
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2005 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-5-2005

Application Frameworks Technology in Theory and Practice Application Frameworks Technology in Theory and Practice

Wusheng Zhang

Mik Kim

Follow this and additional works at: https://aisel.aisnet.org/iceb2005

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2005 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301391119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2005
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2005?utm_source=aisel.aisnet.org%2Ficeb2005%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Application Frameworks Technology in Theory and Practice

Wusheng Zhang1 and Mik Kim2

Centre for International Corporate Governance Research1
Centre for Hospitality and Tourism Research2

Victoria University, Melbourne, Australia
Email: wusheng.zhang@vu.edu.au mik.kim@vu.edu.au

Abstract: Application frameworks is a technology
concerning with building and implementing reusable
software artefacts. Most current application frameworks are
object-oriented and often domain specific. Advocates of
application frameworks claim that the technology is one of
the most promising technologies supporting large-scale
reuse, increasing the productivity and quality, and reducing
the cost of software development. Many of them project that
the next decade would be the major challenge for the
development and deployment of the technology. The
objective of this study is to investigate the theory and
practice of application frameworks and to determine if it has
made a difference in systems development. The study
indicates that the technology is still immature and not yet to
be another silver bullet but potential is imminent.

I. Introduction

Software development markets expect the developers or
development companies to deliver quality products at an
affordable price within a required time frame. The
developers and management alike are looking for
technologies that can be used to increase the productivity
and quality of the software products. Matured engineering
disciplines, such as automobile design, have proven that
reuse is the best way to increase the quality and productivity
of products. However, despite the effort of last decades-long
research the result of software reuse is still limited in code or
class reuse (also known as small-scale), and developers are
still ‘reinventing the wheels’. Application frameworks are a
technology anchored in this situation to promote reuse in
terms of not only the code or class but also the module and
architecture (also known as large-scale) of the reusable
software artefacts to increase software productivity and
quality.

II. Application Framework Technology

The Microsoft Encarta English Dictionary 2001 defines
framework as “ a structure of connected horizontal and
vertical bars with spaces between them, especially one that
forms the skeleton of another structure; a set of ideas,
principles, agreements, or rules that provides the basis or the

Proceedings of the Fifth International Conference on Electronic Business,
Hong Kong, December 5-9, 2005, pp. 769 - 776.
outline for something that is more fully developed at a later
stage.” The common sense of the word of framework
appears to be “the skeleton of another structure”, which has
been well adopted into the context of modern information
systems development. Booch, Rumbaugh and Jacobson [4]
define a framework as “an architectural pattern that provides
an extensible template for an application within a domain”.
In this context a framework is essentially a design skeleton
that allows systems developers to create part of a system in
the first place, and add design details when necessary.
Johnson [23] states that the definitions of frameworks vary,
but the one used most is that “a framework is a reusable
design of all or part of a system that is represented by a set
of abstract classes and the way their instances interact”.
Another common definition is “a framework is the skeleton
of an application that can be customized by an application
developer”. The former concerns the structure of a
framework while the latter describes the purpose of the
framework. Lewis et al. [24] argues that a framework is
more than a class hierarchy. Fayad [14] claims that a
framework is a reusable, ‘semi-complete’ application that
can be specialised to produce custom applications. Zamir
[34] defines “an object-oriented framework is the reusable
design of a system or subsystem implemented through a
collection of concrete and abstract class and their
collaborations. The concrete classes provide the reusable
components, while the design provides the context in which
they are used. ” The concepts of frameworks and
application frameworks are often used interchangeably in
the context of systems development. The definitions by
different researchers or authors vary, some of them are more
abstract and concerning more on the analysis and design
phase, and others are more interested in design and
development phase. The different emphases does not
conflict each other but rather enrich and enlighten the further
research issues related to the field of application frameworks
technology.

Application frameworks can be domain independent
such as graphical user interface (GUI) framework or domain
dependent/specific such as CIM framework. They can also
be classified according to the scope, reuse perspective, the
control aspect and the development process of application
frameworks. According to the scope of application
frameworks, Fayad [17] proposes to classify it into three
categories namely as system infrastructure frameworks i.e.

770 WUSHENG ZHANG, MIK KIM

graphical user interface (GUI) and Microsoft Foundation
Class (MFC); Middleware integration frameworks i.e. BEST
and JAWS; Enterprise application frameworks i.e.
SEMATECH CIM, OSEEFA and PRM. He claims [15] that
application frameworks are generally domain specific
applications such as computer-integrated manufacturing
frameworks, distributed systems, networking and
telecommunications, or multimedia collaborative work
environment. From the perspective of the reuse application
frameworks can be classified into whitebox and blackbox
frameworks [33] [17]. Fayad [17] also proposes a greybox
approach, which is a mix between the whitebox and
blackbox frameworks. A whitebox application framework is
a framework customised by subclassing existing framework
classes and providing concrete implementations. To
implement whitebox frameworks application developers use
more inheritance and polymorphism. Application specific
functionality is expressed by inheritance and new
implementations. Implementation inheritance tends to
require knowledge of the superclasses’ implementations.In
the last few years application frameworks researchers are
more interested to develop blackbox application frameworks,
which rely more on composition rather than inheritance. In
blackbox frameworks approach, the extendability of the
framework is achieved by defining interface for components
that can be plugged into the framework using composition.
Object composition is based on forwarding rather than
delegation, merely relies on the interfaces of the involved
objects. In a blackbox framework [17], an application
developer selects from the set of subclasses provided by the
framework as blackbox components and binds it to the hot
spot (plug in point). Thus, the developer may create an
application without programming, merely by selecting,
configuring, and parameterizing framework components.
From the perspective of taking control application
frameworks can also be classified as callable framework and
calling framework [17]. A callable framework allows the
application to retain the thread of control and provides
services when the application calls the frameworks. A
calling framework provides a control loop that calls
application-provided code at appropriate times. From a
development process perspective application frameworks
can be divided into analysis frameworks, design frameworks,
and implementation frameworks. Analysis frameworks
typically focus on analysis level constructs, without making
any commitment. They are typically the product of domain
analysis. Most of the current application frameworks are
either a design framework or an implementation framework.

Most of the application frameworks are domain specific
such as a financial application framework or a
manufacturing framework. An application framework
domain is a set of rules and roles and their semantic models
codified in the framework itself. It provides a generic
incomplete solution to a set of similar problems within an
application domain. Fayad [17] states that an application
framework embodies generalised expertise in the domain
based on analysis and synthesis of a wide range of specific

solutions. He argues that analysis and synthesis of a wide
range of specific solutions will help to understand a design
of the proposed application framework. It is proven that the
research community has more understanding in some
domains such as financial, manufacturing, communication
and networks and social welfare than others [13][17].

The development of application frameworks research is
related to the development of objects technology although
there is no evidence of that the technology is exclusive to
objects technology. However, the majority of the researchers
in that area of application frameworks and most of the
current application frameworks are object-oriented. Iterative
and incremental development approaches have been the
main development methodology supporting the development
of application frameworks [15]. Application frameworks
design can be bottom-up and pattern driven or top-down and
target driven [17][31][33]. The bottom-up design works well
where an application framework domain is already well
understood. Starting from proven patterns and working one’s
way up has the advantage of avoiding idiosyncratic solutions
in the small, problematic solutions that should be replaced
by application of an established pattern. Top-down and
target driven approach is preferable where an application
framework domain has not yet been sufficiently explored but
where the target domain to be served by the framework is
well understood.

Research [15][17][24][29] has indicated that building
application frameworks is hard and implementing
application frameworks is as hard as building application
frameworks. According to a survey [17] the minimum time
spent in developing an application framework was half of
person month and the maximum time to develop an
application framework was 1000 person months. The
average time to develop an application framework was about
21 person months. An application framework conventionally
consists of the core classes of an application, and one has to
understand the basic architecture of a particular application
type to be able to specialise the framework [29]. Using an
application framework may simplify application developers’
life since a framework provides generic solutions for a
particular application domain. However, the average
learning time is a big factor in establishing the cost of final
application. The application developers have to understand
what solutions the framework provides, and to comply with
the rules imposed by the framework.

Chen [8] promotes that reusable components and
frameworks must be accumulated in a standardised format.
Most of the researchers agree that the classification structure
of an application framework must be appropriate and
manageable. Application developers will have difficulties
with understanding the framework if the structure of the
framework is not clear and standardised. Currently
literatures indicate that application frameworks still lack of
standards. Fayad [15] [16] [17] states that building and
implementing application frameworks still need more
methodological support.

There are a few domain specific application

APPLICATION FRAMEWORKS TECHNOLOGY IN THEORY AND PRACTICE 771

frameworks have been used in the industry, for example, San
Francisco framework, SEFA framework and SEMATECH
CIM framework. The San Francisco framework is an
application framework based on Java technology to develop
business applications. It provides both a software solution
for implementing business applications and a collection of
concepts or strategies to develop business applications.
According to the white paper from IBM [22] that the San
Francisco framework is motivated from over 130 software
vendors. The project was started when several software
vendors asked IBM to help modernising their application
products but there were several barriers preventing them
from being able to update their applications. IBM claims that
the San Francisco framework can solve 70% of the business
related problems and leave 30% to the applications
developers. IBM also claims that the framework makes it
easier to move to object-oriented technology because
developers use well-tested services instead of building their
own. The project helps to solve these problems by offering
developers Business Process Components. It is designed as a
framework that provides an object oriented infrastructure,
and a consistent application programming model and some
default business logic. The San Francisco Framework is
designed to make many types of extensions easy for
application developers, allows overriding the default
business logic in supplied methods, and adds additional
attributes to existing classes. The San Francisco Framework
offers three layers of functionality such as business
processes, business objects, and foundation classes, each of
which may be used and extended by developers to build
their applications. OSEFA (German: Objektorientierter
SoftwarebaukastEn für FertigungsAnlagen) is a blackbox
application framework. It contains models of technical
components as well as models of conceptual task-related
components, and of application logic components. The
prototype of the project was built in 1993 and the full
version of the framework became operational in early
1996.The architecture of OSEFA has five layers, a machine
and communication specific layer, a standardised machine
layer, a task specific layer, a part processing layer, and a
machine order layer [31]. He claims that through the project
of OSEFA they have demonstrated how to use design
patterns to create a sophisticated class structure from a
simple result of object-oriented analysis. OSEFA [32]
discloses the cost issues and states that developing a
blackbox application framework takes around two to three
times as much effort as developing a fixed application from
the domain. This number may vary with the domain and
includes the costs of analysing the domain and sufficiently
generalising the class structure, but not the cost to acquire
knowledge of framework structure and design. OSEFA
claims that developing an application framework is worth
the effort. The investment will pay off after the creation of
about the third application from the framework. OSEFA
experience indicates that another advantage of using
application frameworks approach is the short time span
required for the creation of a customer-specific or product-

specific application from a framework. SEMATECH is the
semiconductor manufacturing technology consortium,
whose member companies are AMD, Digital, Hewlett-
Packard, IBM, Intel, Lucent, Motorola, National
Semiconductor, Rockwell, and Texas Instruments. CIM is an
instance of callable framework and component is the
smallest unit of functionality that can be added, deleted,
enabled or disabled in a CIM framework- compliant
application. The goals of CIM include flexibility,
interoperability, substitutability, integration and reuse [17].
Standardisation of CIM framework was started by the
Semiconductor Materials and Equipment International
(SEMI) organisation in early 1997. In 1998 the SEEMI
Global CIM Framework Task Force initiated two successful
letter ballots, resulting in adoption of the first two parts of
the CIM framework standard. The first part, the Provisional
Specification for CIM framework Domain Architecture
establishes the architecture foundation for the component
structure and partitioning, and identifies the responsibilities
of each major component of the framework. The second part
is a document- Guide for CIM Framework Technical
Architecture, defines required infrastructure technologies
needed to support framework and their customers must be
prepared to make [17]. The experience from CIM [17]
indicates that implementation experience is essential;
frameworks increases initial cost; infrastructure coupling is
hard to avoid; frameworks overlap; technology is immature
and standardisation is an important issue for industry wide
application frameworks such as ICM.

III. Foundations of The Application
Frameworks

Though application frameworks is not exclusive to object-
oriented community the majority application frameworks are
developed and implemented using object oriented
technology. Object-oriented technology is one of the fastest
growing technologies of the last two decades promising
better quality, productivity and interoperability through
software reuse. Coad and Yourdon [9] define “an object is an
abstraction of something in a problem domain, reflecting the
capabilities of the system to keep information about it,
interact with it or both”. In that sense objects are used to
model an understanding of the application domain, which
concerns the system and abstraction. Deitel [11] defines
“Object technology is a packaging scheme that facilitates the
creation of meaningful software units”. He explains that
these units are usually large and focused on particular
application areas and most of them can be reused. For
example, there are data objects, time objects, audio objects,
video objects, file objects, record objects and so on.

The central idea of the object-oriented technology
subsumes abstraction, modularity, encapsulation, inheritance
and polymorphism - concepts that, on the face of it, lend
themselves to reuse. The notable development of the
technology consists of a comprehensive set of object-

772 WUSHENG ZHANG, MIK KIM

oriented modelling methods for analysis, design, and
implementation, designed to realise the concepts mentioned
above. Consequently, object-oriented technology has led to
the development of patterns, components and application
frameworks. The object-oriented concepts have been applied
in the process of developing and implementing application
frameworks. Fayad [15][16][17] stresses that frameworks
build upon object-oriented concepts, which provides a
conceptual base for more complex programming constructs
and reusable implementation structures for large systems
application. Eliens [13] states that object oriented approach
will pay off when we have arrived at stable abstractions
from which we have good implementations, that may be
reused for a variety of other applications. Application
frameworks is a technology aimed to achieve large-scale
reuse by applying object-oriented concepts. In the following
sections some of the object-oriented concepts and principles
will be explored in relation to application frameworks and
systems development.

IV. Application Frameworks and Other Reuse

Techniques

Application frameworks is a reuse technology aimed at
large-scale reuse and it has a close relationship with other
reuse techniques used in software engineering. An
application framework is a collection of components, a
generic solution for a class of problems, a frame of mind for
solving problems and a set of architectural constraints. An
application framework integrates and concretises a number
of patterns to a degree required to ensure proper interleaving
and interaction of participants involved. An application
framework is a kind of library, which provides reusable
objects for applications but in contrast to ordinary software
class libraries, frameworks may at times take over control
when the application runs. From reuse perspective the
application frameworks technology is closely related to
other reuse techniques such as patterns, class libraries and
components. Application frameworks use those reuse
techniques mentioned above to achieve the goal of large-
scale reuse.

IV. 1 Architecture

Software architecture is the foundation of system
construction. Graham [21] defines “Software architecture
deals with abstraction, with composition and decomposition,
and also with style and aesthetics. Bass et al. [3] describe,
“The software architecture of a program or computing
system is the structure or structures of the systems, which
comprise software components, the externally visible
properties of those components and the relationships among
them”. While, Szyperski [33] depicts “System architecture is
a means to capture an overall generic approach that makes it
more likely that concrete systems following the architecture
will be understandable, maintainable, evolvable, and
economic. It is this integrating principle, covering

technology and market that links software architecture to its
great role model and justifies its name”. Despite the different
concentration of the definitions above a software
architecture is about an over view of a system. Generally
speaking software architecture can be seen as a set of rules,
guidelines, interfaces, and conventions used to define how
components and applications communicate and interoperate
with each other. Recent software development experience
has proven that sound software architecture for the software
systems is necessary as software systems are more complex
than before. Szyperski [33] stresses that architecture
prescribes proper frameworks for all involved mechanisms,
limiting the degree of freedom to curb variations and enable
cooperation. Architecture needs to be based on the principal
considerations of overall functionality, performance,
reliability, and security. Software engineers have learnt from
practice such that architecture is needed in any systems if
they seek for guiding rules for design and implementation.

Architecture needs to create simultaneously the basis
for independence and cooperation of systems. Independence
of systems aspect is required to enable multiple sources of
solution parts. Cooperation between these otherwise
independent aspects is essential in any no-trivial architecture.
System architecture is the structure of a software system,
which provides a platform for application developers to
build the system. It may be as concrete as providing detailed
implementation requirements to as abstract as given a
generic idea of how the system should be implemented.
Application frameworks technology promises reuse of not
only the frameworks source code, but also more importantly
architecture [15]. A standardisation structure allows a
signification reduction of the size and complexity of code
that application developers have to write.

IV. 2 Class libraries

Class libraries is as set of reusable classes, often defined as
part of the implementation or design environment [34].
Many programming languages have some ready usable
classes embedded available to application developers
especially visual development such as VB Studio.Net and
J2EE. Class library in general offers static inheritance
facilities but framework is more likely to support dynamic,
run time binding facilities. Application frameworks defines
‘semicomplete’ applications that embody domain specific
object structures and functionality. It can be viewed as
extensions to object oriented class libraries. In contrast, class
libraries provide a smaller granularity of reuse. For example,
class library components like classes for strings, complex
numbers and arrays are typically low-level and more
domains independent. Fayad [18] states that class libraries
are typically passive and frameworks are active and exhibit
‘inversion of control’ at runtime.

IV. 3 Patterns

Classes and interaction structure of object-oriented designs
may become fairly complex, and consequently difficult to

APPLICATION FRAMEWORKS TECHNOLOGY IN THEORY AND PRACTICE 773

develop and understand, which have led the study and
development of patterns. Design patterns are standard
solutions to recurring problems, named to help people
discuss them easily and think about design. Design patterns
can be used as a micro-architecture that applies to a cross-
domain design problem such as linked list and other
classical data structure design. A design pattern describes a
concrete solution to an architectural problem that might arise
in a specific context. The solution proposed by the patterns
is typically a way of structuring a cluster of objects and their
interaction [7]. Schmid [31] states that the repetitive use of
design patterns created an overall architecture though each
design pattern represents a micro architecture. He argues that
design patterns give a better, since more concrete guidance
for how to realise a framework. Patterns are abstract, there
fore, are not ready-made plugable solutions. They are most
often represented in object-oriented development by
commonly recurring arrangements of classes and the
structural and dynamic connections between them. Graham
[21] argues that patterns are most useful because they
provide a language for designers to communicate in. In
particular, design pattern have proven their value in
structuring the variable parts, called hot spots (allow plug in
software artefacts) of a framework [28]. Fayad [17] defines
patterns as a conceptual solution to a recurring problem.
Schmid [31] argues that design patterns are an excellent
means to describe the details of object and class interactions
but they are not suited to give an overall picture. Design
patterns are reusable architecture, object template, or design
rule that has been shown to address a particular issue in an
application domain [34]. Most of design patterns come
either as a static description of a recurring pattern of
architectural elements or as a rule to apply dynamically for
when and how to apply the pattern. The majority of software
patterns produced to date have been design patterns at
various levels of abstraction but Fowler and Graham [20][21]
introduce the idea of analysis patterns as opposed to design
patterns. Fowler’s patterns are reusable fragments of object-
oriented specification model generic enough to be applicable
across a number of specific application domains.

Patterns and frameworks both facilitate reuse by
capturing successful software development strategies. The
primary difference is that frameworks focus on reuse of
concrete designs, algorithms, and implementations in a
particular programming languages. In contrast, patterns
focus on reuse of abstract designs and software architectures.
Frameworks can be viewed as a reification of families of
design patterns. Likewise, design patterns can be viewed as
the micro architectural elements of frameworks that
document and motivate the semantics of frameworks in an
effective way [18]. Design patterns have been used
extensively in developing application frameworks. Many
researchers [15][17][31] have suggested using as many
patterns as possible for developing application frameworks
because the abstractness and design expertise are embedded
in patterns.

IV. 4 Components

Szyperski [33] points out that component technology is
standalone, which has gone beyond object orientation. He
defines “software components are binary units of
independent production, acquisition, and deployment that
interact to form a functioning system”. In that definition a
software component is best thought as a unit with well-
defined interfaces and has explicit context dependencies. He
explains that insisting on independence and binary form is
essential to allow multiple independent vendors and robust
integration. Components are not just a big object. Eliens [13]
describes that components usually consist of a collection of
objects that provide additional functionality that allows
components to interact together. Szyperski [33] states that
component is a unit of independent deployment, a unit of
third party composition, and it has no persistent state. By
contrast, an object is a unit of instantiation, which has a
unique identity, it has state, which can be a persistent state,
and an object encapsulates its state and behaviour. A
component is likely to come to life through objects and
therefore would normally consist of one or more classes or
immutable prototype objects. Component oriented
programming requires the support of polymorphism and
modular encapsulation [33].

A component has well-specified functionality with
standard interface and behaviours, and a concrete
implementation of an area of the system. Components in a
framework provide a generic architectural skeleton for a
family of related applications and complete applications
could be composed by inheriting from and /or instantiating
framework components. Atkinson [1] states that there are
two types of relationship between component instances that
are important at runtime. The first is composition, which
captures the idea that one component is a part of another.
The key aspects of the composition relationship are: 1.
Composite objects are responsible for the creation and
destruction of their parts. 2. The parts of a composite object
take their identity from their composite object. 3.
Composition is transitive. The other one is the client/server
relationship. A client/sever relationship between two
components instances defines a contract between them. For
components to be independently deployable, their
granularity and mutual dependencies have to be carefully
controlled from the outset.

Component and application frameworks have close
relationship. Many application frameworks use Common
Object Request Broker Architecture (CORBA) to increase
the interoperability among each part of the framework.
CORBA, a big component essentially has three parts: a set
of invocation interfaces, the Object Request Broker (ORB),
and a set of object adapters. For invocation interfaces and
object adapters to work, two essential requirements need to
be met. First, all object interfaces need to be described in a
common language. Second, all languages used must have
bindings to the common language [33]. Fayad [18] states

774 WUSHENG ZHANG, MIK KIM

that frameworks can be used to develop components.
Equally, components can be used in blackbox frameworks.

V. The Analysis of Current Application

Frameworks Practices

There are a number of application frameworks projects
developed during the 90’s including some notable domain
specific application frameworks such as San Francisco,
OSEFA, and SEMATECH CIM. The application
frameworks research community has accumulated
considerable experiences in some domains such as finance,
manufactory and telecommunications about building and
implementing application frameworks in the last decade.
The followings are core experiences identified during the
study:

V. 1 Object-oriented concepts applied

Object-oriented application frameworks approach takes
advantage of object-oriented concepts such as abstraction,
inheritance, encapsulation and polymorphism as well as the
use of object-oriented programming language. Though
application frameworks is not exclusive to object oriented
technology, the object-oriented concepts have a great impact
on the development of application frameworks as a
foundation of building and implementing application
frameworks.

V. 2 Large-scale reuse

Application frameworks is different from other reuse
techniques such as code reuse, design pattern reuse, class
library and component reuse. It is aimed at achieving large-
scale reuse in which the application developers are not only
reuse the code but also the module and architecture of the
application frameworks.

V. 3 Domain specific

Application frameworks is likely domain specific such as a
financial framework or manufacturing framework. A domain
specific framework extracts domain expertise and current
solutions of the domain. Domain knowledge is crucial for
developing application frameworks, which can be extracted
from the domain experts and the current solutions of the
domain. The development of application frameworks in
some domains has accumulated more experience than others.

V. 4 Existence in any development stage

Concerning the scope of reuse and development process, an
application framework can be as abstract as analysis
framework or more concrete as implementation framework.
Majority of the researchers tend to agree that application
frameworks is a kind of semi-completed applications and the
reuse can potentially exist in any development stage such as
analysis, design and implementation.

V. 5 Development approaches

Though it is not proven that the object-oriented technology
is the only way to develop application frameworks, most of
the applications frameworks are developed by using the
object-oriented technology. Iterative and incremental
development approaches have been the main development
methodology supporting the development of application
frameworks. Framework design can be bottom-up and
pattern driven or top-down and target driven.

V. 6 Issues identified to date

Application frameworks research has shown considerable
achievement in the context of systems development.
However, some obstacles have been identified during the
study involving in the theory and practice of application
frameworks using object-oriented technology. The issues are
organised into the sections of 3.2.1 to 3.2.9.

V. 7 Developing and implementing effort

Developing application frameworks is hard. Due to the
complexity, size of application frameworks, and the lack of
understanding of framework design process, application
frameworks is usually designed iteratively requiring
substantial restructuring of numerous classes and long
development cycles. Implementing application frameworks
is as hard as developing application frameworks. A
framework conventionally consists of the core classes of an
application, and one has to understand the basic architecture
of a particular application type to be able to specialise the
framework.

V. 8 Infrastructure coupling

The application developers will have to rely on the
architecture structure defined by the application framework
while implementing the framework. Infrastructure coupling
is very difficult to avoid for a whitebox framework since
inheritance is the main mechanisms of implementing the
framework that cause widespread coupling (the result of
extensive use of inheritance), and consequently restrict the
extendability of the application developed by the framework.
In contrast, the traditional object-oriented development
approach can eliminate the problem by reducing the
unnecessary use of inheritance.

V. 9 Combining frameworks

Combining frameworks is not a straightforward task. One of
the perceived advantages of using application frameworks is
to increase extendability [17]. However, combining two or
more frameworks without breaking their integrity is difficult
because a framework assumes that it has the main control of
an application [29]. Also, the difference of architectural style
is another problem, which may potentially prevent two
frameworks from combining together [4]. It is also difficult
to combine applications developed from a framework with
legacy systems because the new application generally
contains behaviour for internal framework functionality in
addition to the domain specific behaviour, but the legacy
system in general only has the functionality of the domain.

APPLICATION FRAMEWORKS TECHNOLOGY IN THEORY AND PRACTICE 775

V. 10 Overlap and potential gap

Application frameworks is often developed to capture
specified domain knowledge. A domain specific application
framework is a skeleton of architecture for a domain. It is
possible in practice that the real world entity can be
classified into different domains and consequently stored in
different application frameworks. In application, it is desired
to have only one object to represent the real world entity
(single inheritance). The entity overlapping in different
frameworks may confuse the applications building based on
two or more frameworks. Also, potential gap may exist
among two or more frameworks because it is possible that
two frameworks cannot still be able to meet an application’s
requirement. In that situation substantial effort is needed to
modify the design of the application or using mediating
software [4]. In either case the implementation becomes
very complex and difficult to handle.

V. 11 Testing

There is little research relating to frameworks testing.
According to the nature of application frameworks, a
framework is ‘a skeleton of structure’ with the notion of
abstraction. It would, therefore, be very difficult to conduct
testing. Currently, most of the researchers are testing the
applications developed from the framework and iteratively
evolve the framework. A well-designed framework
component typically abstracts away from application
specific details, however, it increases the complexity of
module testing since the components cannot be validated in
isolation from their specific instantiations [14]. It would be
difficult to test the application developed using calling
frameworks in which the frameworks calls the application
when the application runs. It could be complicated to follow
a thread of execution, which was mostly buried under
framework code.

V. 12 Documentation

Documentation is used by both the framework developers
and application developers who implement the framework.
Fayad [17] classifies it into two categories such as for
framework developers, which is used to modify and enhance
the structure as well as the performance of the framework,
and for application developers, which is employed to
understand and use the framework. The current research
indicates the documentation is still inadequate for
application developers, which has potentially increased the
difficulty of the learning curve [17]. The current
documentation approach (text plus model diagram plus code
example) is often difficult to acquire understanding of
frameworks.

V. 13 Maintenance

Current research has no indications of that the requirement
for maintenance would be reduced by adopting application
frameworks approach. As a long-term investment,
frameworks evolve over time and need to be maintained.

Most of the application framework developments adopt
iterative and incremental development strategy. Thus, when
a change made to a framework the applications developed
using the framework will be affected as well because the
application use the structure and partial code of the
framework. In this case the application development must be
delayed if the major new version of the frameworks is about
to be available in the near future. The company may have
even to maintain more than one version of the framework
since there may exist applications based on the old version
of the framework.

V. 14 Feasibility

There is little feasibility study conducted in the area of appli
cation frameworks. However, OSEFA discloses the cost issu
e and states that developing a blackbox framework takes aro
und two to three times as much effort as developing a fixed a
pplication from the domain. Reusable framework like other r
eusable technologies is only as good as the people who build
 and use them. Developing robust, efficient, and reusable ap
plication frameworks require the project team to have a wide
 range of skills. It needs expert analysts and designers who
have mastered design patterns, and software architectures an
d expert programmers who can implement these patterns and
 architectures in the application framework. Even though it
may be feasible to develop a framework for a particular dom
ain from a technological perspective it is not necessarily adv
antageous from a business perspective. The return on invest
ment from a framework developed may come from selling to
 other companies, but to a large extent, relies on future savin
gs in development effort within the company itself. However
, future earning is not obvious to be justified as the technolo
gy itself and business environment is changing. It is difficult
 to estimate the amounts of work required for a specific appl
ication. It is also difficult to foresee if a specified business re
quirement is supported by the framework.

VI. Conclusions

The application frameworks technology supports large-scale
reuse and increase the quality of the software products. An
application framework can be described as a skeleton of
software systems upon which application developers are
able to build applications. Though application frameworks is
not exclusive to object oriented technology, most of the
current work is coming from object-oriented community.
Application frameworks have a close relationship with
object-oriented technology in which object-oriented
principles are adopted. The results of the study indicate that
application frameworks technology is still immature and not
yet to be another silver bullet but potential is imminent. The
experiences accumulated by the research community
indicate that application frameworks apply object-oriented
concepts, aimed at large-scale reuse, likely domain specific
and can exist in any development stage. Also, some issues
relating to application frameworks have been identified in
terms of development and implementing effort,

776 WUSHENG ZHANG, MIK KIM

infrastructure coupling, combining frameworks, overlap and
potential gap, testing, documentation, maintenance and
feasibility. Applications developed by implementing
application frameworks may increase quality in terms of
correctness and reusability with some penalty factors. The
extendability and interoperability may be reduced due to the
high inheritance coupling nature of the application
developed from application frameworks. The results of the
study suggest that the use of application frameworks
technology has made a difference in systems development in
terms of: (1) a number of application frameworks such as
GUI, San Francisco and CIM frameworks have been
developed and used by industry; (2) application frameworks
technology supports large-scale reuse by incorporating with
other existing reuse techniques such as design patterns, class
libraries and components. The results of the study discover
that the methodological support concerning building and
implementing application frameworks is inadequate. The
results of the study also point out that one of the claims,
made by the advocates of application frameworks
technology regarding the technology can increase the
extendability of the software systems developed by
application frameworks, are debatable.

VII. Future Work

Application frameworks technology may become one of the
promising technologies in systems development if the
following two research areas achieve significant
breakthrough in the future. (1) Methodological study
especially, the process of building and implementing
application frameworks. (2) Solving technical issues related
to building and implementing application frameworks such
as how to increase the interoperability and extendability in
frameworks approach.

References

[1] Atkinson, C… et al. (2002). Component based product line engineering

with UML London: Addison-Wesley.
[2] Ahmad, W.AI (2000). Inheritance in object –oriented language-

requirements and supporting mechanisms. Journal of Object Oriented
programming Jan 2000 New York.

[3] Bass, L., Clenments, P. & Kazman, R. (1998). Software architecture in
practice. MA: Addison-Wesley.

[4] Booch, G., Rumbaugh, J. & Jacobson, I. (1999). The unified
modelling language user guide. Addison-Wesley.

[5] Bosch, J., Molin, P., Mattson, M,. and Bengtson, P. (2000). Object-
oriented framework based software development: problems and
experience. ACM Computing Surveys, Volume 32, 2000.

[6] Bruel, J.M, & Bellahsene, Z.(eds. 2002) Advanced object-oriented
information Systems, OOIS 2002 workshops Montpellier, France,
September 2, 2002.

[7] Brugali, D… et al (2000). Frameworks and pattern languages: an
intriguing relationship, ACM Computing Surveys, Volume 32, 2000.

[8] Chen, D. J., Koong, C. S., Chen, W. C., Huang, S. K., and Van Diepen.
N.W.P (1999). Integration of reusable software components and
frameworks into visual software construction approach. Journal of
Information and Science and Engineering 2000.

[9] Coad, P. & Yourdon, E. (1990). Object oriented analysis (2nd),

Englewood Cliffs, NJ: Yourdon Pres: Prentice-Hall.
[10] Cockburn A. (1997). Surviving object-oriented projects: A Manager’s

Guide. Addison-Wesley.
[11] Deitel, H.M (2003). Visual Basic.net For Experienced Programmers

Developer series. Upper Saddle River, NJ: Pearson Education.
[12] Due, R.T. (2002). Mentoring object technology projects NJ07458:

Prentice Hall PTR.
[13] Eliens, A. (2000). Object-oriented software development, 2nd ed.

England: Pearson Education.
[14] Fayad, M.E., & Schmit, D.C. (1997). Object-oriented applications

frameworks. Communication of the ACM, Oct 1997 v40 n10, 32.
[15] Fayad, M. E., Schmidt, D. & Johnson, R.E. (1999a). Building

application frameworks: object-oriented foundation of framework
design. New York: John Wiley & Sons.

[16] Fayad, M. E., Schmidt, D. & Johnson, R.E. (1999b). Implementing
application

frameworks: object-oriented framework at work. New York: John Wiley &
Sons.

[17] Fayad, M. E., & Johnson, R.E. (2000). Domain specific application
frameworks: frameworks experience by industry. New York: John Wiley
& Sons.

[18] Fayad, M. (2000b). Introduction to the computing surveys’ electronic
symposium on object oriented application frameworks. ACM
Computing Surveys, Volume 32, No.1, March 2000.

[19] Fayad, M. (2000d). Enterprise Frameworks: Guidelines for selection.
ACM Computing Surveys, Volume 32, 2000.

[20] Fowler, M. (1997). UML Distilled, 2nd ed, Harlow, England: Addison-
Wesley.

[21] Graham, I. (2001). Object-oriented methods principles & practice (3rd).
London: Addison-Wesley.

[22] IBM San Francisco Frameworks white paper:
http://www.javasoft.com/javareel/isv/ibm/SanFrancisco/white_paper.html.
[23] Johnson, R (1997). Frameworks for object-oriented software

development Communication of the ACM, Oct 1997 v40 n10, 39.
[24] Lewis T., Rosenstein, L., Pree, W., Weinand, A., Gamma, E., Calder,

P., Andert G.,
Vlissides J.& Schmucker, K. (1995). Object-oriented application

frameworks. Greenwich: CT Manning.
[25] McConnell, S (1993). Code complete : a practical handbook of

software construction Redmond, Washington: Microsoft Press.
[26] Meyer, B. (1988). Object-oriented software construction. Englewood

Cliffs NJ: Prentice Hall.
[27] Paul, C et al (2002). Evaluating software architectures methods and

case studies. Addison-Wesley.
[28] Pee.w (1994). Design pattern for object-oriented software development.

Addison-Wesley.
[29] Pree, W. and Koskimies, K (2000). Framelets- small and loosely

coupled frameworks. ACM Volume 32, Number 1es, March 2000.
[30] Schmidt, D. C. (1996). Lessons learned building reusable OO

telecommunication software frameworks. Lucent Labs Multiuse Express
magazine, Vol. 4, No. 6, December, 1996.

[31] Schmid, H, A. (1995). Creating the architecture of a manufacturing
framework by design patterns OOPSLA 95 Austin.

[32] Schmid, H, A. (2000). OSEFA:Framework for Manufacturing. Fayad,
M. E., & Johnson, R.E. (2000). Domain specific application
frameworks: frameworks experience by industry. New York: John Wiley
& Sons.

[33] Szyperski C. (1997). Component software: Beyond object-oriented
programming. Addison-Wesley Longman.

[34] Zamir, S. (1999). Handbook of object technology (ed.). CRC Press LLC.

	Application Frameworks Technology in Theory and Practice
	Microsoft Word - 769-776 ZhangKim1_soft_-Revised.doc

