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Fuzzy Random Traveling Salesman Problem

Yiwen Lu, Yaodong Ni
Uncertainty Theory Laboratory, Department of Mathematical Sciences

Tsinghua University, Beijing 100084, China

lyw00@mails.tsinghua.edu.cn, nyd00@mails.tsinghua.edu.cn

Abstract: The travelling salesman problem is to find a
shortest path from the travelling salesman’s hometown,
make the round of all the towns in the set, and finally
go back home. This paper investigates the travelling
salesman problem with fuzzy random travelling time.
Three concepts are proposed: expected shortest path,
(α, β)-path and chance shortest path according to
different optimal desire. Correspondingly, by using
the concepts as decision criteria, three fuzzy random
programming models for TSP are presented. Finally, a
hybrid intelligent algorithm is designed to solve these
models, and some numerical examples are provided to
illustrate its effectiveness.

Keywords: travelling salesman problem; fuzzy random
programming; fuzzy simulation; genetic algorithm.

I. Introduction

The travelling salesman problem (TSP) is to find a short-
est path from the travelling salesman’s hometown, make
the round of all the towns in the set, and finally go back
home.

Mathematical problems related to the travelling
salesman problem were treated in the 1800s by the Irish
mathematician Sir William Rowan Hamilton and the
British mathematician Thomas Penyngton Kirkman[3].
The term ‘travelling salesman problem’ was first used by
J.B.Robinson[20] in 1949, which makes it clear that the
TSP was already a well-known problem at that time. In
1954, G. Dantzig, R. Fulkerson, and S. Johnson[4] first
solved the TSP with 49 cities, which was one of the prin-
cipal events in the history of combinatorial optimization.
Since then, many other researchers have made efforts to
find better algorithms to solve large-scale TSP.

Traditionally, the travelling salesman problem con-
siders the distance between two cities as a constant.
However, in the real world, uncertainty always exists in
travelling salesman problem. Probability theory was in-
troduced into TSP in 1980’s. In 1984, M. Mezard[18][21]
studied the travelling salesman problem in the case where
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the distances are random variables and found the solu-
tion under the hypothesis that the replica symmetry is
not broken. This kind of TSP was called ‘the random
link TSP’. Lu presented three types of fuzzy models as
fuzzy expected fuzzy expected value model, fuzzy α-path
model and most credibility model to solve fuzzy travel-
ing salesman problem in 2005.

While in some cases, we care about the travelling
time instead of the travelling distance. Considering the
weather or traffic environment, the travelling time from
one city to another is uncertain. Sometimes random-
ness and fuzziness may co-exist in traveling salesman
problem in the real world. For instance, the route may
changes because of the traffic environment, we can as-
sume the distance as a fuzzy variable. Everyday the
speed of travel is random in different time and differ-
ent weather or traffic circumstance. Therefore, we can
get the shortest traveling time between two cities by
the highest speed in shortest route, but we can’t esti-
mate the worst circumstance. In this case, fuzzy ran-
dom variable can be introduced into optimization prob-
lems with mixed uncertainty of randomness and fuzzi-
ness. In this paper, the travelling times are assumed to
be fuzzy random variables. Fuzzy random variable was
first introduced by Kwakernaak[7][8]. And in the next
years, Puri[19], Kruse[6] , and Liu[16] developed the con-
cept with different requirements of measurability. In this
paper, we introduce the concept of fuzzy random vari-
able initialized by Liu[16] and some relevant concepts to
prepare for modelling the fuzzy random traveling sales-
man problem. Numerous numerical experiments have
shown that the fuzzy random simulation indeed works
very well. In this paper, we use a fuzzy random number
to represent the travelling time between two cities, and
define three concepts of shortest path in fuzzy random
situation: expected shortest path(ESP), (α, β)-path and
chance shortest path(CSP). Correspondingly, by using
the three concepts as decision criteria, three fuzzy ran-
dom programming models are proposed.

This paper is organized as follows: In Section 2, the
travelling salesman problem is described. After recalling
three ranking criteria for ranking fuzzy random variables
in Section 3, Section 4 builds three types of fuzzy ran-
dom models as expected shortest path model, (α, β)-path
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model and chance shortest path model. Then in Sec-
tion 5, some numerical experiments are given to show
the effectiveness of a hybrid intelligent algorithm, which
is integrated by fuzzy random simulations and genetic
algorithm (GA). Furthermore, Section 6 gives some con-
clusions.

II. Problem Description

The travelling salesman problem may be stated as fol-
lows: A salesman is required to visit each of some given
cities once and only once, starting from one city and re-
turning to the original place of departure. What route
should he choose in order to minimize the total distance
travelled?

In order to model the travelling salesman problem,
we first introduce the following indices and parameters:

i = 1, 2, ..., n: cities;
dij : travelling time between city i and j;
xij : decision variables, where xij = 0 means that

the salesman does not go from i to j, otherwise xij = 1
means that the salesman goes from i to j.

Then in order to minimize the total travelling time,
we have the following model:

min
∑

i 6=j

dijxij (1)

s.t.
n∑

j=1

xij = 1, i = 1, 2, ..., n (2)

n∑

i=1

xij = 1, j = 1, 2, ..., n (3)

n∑

i,j∈s

xij ≤ |s| − 1,

2 ≤ |s| ≤ n− 2, s ⊂ {1, 2, . . . , n} (4)
xij ∈ {0, 1}, i, j = 1, . . . , n, i 6= j. (5)

The constraint (2) requires the salesman just goes
out of city i once and the constraint (3) requires sales-
man just enters city j once. Hence, every city must ap-
pear once and only once in the route. The constraint (4)
means that there is no circle in the route.

In the above model, dij denotes the distance between
two cities and is deterministic. In the following models,
we will consider dij as the travelling time between two
cities and assume it to be a fuzzy random variable. D
denotes the feasible set defined by the constraints (2-5).

III. Fuzzy Random Variable

In this section, we will give some basic concepts of
fuzzy random theory. The interested reader may refer
to Liu[14] to see the fuzzy random theory.

We firstly recall the concepts of possibility, necessity,
and credibility of a fuzzy event. Let ξ be a fuzzy vari-
able with membership function µ. Then the possibility,
necessity, and credibility of a fuzzy event {ξ ≥ r} can be
defined by

Pos{ξ ≥ r} = sup
u≥r

µ(u),

Nec{ξ ≥ r} = 1− sup
u<r

µ(u),

Cr{ξ ≥ r} =
1
2

(Pos{ξ ≥ r}+ Nec{ξ ≥ r}) .

Definition 1 (Liu and Liu[16]) A fuzzy random vari-
able ξ is a function from the probability space (Ω,A,Pr)
to the set of fuzzy variables such that Pos{ξ(ω) ∈ B} is
a measurable function of ω for any Borel set B of R.

III.1 Expected Value

Next, we will introduce several concepts as ranking cri-
teria for the preparation of modelling the traveling sales-
man problem. The first concept is the expected value of
a fuzzy random variable. Before we give the first crite-
rion for ranking fuzzy random variables, the concept of
expected value of fuzzy variable will be given as follows:

Definition 2 (Liu and Liu[15]) Let ξ be a fuzzy vari-
able. The expected value of ξ is defined by

E[ξ] =
∫ +∞

0

Cr{ξ ≥ r}dr −
∫ 0

−∞
Cr{ξ ≤ r}dr

provided that at least one of the above two integrals is
finite.

Based on the concept of expected value of fuzzy vari-
able, the expected value of fuzzy random variable can be
shown as:

Definition 3 (Liu and Liu[16]) Let ξ be a fuzzy random
variable. Then its expected value is defined by

E[ξ] =
∫ +∞

0

Pr{ω ∈ Ω
∣∣ E[ξ(ω)] ≥ r}dr−

∫ 0

−∞
Pr{ω ∈ Ω

∣∣ E[ξ(ω)] ≤ r}dr

provided that at least one of the above two integrals is
finite.

Let ξ and η be two fuzzy random variables. Liu[14]
suggested that ξ > η if and only if E[ξ] > E[η], where E
is the expected value operator of fuzzy random variable.
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III.2 Chance Measure

The second concept is the chance measure of a fuzzy
random event.

Definition 4 (Liu, Gao and Liu[14]) Let ξ be a fuzzy
random variable, and B a Borel set of R. Then the
chance of fuzzy random event ξ ∈ B is a function from
(0, 1] to [0, 1], defined as

Ch{ξ ∈ B}(α) = sup
Pr{A}≥α

inf
ω∈A

Cr{ξ(θ) ∈ B}.

Let ξ and η be two fuzzy random variables. Liu[14]
suggested that ξ > η if and only if Ch{ξ ≥ r̄}(γ) >
Ch{η ≥ r̄}(γ) for some predetermined levels r̄ and γ ∈
(0, 1].

III.3 Critical Value

Next we will introduce two critical values as optimistic
value and pessimistic value to measure fuzzy random
variables.

Definition 5 (Liu[14]) Let ξ be a fuzzy random vari-
able, and γ, δ ∈ (0, 1]. Then

ξsup(γ, δ) = sup
{
r

∣∣ Ch{ξ ≥ r}(γ) ≥ δ
}

is called the (γ, δ)-optimistic value to ξ, and

ξinf(γ, δ) = inf
{
r

∣∣ Ch{ξ ≤ r}(γ) ≥ δ
}

is called the (γ, δ)-pessimistic value to ξ.

Let ξ and η be two fuzzy random variables. Liu[14]
suggested that ξ > η if and only if, for some predeter-
mined confidence levels γ, δ ∈ (0, 1], we have ξsup(γ, δ) >
ηsup(γ, δ), where ξsup(γ, δ) and ηsup(γ, δ) are the (γ, δ)-
optimistic values of ξ and η, respectively. Similarly,
Liu[14] suggested that ξ > η if and only if, for some
predetermined confidence levels γ, δ ∈ (0, 1], we have
ξinf(γ, δ) > ηinf(γ, δ), where ξinf(γ, δ) and ηinf(γ, δ) are
the (γ, δ)-pessimistic values of ξ and η, respectively.

With the above concepts as different ranking criteria,
we can model fuzzy random traveling salesman problem
in different forms according to different types of opti-
mization requirements.

IV Fuzzy Random Models

IV.1 Expected Shortest Path Model

Expected value model (EVM), which is to optimize some
expected objectives with some expected constraints, is a
widely used method in solving practical problems with
uncertain factors. In uncertain environments, objective

functions and constraint functions always cannot be com-
pared directly since they always involve uncertain vari-
ables. Since in fuzzy travelling salesman problem the
shortest path cannot be achieved directly, it may be re-
quired to minimize the expected travelling time under
the constraints.

Definition 6 A path x∗ is called the expected shortest
path(ESP) if

E


∑

i 6=j

dijxij


 ≥ E


∑

i 6=j

dijx
∗
ij




for any path x satisfy (2.2)-(2.5).

In order to satisfy this type of request, we can build
an expected valued model as:

min E


∑

i 6=j

dijxij




s.t.
n∑

j=1

xij = 1, i = 1, 2, . . . , n

n∑

i=1

xij = 1, j = 1, 2, . . . , n

n∑

i,j∈s

xij ≤ |s| − 1, 2 ≤ |s| ≤ n− 2,

s ⊂ {1, 2, . . . , n}
xij ∈ {0, 1}, i, j = 1, . . . , n, i 6= j.

IV.2 (α, β)-Path Model

Chance-constrained programming (CCP) is a new mod-
elling philosophy deals with uncertainty (traditionally
randomness) which is initialized by Charnes[1][2]. It is
applied to solve problems with the request that chance
constraints should hold with at least some given confi-
dence levels. In travelling salesman problem, a decision-
maker may not want to minimize the expected travelling
time, but to consider the risk. So we can establish an
(α, β)-path model to meet this type of requirement.

Definition 7 A path x∗ is called (α, β)-path if

∑

i 6=j

dijxij




inf

(α, β) ≥

∑

i 6=j

dijx
∗
ij




inf

(α, β)

for any path x satisfy (2.2)-(2.5).

Following the idea of fuzzy random CCP, we can
present the CCP models as follows:
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(α, β)-path model(minimaxCCP):

min f̄

s.t. Ch





∑

i,j

xijdij ≤ f̄



 (α) ≥ β

n∑

j=1

xij = 1, i = 1, 2, . . . , n

n∑

i=1

xij = 1, j = 1, 2, . . . , n

n∑

i,j∈s

xij ≤ |s| − 1, 2 ≤ |s| ≤ n− 2,

s ⊂ {1, 2, . . . , n}
xij ∈ {0, 1}, i, j = 1, . . . , n, i 6= j.

IV.3 Chance Shortest Path Model

We have built two types of model based on the ex-
pected value and pessimistic value. Another useful
tool to solve practical problems in uncertain environ-
ments is dependent-chance programming (DCP). Be-
cause many goals cannot be obtained absolutely in prac-
tice, a decision-maker may want to achieve his goal
with maximal chance. Dependent-chance programming
(DCP) is initialized by Liu[9] to maximize the chance
functions of optimization goals. The readers may also
refer to Liu[14] to see how DCP is used to solve differ-
ent problems. Accordingly in fuzzy random travelling
salesman problem, a decision-maker may want to maxi-
mize the chance that the total travelling time does not
exceed some given time under the constraint. First, for a
given travelling time f̄ , we obtain a fuzzy random event:
f(x, d) =

∑
i 6=j

dijxij ≤ f̄ .

Definition 8 A path x∗ is called chance shortest path
(CSP) if

Ch





∑

i 6=j

dijxij ≤ f̄



 (α) ≤ Ch





∑

i 6=j

dijx
∗
ij ≤ f̄



 (α)

for any given f̄ and α.

Hence, we can build a chance shortest path model
based on fuzzy random DCP:

max Ch





∑

i 6=j

dijxij ≤ f̄



 (α)

s.t.

n∑

j=1

xij = 1, i = 1, 2, . . . , n

n∑

i=1

xij = 1, j = 1, 2, . . . , n

n∑

i,j∈s

xij ≤ |s| − 1, 2 ≤ |s| ≤ n− 2,

s ⊂ {1, 2, . . . , n}
xij ∈ {0, 1}, i, j = 1, . . . , n, i 6= j.

V. Numerical Experiments

In the above three models, there exist several un-
certain functions with fuzzy random variables as the

expected shortest path E

[
∑
i 6=j

dijxij

]
, the (α, β)-path

min

{
f̄

∣∣ Ch{∑
i,j

xijdij ≤ f̄}(α) ≥ β

}
and the chance

Ch{∑
i,j

xijdij ≤ f̄}(α). We use fuzzy random simula-

tions introduced by Liu[13] to estimate the three fuzzy
random functions. To find a shortest path for a salesman,
we need to design some heuristic algorithm. We embed
the fuzzy random simulations, which are used to simulate
the above three types of uncertain functions, into GA to
design a hybrid intelligent algorithm. In this section,
we will show the effectiveness of the hybrid intelligent
algorithm by the following three numerical experiments.

Now let us consider a traveling salesman problem
with 10 cities as shown in Table 1, which gives the coor-
dinates of the cities.

Table 2 shows the matrix in which each triple denotes
a fuzzy random variable.

Note that the traveling times are assumed to be fuzzy
random variables, denoted by a form of triangular fuzzy
variable (a, b, ρ), where a and b are given crisp numbers
and ρ is a exponential distributed random variable with
the expected value is c.

Before running the hybrid intelligent algorithm, we
set the parameters as follows: pop size is 50, the number
of generations is 500, the number of stochastic simulation
cycles is 1000, the probability of crossover pc is 0.1, the
probability of mutation pm is 0.7, and the parameter a
in the rank-based evaluation function is 0.05.

After a run of the hybrid intelligent algorithm with
the parameters above to solve the expected shortest path



FUZZY RANDOM TRAVELING SALESMAN PROBLEM 905

Table 1: Coordinates of Cities

No City Coordinate No City Coordinate
1 Beijing (3639,1315) 6 Handan (3493,1696)
2 Shanghai (4177,2244) 7 Qinhuangdao (3904,1289)
3 Tianjin (3712,1399) 8 Shijiazhuang (3488,1535)
4 Baoding (3569,1438) 9 Tangshan (3791,1339)
5 Chengde (3757,1187) 10 Zhangjiakou (3506,1221)

Table 2: Fuzzy Random Matrix

0 1000,1073, 90,111, 110,142, 140,174, 350,408, 220,266, 220,267, 130,154, 130,163,
exp(1146) exp(132) exp(174) exp(208) exp(466) exp(312) exp(314) exp(188) exp(196)

0 900,964, 960,1010, 1057,1137, 800,876, 910,993, 920,989, 924,984, 1100,1223,
exp(1128) exp(1060) exp(1217) exp(952) exp(1076) exp(1058) exp(1044) exp(1346)

0 120,148, 180,217, 300,369, 191,221, 230,262, 60,99, 230,272,
exp(176) exp(254) exp(438) exp(251) exp(294) exp(138) exp(314)

0 170,314, 220,269, 300,367, 100,126, 200,243, 190,226,
exp(358) exp(318) exp(434) exp(152) exp(286) exp(262)

0 490,573, 140,179, 390,440, 130,156, 220,253,
exp(656) exp(218) exp(490) exp(182) exp(286)

0 500,578, 120,161, 400,465, 410,475,
exp(656) exp(202) exp(530) exp(540)

0 400,483, 100,124, 340,404,
exp(566) exp(148) exp(468)

0 300,361, 250,315,
exp(422) exp(380)

0 250,315,
exp(380)

0

3400 3600 3800 4000 4200
1000

1500

2000

2500

Figure 1: Positions of Cities

model, an optimal path is presented as 7 − 2 − 9 − 4 −
3−8−5−6−1−10 and the total traveling time is 2050.

For solving the (α, β)−path model with different con-
fidence levels, we run the algorithm with the same pa-
rameters. The (α, β)-path with different (α, β) are shown
as in Table 3.

Similarly, we run the hybrid intelligent algorithm for
chance shortest path model. The chance shortest path
with different f̄ are presented as in Table 4.

In order to show the effectiveness of the hybrid in-
telligent algorithm, we solve the (α, β)-path model with
(α, β) = (0.8, 0.8). We compare solutions when different
parameters are taken in the algorithm (a = 0.05, Gen =
500, Pop Size = 50).The errors shown in Table 5 are
calculated by the formula as (actual value - optimal
value)/optimal value × 100%.

Table 5: Comparison Solutions of the (0.8, 0.8)-Path

Pc Pm (0.8, 0.8)-path traveling time Error(%)
0.1 0.2 10-9-5-3-1-8-4-6-7-2 2301.59 0.12%
0.2 0.3 10-8-1-3-6-5-4-9-7-2 2299.99 0.05%
0.5 0.5 3-4-6-8-5-10-7-1-9-2 2299.11 0.01%
0.7 0.8 8-9-7-5-3-1-10-4-6-2 2299.70 0.04%
0.7 0.9 9-7-4-6-8-3-5-1-10-2 2298.78 0.00%
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Table 3: (α, β)-Path

(α, β) (α, β)-Path (α, β)-traveling time

(0.9, 0.9) 4− 1− 5− 3− 7− 9− 6− 10− 8− 2 2423.96

(0.9, 0.8) 10− 6− 7− 8− 5− 4− 3− 9− 1− 2 2359.68

(0.8, 0.9) 6− 7− 9− 3− 2− 4− 10− 8− 1− 5 2341.88

(0.8, 0.8) 9− 7− 4− 6− 8− 3− 5− 1− 10− 2 2298.78

(0.7, 0.9) 10− 5− 8− 4− 3− 1− 9− 7− 6− 2 2256.84

Table 4: The Chance Shortest Path

f̄ the chance shortest path chance

3000 1− 9− 7− 10− 4− 8− 2− 3− 5− 6 0.9689

2500 3− 9− 7− 5− 6− 1− 10− 8− 4− 2 0.9662

2300 6− 8− 5− 9− 7− 4− 10− 1− 3− 2 0.9554

2200 10− 1− 6− 7− 8− 4− 3− 5− 9− 2 0.8755

2100 10− 7− 1− 9− 5− 3− 4− 8− 6− 2 0.6338

2100 10− 7− 1− 9− 5− 3− 4− 8− 6− 2 0.6338

2000 4− 6− 3− 1− 10− 8− 9− 7− 5− 2 0.4265
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VI. Conclusion

We introduced fuzzy random theory into traveling sales-
man problem and solve it with mixed uncertainty of ran-
domness and fuzziness in this paper. After the concepts
of fuzzy random theory were presented, three types of
fuzzy random models as expected shortest path model,
(α, β)-path model and chance shortest path model were
built. A hybrid intelligent algorithm integrated by fuzzy
random simulations and genetic algorithm was designed
and the results of the numerical examples were given to
illustrate the effectiveness of the hybrid intelligent algo-
rithm.
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