
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2003 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-9-2003

Tracking a Web Site's Historical Links with Temporal URLs Tracking a Web Site's Historical Links with Temporal URLs

David Chao

Follow this and additional works at: https://aisel.aisnet.org/iceb2003

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2003 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301391227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2003
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2003?utm_source=aisel.aisnet.org%2Ficeb2003%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Tracking a Web Site’s Historical Links with Temporal URLs

David Chao
College of Business

San Francisco State University
San Francisco, CA 94132
E-mail: dchao@sfsu.edu

Abstract

The historical links of a web site include the URLs

invalidated due to web site reorganization, document
removal, renaming or relocation, or links to document
snapshots, which are defined as the document’s contents
as of a specific point in time. Tracking historical links
will allow users to use out-of-date URLs, retrieve
removed documents and document snapshots. This paper
presents a logging and archiving scheme to track a
document’s history of changes, and a Temporal URL
scheme for users to submit a URL with temporal
requirements. With the proposed schemes, a web site is
able to track its historical links and provide better
searching and information for its users.

1. Introduction

A web site is a system of integrated web documents
embedded with links to reference related documents. At
any given time, a Uniform Resource Locator (URL)
uniquely identifies a document on the Internet. All URLs
have the same format: <protocol>://<host>/path-to-
document. The <protocol> specifies the method to be
used by the browser to communicate with the web server.
Common protocols include http, ftp, gopher, etc. The
host name is the web server that stores the document.
The path to the document is a sequence of directory
names and the document name. URLs are also known as
the addresses, or paths, of documents on the Internet.

URLs are temporal and exist only for a limited
period of time. There are many causes that will render a
URL invalid: the host may cease to exist; the host may
reorganize by changing its directory structure, hence
changing the path to a document; a document may be
renamed, deleted, or moved to a different directory. The
document may no longer exist or have a new URL.

URLs are published information that may be out-of-
date. Internet users gather the URLs of their interests
from many sources such as references in books and
documents, web page hyperlinks, results of searching
with search engines, etc. Very often those published
URLs may already be invalid. Requesting a document
with an invalid URL may cause a file-not-found error
(HTTP 404). Some websites do not handle this error and
simply let the browser display the error code. Some web
sites redirect users to a default error-handling page
typically equipped with search tools. Searching takes

time and may not be successful. Searching web sites
storing a large amount of documents is particularly
tedious and unfruitful. It may produce a large number of
relevant documents but may not pinpoint the document
requested by users.

The file-not-found error may be triggered by many
causes such as: 1. The document may have never existed
in the web site. 2. The document may be deleted. 3. The
document may be renamed or relocated to another
directory. Rather than simply displaying a file-not-found
message, a web site will improve its services by handling
each cause separately. For the first case, returning a
message such as “file never exists” is more informative.
For the second case, returning a message such as “file no
longer supported” is appropriate. For the third case, the
web site can redirect users to the document’s new URL.

Even valid URLs don’t necessarily retrieve the user’s

desired document. A URL may point to a document that
is different from the one it pointed to earlier. This may
happen because of the renaming of documents and
directories. For instance, a document A may be renamed
to C and another document B may be renamed to A;
hence the URL originally pointing to A is now point to a
different document. It may also happen when a web site
removes a URL but later reinstates the URL for another
document. Users submitting such a URL may get an
unwanted document.

A document may have gone through several changes.

A URL typically retrieves the current version of a
document and its contents may be different from the last
download. There are times when users would like to see
the previous versions of a document. These previous
versions are snapshots of a document. A document
snapshot is defined as the document’s contents as of a
specific point in time. Studying a document’s snapshots
may help users identify trends and patterns of changes in
a document.

Together, the URLs invalidated by a web site due to

reorganization, document removal, renaming, or
relocation, plus the links to document snapshots are a
web site’s historical links. Tracking historical links
basically means recording the time and the type of
changes that occurred to a document and its URL. It
enables a web site to retrieve the document associated
with an out-of-date URL submitted by users, deleted
documents, and document’s snapshots. This will improve

mailto:dchao@sfsu.edu

Web Document

Added No change Relocated/
Renamed

Modified Deleted

No change

New URL URL current Old URL invalid/
New URL

URL current/
Archive snapshot

Old URL invalid/
Archive

Reorganized

Old URL invalid/
New URL

Old URL invalid/
New URL

Old URL invalid/
New URL

Old URL invalid/
New URL/
Archive snapshot

 W
eb

 si
te

Figure 1: Effects of web site reorganization and web document changes.

a web site’s searching ability and provide better
information for users.

Tracking changes has been the research topic in
many areas such as managing database snapshots [1],
materialized views [4], and document versions [6].
Those researches may focus on tracking the changes
(deltas) [5] or tracking document’s snapshots. Using a
log to record changes [2] [3] and archiving the many
versions of a document are typical methods in tracking
changes. This research proposes a logging and archiving
scheme for tracking historical links and proposes a
Temporal URL scheme to retrieve document snapshots.
The objectives of this scheme are: 1. For an invalid URL
the scheme will be able to distinguish if the document is
non-existent, or no longer supported, or it has a new URL
so that appropriate action can be taken. 2. For a valid
URL the scheme will allow users to retrieve the
document snapshots. 3. For a valid URL that retrieves an
incorrect document, the scheme will allow users to
resubmit the URL and inform the web site to process the
URL as a historical link.

An analysis of the problem and the designs of

solutions are presented in Section 2. The temporal URL
scheme and algorithms for processing historical links are
presented in Section 3. Section 4 is a summary.

2. Problem Analysis and Solution Designs

2.1 Problem analysis

Figure 1 summarizes the effects of web site
reorganization and change to a document on its URL.
When a web site reorganizes its directory structure, all
affected documents will have a new URL. Similarly,
when a web document is renamed or relocated to other
directory, it will have a new URL as well. When a
document is modified, its URL will not change and the
old version before the modification becomes the
document’s snapshot between the previous and the
current modification. In order to retrieve the snapshot,
either the difference between the old and the current
version needs to be recorded so that the snapshot can be
reconstructed, or the old version is archived. Tracking
the difference between two unstructured documents such

as web documents is not easy. Here, archiving is
assumed. A deleted document is archived as well for
later retrieval.

Figure 2 illustrates the progression of a web site. T0
is the time when the web site is initiated, and Ti denotes a
point in time when its contents change. Period i is the
interval of time between Ti and Ti+1. Assuming the path
of a valid URL is unique within the web site, a valid path
leads to a document currently published. In the sequel,
paths and URLs are used interchangeably. There are two
sets of paths in period i: VPi , a set of all valid paths, and
HPi, a set of paths becoming historical at Ti. Note that HP0
is null. In Figure 2, paths that produce two dotted arrow
lines such as P1 in period 0, and P4 and P5 in period 3
represent documents that are renamed or relocated. In
this case, only the document’s path has changed but the
document has not changed. Therefore, there is no need to
archive any documents, but it is necessary to chain the
old path to the new path in order to track the change.
Paths that produce two solid arrow lines such as P3 in
period 1, and P3 and P5 in period 2 represent documents
that are modified. In this case, the path is still valid but
the document before the change needs to be archived as
the document’s snapshot. Paths that produce one solid
arrow line, such as P2 in period 1 and P3 in period 3,
represent documents that have been deleted. Those
documents must be archived.

A path in HPi may be repeated in HPj, just as P3 is
repeated in HP2 and HP3. To make a historical link
unique, the time the path was published is added to the
path. Hence P3 in HP2 is identified as P3 + T1 and P3 in
HP3 is identified as P3 + T2. Similarly, a current path
may duplicate a path in the historical links, as is the case
of P1. By adding its published time, P1 + T3 is
distinguishable from the historical link P1 + T0. The
historical links of a web site before Ti are the union of
sets HP0 to HPi-1, (HP0 U HP1 U … U HPi-1). Assuming
Ti is the last time the web site changed then the web site’s
historical links are the unions of sets HP0 to HPi, and the
current links are VPi. The union of historical links and
the current links represents all the paths that are currently
in use or have been used in the past. Every link in the
union is uniquely identified by the value (path + path
published time). This composite value is an example of a

HP0 HP1 HP2 HP3 HP4

T0 T1 T2 T3 T4
Historical links

 P1 P2 P3 P3 P5 P3 P4 P5

 Time

P1 P4 P4 P4 P8
P2 P2
P3 P3 P3 P3 P3
 P5 P5 P5 P7
 P6 P6
 P1 P1
VP0 VP1 VP2 VP3 VP4

Temporal URL (discussed in Section 3). For any path Px
published at time T, the temporal URL (Px + T) uniquely
identifies a document that is currently or was once
associated with Px at time T.

2.2 Solution Designs

This section explains the scheme to track the
historical links. The scheme has two major components:
logging the changes to web documents and archiving
deleted documents including document snapshots. The
log, named TemporalURLLog, is designed to keep the
history of changes to web documents. It has four fields:
URL, PublishDate, ExpireDate, and NewURL. The URL
field records a document’s path; the PublishDate records
the time the document is published; the ExpireDate field
records the time this URL becomes invalid; should the
change create a new URL for the document, the
NewURL field records the document’s new URL and
serves as a link to chain all log entries related to the same
document together. This log has a composite key of URL
+ PublishDate. The value of URL + PublishDate
uniquely identifies a document in a web site’s history.
The Archive is a directory that stores deleted files and
document snapshots. Those archived files are saved in
the Archive using URL + PublishDate as file name. The
log is maintained according to the log maintenance
algorithm described below:

TemporalURLLog maintenance algorithm Changes to
web documents are recorded in the log by the following
rules:

New document: When a new document is added to
the web site, a new entry is entered with its path and the
time the document is published. The ExpireDate and the
NewURL are set to null. Hence, log entries with a null
ExpireDate are current document entries. Initially, all
current documents have an entry in the log with null
ExpireDate and null NewURL.

Deleted document: The log entry associated with the
document is the entry of which the URL equals the
document’s URL with a null ExpireDate. First, it locates
the entry and changes its ExpireDate to the time the
document is deleted. Then, it saves the deleted document
in the Archive with URL + PublishDate as file name.

Modified document: When a document is modified,
its old version becomes a snapshot and its new version is
treated as a new document. The log entry associated with
the document is the entry of which the URL equals the
document’s URL with a null ExpireDate. First, it locates
the entry and changes its ExpireDate to the time the
document is modified. Then, it saves the old version in
the Archive with URL + PublishDate as file name. Then,
it adds a new entry with the same URL and the
PublishDate is set to the time the document is modified.
The ExpireDate and NewURL are set to null.

Consequently log entries with a non-null ExpireDate
and a null NewURL may be related to snapshots or
deleted documents. For such an entry, if there exists
another entry with the same URL and its PublishDate
equals to this entry’s ExpireDate then this entry is a
snapshot entry and the snapshot it associates with can be
retrieved from the Archive using URL + PublishDate as
its file name. The snapshot is valid from the PublishDate
to the ExpireDate. Otherwise, the entry is associated with
a deleted document which can be retrieved from the
Archive using URL + PublishDate as its file name.

Relocated or renamed page: When a document is
relocated or renamed, its old URL is expired and a new
URL is created. The log entry associated with the
document is an entry with the URL equal to the
document’s URL and with a null ExpireDate. First, it
locates the entry and changes its ExpireDate to the time
the document is relocated or renamed and changes its
NewURL field to the document’s new URL. Then, it
adds a new entry with the new URL and the PublishDate
is set to the time the document is relocated or renamed.

Current links

Figure 2: An example of the progression of a web site with changes since its creation.

Hence, log entries with non-null NewURL field help
chaining a document’s log entries.

Using this log maintenance algorithm for the changes
described in figure 2, the contents of the
TemporalURLLog are shown in Figure 3, and there are
five files in the Archive: P2T0, P3T0, P3T2, P5T1, and
P3T3.

URL PublishDate ExpireDate NewURL
P1 T0 T1 P4
P2 T0 T2 Null
P3 T0 T2 Null
P4 T1 T4 P8
P5 T1 T3 Null
P3 T2 T3 Null
P3 T3 T4 Null
P5 T3 T4 P7
P6 T3 Null Null
P1 T3 Null Null
P8 T4 Null Null
P7 T4 Null Null

3. Searching with TemporalURLLog

With the TemporalURLLog, a web server is capable
of processing historical links involving deleted
documents, out of date URLs, and document snapshots.
For instance, using the log in Figure 3, it is possible to
determine that:
. A URL P2 valid between T0 and T1 is deleted, and the
document it pointed to is in the Archive with the name
P2T0.
. A URL P3 has been modified repeatedly and is
eventually deleted. All documents associated with P3 can
be found in the Archive.
. An old URL P5 is now renamed to P7. It has been
modified on T3, and a copy of its snapshot can be found in
the Archive with the name P5T1.
. The log is able to determine that a historical line P1 is
now renamed to P8.
. A URL P12 has never existed in the web site.

This section presents a Temporal URL scheme and
algorithms for searching documents associated with
historical links.

Requesting historical documents with temporal URL

A temporal URL is a URL submitted with temporal
requirements of which the documents associated with the
URL must meet. A typical way to submit additional
information with a URL is through query strings. A
query string is a set of name=value pairs appended to a
URL. It is created by adding a question mark (?)
immediately after a URL followed by name=value pairs

separated by ampersands (&). Two types of temporal
URLs are designed:

1. The URL is not current: When the URL is not current,
a keyword IsHistorical can be appended to the URL to
indicate users are searching for documents associated
with a historical link. The query string is:
 ?IsHistorical

2. The URL is current: The document associated with the
URL may have gone through modifications. There are
situations where users may need to access a document’s
snapshots at different points of time. Special keywords
can be created for users to specify temporal requirements
for snapshots. Some typical keywords are:
 ?SnapshotAsOf=date
 ?SnapshotsBefore=date
 ?SnapshotsAfter=date
 ?SnapshotsBetween=date1&And=date2

The ?SnapshotAsOf=date query string will retrieve
a document’s snapshot at the specified date; others will
retrieve all snapshots that meet the date criteria. A web
site may choose to implement the types of temporal query
strings to fit its needs. Figure 3: The contents of TemporalURLLog based

on changes described in Figure 2.
Algorithms for processing temporal URL are

presented below.

Forward search to locate documents associated with a
historical link

This algorithm processes the ?IsHistorical temporal
query string submitted with a URL Px and searches the
TemporalURLLog to locate all the documents related to a
historical link. In the TemporalURLLog, entries for a
URL may have three patterns of changes: 1. If a URL has
a log entry with a non-null PublishDate and null
ExpireDate field then it is a current URL; such as P6 in
figure 3. 2. If all entries of a URL have a non-null
PublishDate, ExpireDate and null NewURL field, then
this URL is deleted from the web site; such as P3 in
Figure 3. 3. If a URL has a log entry with a non-null
NewURL field, then it has been renamed, and the log
entries for the new URL may again have these three
patterns of changes. Because a URL may be used
several times in the life of a web site, such as P1, this
algorithm will locate all documents associated with the
historical link.

In the algorithm, SetPx is a set of records where

URL equals Px. If SetPx is null then Px never existed.
Otherwise, a loop is used to study change pattern. It
applies a forward search that will trace down all related
entries until reaching the last entry. To move forward, an
entry’s successor can be found and processed by the
following rules:

1. If the entry has a null NewURL then its successor
must have the same URL and the successor’s PublishDate

Algorithm Forward Search
Inputs: TemporalURLLog, historical link Px
Outputs: Links to all documents related to Px

SetPx = { Select * From TemporalURLLog Where URL = Px And Not ExpireDate = Null
 Order By PublishDate }
If SetPx isNull Then
 Return Message: Document never exists
Else
 For Each Record R in SetPx
 If R.NextURL Is Null Then
 If Not Exist {Select * From TemporalURLLog Where
 URL = R.URL And PublishDate = R.ExpireDate} Then
 Return LinkArchive(R.URL + R.PublishDate)
 End if
 Else
 PxLink = R.NextURL
 Do
 SetPxLink = { Select * From TemporalURLLog Where URL = PxLink
 Order By PublishDate }
 NextLoop = False
 For Each Record R in SetPxLink
 If R.ExpireDate isNull Then
 Return LinkDocument(R.URL)
 Exit Do
 Else
 If R.NewURL IsNull Then
 If Not Exist {Select * From TemporalURLLog Where
 URL = R.URL And PublishDate = R.ExpireDate} Then
 Return LinkArchive(R.URL + R.PublishDate)
 Exit Do
 End if
 Else
 PxLink = R.NewURL
 NextLoop = True
 Exit For
 End if
 End if
 Next
 If NextLoop = False Then
 Exit Do
 End if
 Loop
 End if
 Next
End if

must equal the entry’s ExpireDate. If no such successor
is found, then this entry must have been generated due to
a deletion and its archive name is created with this entry’s
URL and PublishDate. This algorithm returns a link
referencing the archived document.

2. If the entry has a non-null NewURL then it must
have a successor with a URL equal to the NewURL and
the PublishDate equals to the entry’s ExpireDate.
Renaming or relocation must have generated the
successor. When such a successor is found, a new loop is
started to trace down the changes in the new URL.
Although Px is not current, this new URL can be current
if there exists an entry with the new URL and a null
ExpireDate; a link referencing the new document is

returned. Otherwise, the new URL eventually is deleted
and the algorithm returns a link referencing the archived
document.

To illustrate, if P5?IsHistorical is submitted, initially
SetPx contains two entries: (P5, T1, T3, Null), (P5, T3, T4,
P7). The first entry’s NewURL is null but the next
entry’s PublishDate equals the first entry’s ExpireDate
indicating that this is a modification. The second has a
non-null NewURL indicating that it has been renamed.
After processing the second entry, a new loop is started
using the NewURL P7 to search. In the second loop,
SetPx contains: (P7, T4, Null, Null). Since its ExpireDate
is null, this is a current URL and P7 is returned.

Algorithm Backward Search
Inputs: TemporalURLLog, valid URL Px, snapshot time T
Output: Px’s snapshot at time T

CurrentEntry = {Select PublishDate From TemporalURLLog Where URL = Px and ExpireDate = Null}
If CurrentEntry.PublishDate <= T Then
 Return Document(URL)
Else
 Candidate.URL=CurrentEntry.URL
 Candidate.PublishDate=CurrentEntry.PublishDate
 Candidate.ExpireDate=Null
 PD=CurrentEntry.PublishDate
 Do
 PreviousEntry={Select * From TemporalURLLog Where URL=Px And ExpireDate=PD}
 If PreviousEntry Exists Then
 Candidate.URL=PreviousEntry.URL
 Candidate.PublishDate=PD
 Candidate.ExpireDate=PreviousEntry.ExpireDate
 PD=PreviousEntry.PublishDate
 If PD < =T Then
 Return Archive(Candidate.URL + Candidate.PublishDate)
 Exit Do
 End if
 Else
 PreviousEntry={Select * From TemporalURLLog Where NewURL=Px And
 ExpireDate=PD}
 If PreviousEntry Exists Then
 PD=PreviousEntry.PublishDate
 IF PD < =T Then
 If Candidate.ExpireDate=Null Then
 Return Document(Candidate.URL)
 Else
 Return Archive(Candidate.URL+ candidate.PublishDate)
 End if
 Exit Do
 Else
 Px = PreviousEntry.URL
 End if
 Else
 If PD > T Then
 Return Message: Snapshot Does not exist at T
 Else
 If Candidate.ExpireDate=Null Then
 Return Document(Candidate.URL)
 Else
 Return Archive(Candidate.URL+ candidate.PublishDate)
 End if
 End if
 Exit Do
 End if
 End if
 Loop
End if

If P1?IsHistorical is submitted, initially SetPx
contains only one entry: (P1, T0, T1, P4). Since its
NewURL is non-null, a new loop is started and
SetPxLink is created using P4 to search; SetPxLink
contains one entry: (P4, T1, T4, P8). Because this entry’s
NewURL is non-null, a new loop is started to create a
new SetPxLink with one entry: (P8, T4, Null, Null). This
indicates P8 is current and a reference to it is returned.

Backward search for a document’s snapshot at a
specific date This algorithm processes the query string
?SnapshotAsOf=T submitted with a URL Px and
searches for the snapshot based on the specified date T.
It assumes Px is a current URL to simulate a scenario in
which users who are viewing a current document would
like to view the document’s snapshot at a point in time.
The algorithm is briefly explained below.

It processes log entries backward starting from a
document’s current entry to trace back its changes in
order to locate the snapshot. If the current URL’s
PublishDate is less than T, then the current document
itself is its snapshot at T. Otherwise the backward search
starts. To trace back, an entry’s predecessor has one of
the following properties:

1. Its URL equals the current entry’s URL and its

ExpireDate equals the current entry’s PublishDate. This
indicates the predecessor is an old version of the
document and it is the document’s snapshot from the
predecessor’s PublishDate to its ExpireDate.

2. Its NewURL equals the current entry’s URL and

the ExpireDate equals the current entry’s PublishDate.
This indicates the predecessor has been renamed or
relocated.

Initially, the current document is treated as a

candidate for the snapshot. Before reaching past time T,
whenever an old version is found it becomes the new
candidate for the snapshot. Note that an old document’s
life may span beyond its PublishDate. If a document Y is
originally derived from a document X through a series of
renaming or relocation, then this document’s life span is
from document X’s PublishDate to document Y’s
ExpireDate. The search reaches the last entry when its
PublishDate is before T or it no longer has a predecessor.
If the last entry’s PublishDate is greater than T then
snapshot does not exist at T.

To illustrate, if a request P7?SnapshotAsOf=T2 is

submitted, the backward search will pick up three entries:
(P7, T4, Null, Null), (P5, T3, T4, P7), and (P5, T1, T3,
Null). They show that the document associated with P7
has been unchanged since T3 and was originally
associated with P5 and renamed to P7 at T4. The
document has been modified at T3. Therefore, the
algorithm returns Archive(P5 + T1) as snapshot. If
P7?SnapshotAsOf=T3 is submitted, the backward search
will pick up two entries: (P7, T4, Null, Null)and (P5, T3,
T4, P7) and return Document(P7) as snapshot.

If a request P8?SnapshotAsOf=T0 is submitted, the
backward search will pick up three entries: (P8, T4, Null,
Null), (P4, T1, T4, P8) and (P1, T0, T1, P4). These show
that the document associated with P8 has been renamed at
T1 and T4. It has not been modified since T0. The
algorithm will return Document(P8) as snapshot.

This algorithm can be modified to process

?SnapshotsBefore=date, ?SnapshotsAfter=date, and
?SnapshotsBetween=date1&And=date2 temporal query
strings by modifying the temporal conditions in the
algorithm.

4. Summary

The historical links of a web site include the URLs
invalidated due to web site reorganization, documents’
removal, renaming or relocation, plus links to document
snapshots. Tracking historical links will allow users to
use out-of-date URL and retrieve removed documents
and snapshots. This paper has two contributions: 1. It
presents a logging and archiving scheme to track a
document’s history of changes. These changes include a
document’s creation, modifications, web site
reorganizations, and deletion, which are recorded in a log.
The log records a URL’s publication date, expiration
date, and the new URL it is assigned to, if applicable.
Document snapshots and deleted documents are archived
to support users who need historical documents. 2. It
presents a temporal URL scheme for users to submit a
URL with temporal requirements of which the documents
associated with the URL must meet. A URL will retrieve
a current document by default. With the temporal URL
users may inform the web server to treat the URL as a
historical link, or request the document’s snapshots.
Algorithms for processing the log and the temporal URL
are also presented. With the proposed schemes, a web
site is able to track its historical links and provide better
searching and information for its users.

 Reference:

[1] Adiba, M. & Lindsay, B. (1980). Database

snapshots. Proceedings of the 6th International
Conference on Very Large Data Bases, pp. 86-
91.

[2] Chao, D. (2002). The Design of A Web

Snapshot Management System for Decision
Support Applications. Proceedings of the 2nd
International Conference on Electronic Business,
Taipei, Taiwan, 2002.

[3] Chao, D., Diehr, G., & Saharia, A. (1996)

Maintaining Join-based Remote Snapshots
Using Relevant Logging. Proceedings of the
Workshop on Materialized Views, ACM
SIGMOD, Montreal, Canada, 1996.

[4] Labrinidis, A. & Roussopoulos, N. (2000).

Webview Materialization. ACM SIGMOD
International Conference on Management of
Data, May 14-19, 2000.

[5] Marian, A., Gregory Cobena, S., & Mignet, L

(2001) Change-Centric management of
Versions in an XML Warehouse. Proceedings
of the 27th VLDB Conference, Roma,Italy, 2001.

[6] Chien, S., Tsotras, V., & Zaniolo, C. (2001)

Efficient Management of Multiversion
Documents by Object Referencing. Proceedings
of 13th International Conference on Very large
Data Bases, 2001.

	Tracking a Web Site's Historical Links with Temporal URLs
	Tracking a Web Site’s Historical Links with Temporal URLs

