermore, {x: Aι x ≥ bι} is non-empty if the linear pro-
gramming (LP) problem (9) has an optimal solution.  In 
other words, if LP problem (9) has an optimal solution, 
then the rule associated with the ι-th polyhedron {x: Aι x 
≥ bι} exists.  Otherwise, that rule fails to exist.  The 
process of extracting existing rules is summarized in 
Table 1. 
 
 Minimize: constant 
 Subject to: Aι x ≥ bι (9) 
 

Table 1: The process of rule extraction. 
Step 1: Input all weights and biases of the trained 

feed-forward neural network to form 1Aι and 
1bι. 

Step 2: Input the constraints associated with the inde-
pendent variables to form 2A and 2b. 

 

Step 3: For each of the 4
p
 potential rules, says 

If Aι x ≥ bι, then y' = 3θ +
p

j 1=
∑ 3wj g jιj

(tj) 

where Aι ≡ 







A
A

2

1 ι  and bι ≡ 







b
b
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1 ι , examine 

whether the corresponding LP problem has an 
optimal solution.  If the corresponding LP 
problem has an optimal solution, then the rule 
exists.  Otherwise, that rule fails to exist. 

 Minimize: 
kx

y
∂
∂ '

 

 Subject to: Aι x ≥ bι (10) 

 Maximize: 
kx

y
∂
∂ '

 

 Subject to: Aι x ≥ bι (11) 
Features embedded in the feed-forward neural net-

work can be explored via further analyzing the existing 
rules.  Take as an illustration the exploration of the re-
lation between y' and the k-th independent variable xk.  
The null hypothesis H0 states there is no relation be-
tween y' and xk, while an alternative hypothesis H1 ar-

gues 
kx

y
∂
∂ '

> 0, and another alternative hypothesis H2 is 

that 
kx

y
∂
∂ '

< 0.  For the ι-th polyhedron {x: Aι x ≥ bι}, 

{ }ιι bxAxx ≥∈∂
∂

kx
y'

 > 0 if the minimal solution to the optimi-

zation problem (10) is greater than zero, and 

{ }ιι bxAxx ≥∈∂
∂

kx
y'

 < 0 if the maximal solution to the opti-

mization problem (11) is less than zero.  Because of the 

approximation stated in equation (5), 
kx
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∂
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j 1=
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Thus, the optimization problems (10) and (11) are LP 
problems, and accordingly, they can be solved via the 
Simplex algorithm. 

As for identifying features such as 
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, the proposed method is as fol-

lows.  For instance, let 2
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 be a negative constant at 



 

  

the [3,3,3,3]-th polyhedron.  Thus “ 2

2 '

kx
y

∂
∂

> 0 if xi < xj” 

is not true at the [3,3,3,3]-th polyhedron, and “ 2

2 '

kx
y

∂
∂

< 0 

if xi > xj” is true at the [3,3,3,3]-th polyhedron if and 
only if the LP problem (13) has an optimal solution. 
 Minimize: constant 
 Subject to: A[3,3,3,3] x ≥ b[3,3,3,3], xi > xj (13) 
 
3. The Rule Extraction in the Bond-Pricing 
Application 

This section adopts a case of bond-pricing to ex-
amine the proposed methodology.  The domain knowl-
edge with respect to the bond pricing model has been 
well established and thus serves to help investigating the 
learning process.  In equation (14), bond price at time t, 
denoted by Pt, is governed by four factors: (1) rt, the 
market rate of interest at time t; (2) F, the face value of 
the bond, which generally equals 100; (3) T0, term to 
maturity at time t = 0; and (4) C, periodic coupon pay-
ment, which equals F rc. 

 Pt ≡ ∑
=

−+

0

1 )1(

T

k
tk

tr
C

+ tT
tr

F
−+ 0)1(

 (14) 

By assuming one coupon payment per year (that is, 
coupon payments are made every 12 months), there are 
five well-known theorems with respect to bond prices 
which have been derived as follows: [3] 
1. If a bond's market price increases, then its yield must 

decrease; conversely, if a bond's market price de-
creases, then its yield must increase.  That is, 

t

t

r
P

∂
∂

<0. 

2. If a bond's yield does not change over its life, then its 
discount or premium will decrease as its life gets 

shorter.  That is, 
tt

t

rT
P
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∂ 2

<0, where Tt ≡ T0 - t is the 

term to maturity at time t. 
3. If a bond's yield does not change over its life, then the 

size of its discount or premium will decrease at an in-
creasing rate as its life gets shorter.  That is, 
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4. A decrease in a bond's yield will raise the bond's price 
by an amount which is greater in size than the corre-
sponding fall in the bond’s price, and the fall will oc-
cur if there is an equal-sized increase in the bond's 

yield.  That is, 2

2

t

t

r
P

∂
∂

>0. 

5. The amount change in a bond's price due to a change 
in its yield will be higher if its coupon rate is higher.  

That is, 
tc

t

rr
P
∂∂

∂ 2

<0.  (Note: This theorem does not 

apply to bonds with a life of one year or to bonds that 
have no maturity date, known as consols, or perpetui-
ties.) 

 
We generate the training samples from a hypothetical 

period of 80 trading days, during which we derive rt 
from a normal random number generator of N(2%, 
(0.1%)2).  Then we use six hypothetical combinations 
of terms to maturity and contractual interest rate as de-
picted in Table 2, and generate the data with eighty 
measures of t, with t = 1/80, 2/80, … , 80/80 via equation 
(14).  Thus we have 480 training samples with input 
variables Tt, rc and rt, and the desired output value of Pt, 
where Tt ≡ T0 - t is the term to maturity at time t.  The 
constraints of these input variables are listed in equation 
(15). 
 
 (1 ≤ Tt ≤ 4) AND (0 ≤ rc ≤ 0.030)  
 AND (0.016 ≤ rt ≤ 0.023) (15) 
 
Table 2: Six hypothetical short-term bonds. Assume 
coupon payments are made annually. 

Term to maturity (T0) Contractual interest rate (rc) 
2 0.0% 
4 1.5% 
2 3.0% 
4 0.0% 
2 1.5% 
4 3.0% 

 
We adopt the Back Propagation learning algorithm to 

train 100 feed-forward neural networks, each of which 
has 4 hidden nodes and different initial weights and bi-
ases.  The final weights and biases of the feed-forward 
neural network with the minimum sum of square error 
are as follows: 3θ = 98.571, 2θ1 = -1.565, 2θ2 = 0.335, 2θ3 
= -1.310, 2θ4 = -2.341, 3w

t = (-5.531, -1.995, 4.625, 
-0.871), 2w1

t = (0.393, -36.344, 15.955), 2w2
t = (0.145, 

-40.733, -36.784), 2w3
t = (0.409, 45.318, -62.477), and 

2w4
t = (0.027, 50.463, 100.840).  We take this neural 

network as an illustration.  Thus 
 t1 = 0.393 Tt - 36.344 rc + 15.955 rt  (16) 
 t2 = 0.145 Tt - 40.733 rc - 36.784 rt  (17) 
 t3 = 0.409 Tt + 45.318 rc - 62.477 rt  (18) 
 t4 = 0.027 Tt + 50.463 rc + 100.840 rt  (19) 
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  (23) 
 y' = 98.571 - 5.531 g1ι1

(t1) - 1.995 g2ι2
(t2)  

 + 4.625 g3ι3
(t3) - 0.871 g4ι4

(t4) (24) 
 
Among the 256 (44) potential rules associated with 

this neural network, there are only eleven existing rules 
shown in Table 3.  Namely, the other 245 potential 
rules are null.  In Table 3, two polyhedrons are adjacent 
if they have adjacent values in one index and same val-
ues in the other indexes.  Table 4 displays the amount 
of training samples contained in the corresponding 
polyhedron of each existing rule.  Rules 3, 4, 5, 9, 10, 
and 11 provide the information of y in polyhedrons 
which contain no training samples. 

In practice, we may be interested in features of first 
and second order differentiations of bond price; namely, 

the general principles about 
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.  Then, 

from the eleven existing rules, we can examine the cor-
responding features embedded in the feed-forward neu-
ral network.  Table 5 reports the result of such exami-

nation, indicating that 
cr

y
∂
∂ '

 > 0 and 
tr

y
∂
∂ '

 < 0 are true in 

all polyhedrons. Namely, the result lends support to the 

two rules.  The rules of 
ct rT

y
∂∂

∂ '2

 > 0, 
tt rT

y
∂∂

∂ '2

 < 0, 

tc rr
y
∂∂

∂ '2

 < 0 and 2

2 '

tr
y

∂
∂

 > 0 are true in almost all poly-

hedrons. 
The above learning process, nevertheless, is subject 

to a Type I error [1] for 
ct rT

y
∂∂

∂ '2

> 0. Specifically, 

ct rT
y
∂∂

∂ '2

> 0 is not unequivocal in the bond-pricing field.  

There are some relationships between Tt and rc by intui-
tion; for example, the price increases if Tt and rc both 
increase and the price decreases if Tt and rc both de-
crease.  But we do not know exactly whether the price 
increases or decreases when Tt decrease while rc in-

creases, or vice versa.  Thus 
ct rT

y
∂∂

∂ '2

> 0 is not an un-

equivocal characteristic in the bond-pricing field.  

Table 3: The coefficients in each multivariate polynomial associated with each existing rule. 
ι Coefficients 

Rule No. 
ι1 ι2 ι3 ι4 Constant Tt rc rt Tt rc Tt rt rc rt Tt

2
 rc

2
 rt

2
 

R1 2 2 3 2 109.193 -3.526 403.598 -387.214 -1.955 -46.049 -4459.398 0.419 5605.512 7785.223 

R2 2 2 3 3 106.798 -3.470 506.882 -180.822 -3.154 -48.446 -8908.414 0.418 4492.314 3339.985 

R3 2 3 3 2 109.081 -3.623 430.899 -362.559 9.905 -35.338 -7460.240 0.398 3944.009 6430.268 

R4 2 3 3 3 106.686 -3.568 534.183 -156.168 8.706 -37.735 -11909.255 0.397 2830.810 1985.030 

R5 3 2 3 3 99.997 -0.057 191.007 -42.152 76.108 -83.242 -5688.151 -0.010 824.626 2633.130 

R6 3 3 2 2 98.294 2.277 390.772 -604.042 3.154 48.446 8908.414 -0.418 -4492.314 -3339.985 

R7 3 3 3 2 102.280 -0.210 115.025 -223.889 89.168 -70.135 -4239.977 -0.031 276.322 5723.413 

R8 3 3 3 3 99.885 -0.154 218.308 -17.498 87.968 -72.532 -8688.992 -0.031 -836.877 1278.175 

R9 3 3 4 2 101.734 -0.861 42.876 -124.422 46.161 -10.845 2334.218 -0.225 -2107.996 1191.714 

R10 3 3 4 3 99.339 -0.805 146.159 81.969 44.962 -13.241 -2114.797 -0.225 -3221.195 -3253.524 

R11 4 3 3 2 102.538 0.260 71.541 -204.800 49.537 -52.737 -5850.108 0.184 2110.166 6076.841 

Table 4: The amount of training samples in the corresponding polyhedron of each rule. 
 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 
Amount of training samples 1 79 0 0 0 80 240 80 0 0 0 

 



 

  

Table 5: The explored features. 
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∂
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2
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cr
y

∂
∂  

2

2 '

tr
y

∂
∂  Char-

acteris
tic 

>0 <0 >0 <0 >0 <0 >0 <0 >0 <0 >0 <0 >0 <0 >0 <0 >0 <0 
R1 No Yes Yes No No Yes No Yes No Yes No Yes Yes No Yes No Yes No 
R2 No Yes Yes No No Yes No Yes No Yes No Yes Yes No Yes No Yes No 
R3 No Yes Yes No No Yes Yes No No Yes No Yes Yes No Yes No Yes No 
R4 No Yes Yes No No Yes Yes No No Yes No Yes Yes No Yes No Yes No 
R5 No Yes Yes No No Yes Yes No No Yes No Yes No Yes Yes No Yes No 
R6 No No Yes No No Yes Yes No Yes No Yes No No Yes No Yes No Yes 
R7 No No Yes No No Yes Yes No No Yes No Yes No Yes Yes No Yes No 
R8 No Yes Yes No No Yes Yes No No Yes No Yes No Yes No Yes Yes No 
R9 No Yes Yes No No Yes Yes No No Yes Yes No No Yes No Yes Yes No 
R10 No Yes Yes No No Yes Yes No No Yes No Yes No Yes No Yes No Yes 
R11 Yes No Yes No No Yes Yes No No Yes No Yes Yes No Yes No Yes No 

Table 6: The results of the examining rules 

Characteristic
 Rule 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 Ratio(%)1 

cr
y

∂
∂ '

>0 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100.00 

tr
y

∂
∂ '

<0 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100.00 

tt rT
y
∂∂

∂ '2

<0 Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes 90.91 

tc rr
y
∂∂

∂ '2

<0 Yes Yes Yes Yes Yes No Yes Yes No Yes Yes 81.82 

tc
t

rrif
T

y
><

∂
∂

  ,0
'

2

2  
-

3
 - - - - Yes Yes - - - No 66.67 

tc
t

rrif
T

y
<>

∂
∂

  ,0
'

2

2  
Yes Yes Yes Yes No No No No No No - 40.00 

2

2 '

tr

y

∂

∂
> 0 Yes Yes Yes Yes Yes No Yes Yes Yes No Yes 81.82 

Ratio
2
 100 100 100 100 83.33 42.86 85.72 83.33 66.67 66.67 83.33 − 

1. (The number of "Yes") / (The total number of "Yes" and "No") in one characteristic. 
2. (The number of "Yes") / (The total number of "Yes" and "No") in one rule. 
3. There is not a polyhedron that rc > rt or rc < rt. 

 
The corresponding features extracted from the 

trained neural network can be compared with the ones 
derived from the well-known bond pricing theorems.  
Such a comparison can help us gain out knowledge 
about the bond-pricing, and also investigate whether the 
learning is effective. 

Table 6 shows the result of comparing features em-
bedded in the neural networks with the ones derived 
from these well-known theorems.  This table demon-
strates that these rules have a mean of 100.00% 

((100.00+100.00)/2) in satisfaction of both features 
cr

y
∂
∂ '

 

> 0 and 
tr

y
∂
∂ '

 < 0, and a mean of 72.24% 

((90.91+81.82+66.67+40.00+81.82)/5) in satisfaction of 

other four features.  Moreover, each rule has an average 
satisfaction of 82.90 % on these six features.  The re-
sults of the extracted rules are proved positive. 
 
4. Conclusions and Future Work 

In this study, we propose a mathematical program-
ming methodology for extracting and examining regres-
sion rules from layered feed-forward neural networks.  
The mathematical programming analysis, instead of a 
data analysis, is proposed for identifying the premises of 
multivariate polynomial rules.  Also, the mathematical 
programming analysis is claimed with the aim to explore 
features from the extracted rules. The proposed method-
ology can provide regression rules and features not only 
in the polyhedrons with data instances, but also in the 
polyhedrons without data instances. 



 

  

Furthermore, the proposed method can be applied to 
any non-linear rules and features, as long as the adopted 
approximating function holds the proper nonlinear in-
formation.  The approximating function g(x) used in 
equation (5) here is designed as a piece-wise second 
order nonlinear function due to the assumption that we 
are interested in only the first and second order differen-
tial information.  With respect to the bond-pricing ap-
plication, features with the first and second ordered 
characteristics can be explored from extracted rules.  
Generally, g(x) can be a piece-wise higher order nonlin-
ear function, and the proposed method can be applied to 
the new g(x). 

In contrast with Setiono et al. [6] , the approximating 
function used in equation (5) has a better total absolute 
error than the one associated with the approximating 
function proposed in Setiono et al. [6].  With the data-
set used to extract rules approaches infinity, our total 
absolute error almost equals 0.124056, while theirs al-
most equals 0.142338 [6]. 

Issues worthy of future studies include the applica-
tion of the proposed methodology to real world data, 
how to delete redundant constraints from the premise of 
a rule, and how to integrate extracted rules. 
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