View metadata, citation and similar papers at core.ac.uk

L=
brought to you by .. CORE

On Teaching an
Object-Oriented
Database Module in
Undergraduate
CS/IS Curricula’

Billy B. L. Lim, Ph.D

JOURNAL OF INFORMATION SYSTEMS ERUCATION Fall 1995

KEYWORDS: Object-Orientation, Database
Management Systems, CIS Curriculum,
Object-Oriented Databases, Computer
Science Education.

ABSTRACT: As object-oriented technology be-
comes more and more prevalently used in the
computing tndustry, it is important that the
compuiing science curricula keep up with the
technological trend. The literature shows nu-
merous efforts in this direction but few have
dealr with object-oriented databases. Much of
the efforts are in the areas of incorporating ob-
ject-orientation into introductory computing
courses or integrating special topics courses on
object-oriented programming into the curricu-
la.This paper describes the experiences that
the author had while integrating abject-orien-
tation into a CS/IS curriculum. In particular,
it illustrates where and how object-oriented
databases can be introduced in an introducto-
ry DBMS course by using some object-oriented
DBMS prototypes. A sample module for intro-
ducing object-oriented databases is also pre-
sented,

INTRODUCTION

I n recent years, object-oriented (OO) tech-
nology has become one of the dominant
technologies in the computing industry. In a
recent survey, it was reported that over 75% of
the Fortune 100 companies have adopted QO
technology to some degree for their comput-
ing needs [1]. To reflect the advances in QOO
technology and its acceptance by the comput-
ing industry [2, 3], many computer science
(C8)/information systems (IS) “sub-disci-
plines” have successfully integrated OO tech-
nology into their respective areas of research
and development as a new approach to prob-
lem solving. This is evident from the use of the
burgeoning OO technology in the areas of in-
formation system analysis and design [4, 5, 6],
database management systems [7, 8], operat-
ing systems [9, 10, 11], and programming lan-
guages [12, 13], just to name a few.
Object-orientation has also been integrated
into CS and IS curricula in the last few years
[14, 15,16, 17, 18, 19]. While object-orienta-
tion has been steadily incorporated into the
curricula, the incorporation deals mostly with
OO programming and to a lesser extent, OO
analysis and design. Few have described ob-
ject-orientation with respect to databases
even though database courses are typical com-
mon requirements in both CS and IS curricu-
la. This lack of interest is somewhat pre-
dictable since object-oriented database man-
agement systems (QOODBMSs) have yet to

provided by AIS Electronic Library (AlSeL)

make any headway in the mainstream com-’
puting industry where relational DBMSs are
still predominant.

However, it is the opinion of this author
that given the significant level of research and
development work on OODBMS in the past
few years, the topic of object-orientation de-
serves an adequate coverage in a database
course. This position is further strengthened
when one looks at how commercial
QODBMSs have gained their own niche in
the areas of scientific, multimedia, and geo-
graphic databases in the industry {c.g.,
CAD/CAM, GIS). It has been reported that
QODBMS is projected to be a $425 million
industry by 1996 [20]. Moreover, it is impor-
tant to realize that as QO programming be-
comes increasingly popular, the demand for
persistent objects (i.e., those that transcend
over time and space) will increase and
OODBMSs will be in the right place to serve
the needs as they are the only repository de-
sighed to store objects. Having taken this posi-
tion, this paper describes the integration of
object-orientation into an undergraduate
database course and documents the experi-
ence in the process.

The remainder of this paper is organized as
follows. Section 2 gives background informa-
tion on OODBMS and discusses some related
work. The integration of object-orientation
into a DBMS course is discussed in Section 3.
Finally, Section 4 gives the summary and con-
clusions.

BACKGROUND AND RELATED WORK

00DBMS: The definition

While there is a lack of standards with re-
gard to OODBMS concepts (with the excep-
tion of the effort by Atkinson et. al. [21] and
the ongoing work by Object Management
Group, a standards organization), it is com-
monly agreed that OO databases should have
the characteristics of both object-orientation
and databases. Object-orientation includes en-
capsulation through abstract data types (class-
es), complex objects, inheritance, polymor-
phism, and object identity. Database capabili-
ties include the traditional features like persis-
tence, concurrency control, recovery, query-
ing, integrity, and security. N

Atkinson et al. describe the following gold-
en rules as the mandatory features of an
OODBMS:

1) Complex objects {Thou shalt support

complex objects)

2) Object identity (Thou shalt support ob-

ject identity)

3) Encapsulation (Thou shalt encapsulate

thine objects)

113-R

https://core.ac.uk/display/301391104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4) Types and Classes (Thou shalt support

types or classes)

5) Class or Type Hierarchies (Thine classes

or types shalt inherit from their ancestors)

6) Overriding, overloading, and late bind-

ing (Thou shalt not bind prematurely)

7) Computational Completeness (Thou

shalt be computationally complete)

8) Extensible (Thou shalt be extensible)

9) Persistence {Thou shalt remember thy

data)

10} Secondary storage management (Thou

shalt manage very large databases)

11} Concurrency (Thou shalt accept con-

current users)

12) Recovery (Thou shalt recover from

hardware and software failures)

13} Ad Hoc Query Facility (Thou shalt

have a simple way of querying data)

The first eight of the rules are from an ob-
ject model and the last five are features typi-
cally found in a DBMS,

Integrating Object-Orientation inte a CS/IS Curricula

As the popularity of object-orientation
continues to grow in the industry, more and
more CS/IS departments are adopting the
new paradigm in their curricula (albeit slow-
ly). As mentioned above, much of the integra-
tion of object-orientation happens at the pro-
gramming language level. That is, instead of
using procedural languages such as Pascal, C,
or COBOL, OO programming languages like
C++ and Smalltalk are used to teach the intro-
ductory programming courses {e.g., [14]}.

This language-level adoption also applies
to upper division courses that make use of the
“bells and whistles” of OO development envi-
ronments and the tools that go with them
{e.g., [18]). This type of course usually comes
in the form of a special topics class, such as
Introduction to OO Programming, newly
added to the curriculum. Another form of lan-
guage-level adoption appears in the traditional
programming languages course where differ-
ent programming paradigms like procedural,
logic, functional, and more recently, object-
oriented paradigms are discussed,

Another type of adoption that has surfaced
recently is in the form of software develop-
ment methodology. This adoption can be real-
ized in a software engineering course where
the OO paradigm is studied together with the
traditional structured methodology or by itself
with the structured methodology course as a
prerequisite. It should, however, be noted that
due to the OO methodology war [22],
methodology-level adoption is not as wide-
spread as language-level adoption.

Lastly, object-orientation can also be inte-
grated into the curriculum in a database

114-R

course. This database-level adoption, the topic
of this paper, is detailed in the next section.

00 DATABASES IN CS/1S CURRICULA

00 databases are introduced in the au-
thor's department through an undergraduate
introductory DBMS course called Database
Processing. This course, required in the IS se-

to illustrate the fundamentals of object-orien-
tation and give the students a feel for what to
expect when facing a next generation DBMS.
It should be noted that Postgres does not run
on tap of Ingres (i.e, it is standalone) and that
it has a separate graphical front-end called
Picasso, downloadable through ftp as well,
that runs on X Windows if GUI programming

“As the popularity of object-orientation
continues to grow in the industry, more and
more CS/IS departments are adopting the
new paradigm in their curricula.”

quence and an elective in the CS sequence , is
ajimed at junior, senior, and graduate students
wanting to learn the fundamentals of a DBMS
as well as the new and emerging technologies
fike OO and client-server databases. The
course has two prerequisites — Data
Structures and System Development 1.

The majority of the database course is
structured around the traditional set of topics
such as conceptual modeling, query languages,
transaction processing, recovery, integrity, etc.
However, unlike a traditional undergraduate
DBMS course, this one contains a knowledge
unit that discusses object-orientation and how
it affects the database technology. (Because
QODBMS is yet to be considered main-
stream, it does not yet deserve to be a course
by itself in an undergraduate curriculum. It is,
however, a viable advanced topic graduate
course, as is commonly seen in graduate cur-
ricula.) Approximately two weeks of a 16-
week DBMS course were used in incorporat-
ing the OO knowledge unit. Two different
OODBMSs, Postgres and SOD, were used in
the integration process. They are described
next, followed by a sample outline for the 2-
week module.

Postgres)

Like most institutions, the department can-
not afford or justify having a commercially
available OQODBMS for teaching purposes.
For that reason, Postgres (for Post Ingres)
[23], a prototype DDBMS available through ftp
from the University of California at Berkeley,
has been used in the exploration of OODEMS
characteristics, Postgres builds on the popular
Ingres relational database system and extends
the relational core with QODBMS features
such as inheritance, complex objects, and
methods. These features permit the instructor

on X for Postgres is desired.

Representative examples of some of the il-
lustrations [25] presented in the course are
given below. The query language used in
Postgres is called PostQUEL, an extension of
QUEL, the query language of Ingres,

Example 1 (inheritance):

create Person. (name = char (16},

age = int4, locaticn = point)

create Employee (salary = intd4, -

manager = char{16)) inherits (person)

abpend Person {name = "Billy",-~

age = 31, location = "(3.1, 6.2)")

append Employee (name = "Sharon®, -

age = 20, location = "{1.1, 2.2}",~

salary = 1000, manager = "Billy")

[Publisher’s note: Due to publication format

restrictions the " is used here to denote the

continuation of the code onto the next line.]
This example illustrates how a type/class

can inherit the attributes from another

type/class. Here, the class Employee inherits

the: attributes from the class Person and the

second append statement, which works like

the INSERT statement in SQL;, shows how

the inherited attributes are used.

Example 2 (complex object):

create City {name = char(16),-
location = box, budget = city budget)

append City (name = "Berkeley", -~
location = "(0.0,0.0,10.0,10.0)",~
budget = "250, 300, 325, 275"}
retrieve (City.name) where-
City.budget (1} > City.budget[2]

This example shows the use of complex
objects to define non-primitive data types.
Here, attribute location is of type box, a
quadruple defining the two coerdinates of a
rectangle/box. The budget attribute is of type
city_budget, an array of budgets for the four

JOURNAL OF INFORMATION SYSTEMS EDUCATION Fall 1995

quarters. The retrieve statement gives an ex-
ample of how the values of the budget array
can be used, namely it retrieves all the cities
(i.e., the city names) where the first quarter
budget is greater than the second quarter’s.

Example 3 {method):

retrieve (City.name) where boxarea-
{City.location) > 100

retrieve (Employee.name) where-
overpaid{Fmplayee)

This example demonstrates how methods
(preloaded, compiled C functions) can be
used in the querying process. Here, the
method boxarea returns the area a given city
occupies and the method overpaid tells if an
employee is overpaid (based on some formu-
la). Thus, the two retrieve statements re-
trieve the cities with area greater than 100
and employees who are overpaid, respectively.

As can be seen above, the examples togeth-
er with the fundamentals of object-orienta-
tion enable the students to grasp the basics of
OODBMS while still in the confine of an in-
troductory undergraduate DBMS course. This
exposure to object-orientation in Postgres
running on Unix together with hands-on ex-
perience with a real world DBMS, i.e,, [BM
DB2 on MVS, currently used in all of the
course activities, gives the students an added
advantage when competing for jobs in the
market place or a head start on OO technolo-
gy if they are going to graduate schools.

560

Experience with OODBMS may also be
gained with a home-grown, PC-based data-
base system, called SOD (Simple Object
Database) [26], that has been developed to
aid the integration process.

50D is an experimental OODBMS project
designed and developed to serve two purpos-
es. First, the project provides great opportuni-
ty to gain a deeper understanding of
QODBMS. It allows one to know more about
potential implementation difficulties of an ac-
tual OODBMS and to be more aware of the
potential applications of such a system.
Second, it is hoped that others can use this
system as an educational tool.

Given the great expense of acquiring
OODBMS teclinology most students are
learning about OODBMS only through text-
book readings. However, to teach the concepts
effectively, a combination of textbook read-
ings and experiences with an QODBMS is a
must, SOD is intended to be used as a teach-
ing tool to fill this gap. The aforementioned
Postgres system certainly does the job as well
but it is a faitly large system that does not per-
mit students to bring it home to their own
PCs and perform experimentation with it.

JOURNAL OF INFORMATION SYSTEMS EOUCATION Fall 1995

(Most students do not have systems that run
Unix and even if they do, they are typically
not powerful enough to run a system like
Postgres.) A PC-based system like SOD repre-
sents an ideal mix of platforms (DB2 on main-
frame MVS, Postgres on Unix workstation,
and SOD on PC DOS) where students are ex-
posed to a variety of flavors of DBMSs that
they are equally likely to encounter upon
graduation.

The SOD system supports many QO fea-
tures (and more) including

1] class definition

2) (single) inheritance

3) multivalue attributes

4) object identity

5) complex objects

6) behaviors

7) querying of database by user-specified

conditions

8) menu-driven graphical user interface

It is developed using the FoxPro language
in the FoxPro 2.0 environment and has the
look and feel of the environment. A detailed
description of SOD and how it can be used in
a database course may be found in [26].

Sample Module

Given the vast number of conventional
topics (e.g., concurrency control, SQL, query
optitnization, etc.) that need to be covered in
a undergraduate database course, one has to
make difficult decisions as to what topics to
remove in order to make room for an QO
module. In the database course described
here, coverage of all non-relational systems are
removed. That is, topics of hierarchical (e.g.,
IMS) and network (e.g., IDMS} databases are
only discussed in a “Types of Data Models”
lecture and no detailed coverage is given to
any of the two. It is felt that in today’s market
place, graduates are most likely to encounter
relational systems at work. Furthermore, while
it is true that the demand for knowledge of
IMS is likely to be more than that of
ObjectStore or Gemstone (some of the popu-
lar OODBMSs), it is believed that the general
knowledge of object-orientation coupled with
exposure to QODBMS characteristics will, in
the long run, outweigh any shortcomings for
not covering topics like IMS.

There are a variety of activities that can be
covered in a 2-week QO module. A week can,
and should, be spent on introducing the fun-
damentals of QO paradigm and the major dif-
ferences between relational and QO databas-
es. This can be done with “standard” introduc-
tory materials found in most OO databases
textbooks (e.g., [7], [8]) videotapes about ob-
jects and QODBMSs (e.g., [27], [28]), and/or

materials available in the public domain de-

signed for this purpese {e.g., [29]).

With the 1-week introduction, the second
week of the module can be devoted to the
coverage of more in-depth use, analysis, de-
sign, and/or implementation of OODBMSs.
Depending on the background of the stu-
dents, this can range from the studying of how
a new generation DBMS like Postgres handles
new requirements (see examples 1-3 in earlier
section for sample activities) to a more ambi-
tious one that involves studying how C++ and
Smalltalk objects can be made persistent in an
OODBMS. The latter can convince the stu-
dents that unfike extended relational systems,
objects created in an OO environment need
not be “taken apart” and mapped into relation-
al tables. Namely, the potentially complex
structure of objects can be preserved when
stored on disks and when retrieved, no mas-
sive amount of joins are needed to re-con-
struct the objects.

In the course described here, neither C++
nor Smalltalk was discussed due to the back-
ground of students. However, students were
encouraged, with bonus credits, to try out the
systems discussed in class with simple exercis-
es that involve creating tables with non-tradi-
tional data types and querying the database
with methods. In the foreseeable future, since
the curriculum in the author’s department has
been overhauled, i.e., students are more likely
to have C++/Smalltalk as prerequisites, the
possibility of introducing persistent objects for
C++ or Stalitalk may be realized.

SUMMARY AND CONCLUSIONS

Object-orientation has steadily penetrated
the software industry and the CS/1S curricula
in recent years. While the penetration on the
industry side has been fairly uniform in all ar-
eas of object-orientation (i.e., OO program-
ming, analysis and design, databases), the level
of penetration has not been the same for the
curricula, especially for OO databases. This
paper takes the position that while
QODBMSs are still relatively immature and
are not mainstream DBMS yet, they deserve
coverage in the undergraduate CS/IS curricu-
la. This coverage can be given in the tradition-
al DBMS class with a knowledge unit in ob-
ject-orientation.

The integration involves introducing ob-
ject-orientation as a knowledge unit and it
makes use of two prototype DBMSs that sup-
port object-orientation as the vehictes. The
exposure to object-orientation together with
the experience with DBMSs on different plat-
forms put the students in & very advantageous
position when competing for jobs in the mar-
ket place. It should be emphasized that the
00 module described here does not prepare

115-R

one to immediately participate in QQ pro-
jects without further training, Since not many
CS/1S curricula expose students to state-of-

_the-art technologies such as OO technology,
for recruiting companies that are cutting edge,
an OO module like the one described can go a
long wiy in helping a student clinch a job of-
fer. ‘

As future work, other aspects of QODBMS
and how they can be integrated into the cur-
riculum, especially the graduate program, are
being investigated. Issues like long transac-
tions, versioning, object integrity, and OSQL
{object SQL) are beyond the scope of an un-
dergraduate DBMS course and are potential
topics for a graduate advanced DBMS class,

REFERENCES

[1] Executive Summary, Object Magazing, July-August, Vol. 2,
No.2,1992. ,

[2] Annual ACM International Conference on Object-
Oriented Programming: Systems, Languages, and
Applications, 1986-1993. Also as ACM SIGPLAN Notices.
[3] Cover Story: "Software Made Simple: Object-Oriented
Programming," Business Week, Septerber 30, 1991.

[4] Booch, G., Object-Oriented Design with Applications, 2nd
Editien, Benjamin-Cummings, 1994.

[5] Rumbaugh, Jarnes,, Blaha, Michael.,, Premerfani, William,,

Bddy, Frederick., Lorensen, William., Object-Oriented

Modeling and Design, Prentice-Fall Inc,, 1991,

[6] Tacobson, Tvar., Object-Oriented Software Engineering,
Addison-Wesley, 1992,

[7] Maier, D., Zdonik, S., Readings in Objeci-Oriented
Database Systems, Morgan-Kaufmana, 1990.

(8] Cattell, R., Object Data Management: Object-Ortented and
Extended Relational Database Systems, Addison-Wesley, 1991.
[8] O8/2 2.1 Operating System, IBM Cerporation, 1993.

(10} Pink Object-Oriented. Operating System, Apple-IBM joint
development, Expected 1994,

[11] NextStep 3.1, NeXT Computer, Inc., 1993.

{12] Etfis, Margaret., Stroustrup, Bjarne., The Annotated C++
Reference Manual, Addison-Wesley, 1990.

[13]) Goldberg, Adele., Smatltatk-80: The Language, Addison-
Wegley, 1989.

[14] Pugh, I. R., Lal.onde, W, R., Thomas, D. A., "Intraducing
Object-Oriented Programming inte Computer Science
Curricutem,” 18th SIGCSE Technical Symposium on Computer
Science Education, St. Louis, M, February, 1987,

[15) Temte, M. C., "Let's Begin Introducing the Object-
Oriented Paradigms," 22nd SIGCSE, San Antonio, TX,
March, 1992. .

[16] Cain, William., "Ob;ect Oriented Programming and the
CIS Curriculum," Journal of Information Systems Education,
Vol.3,No. 1,1991.p 2-7.

[17] Waguespack, Les., "Object Orientation in the IS
Curriculum,” Information System Education Conference,
Phoenix, AZ, 1993.

(18] Lim, Billy B. L.., A Project-Intensive Introductory
Object-Qriented Programming Course," ISECON ‘93,
Phoenix, Arizona, November, 1993.

[19] Lim, Billy B. L., "Integrating Object-Orientation Into an
Undergraduate CS Curriculum,” Journal of Computing for
Smaf! Colleges, Feb, 1995.

[20] IBM Object-Oriented Database Strategy, IBM Santa
Teresa Lab, 1992.

[21] Atkinson et al. "Object-Oriented Database Systems
Manifesto," Proc. of the Ist International Conference on
Deductive and Object-Oriented Databases, North-Holland,

1991.

[22] Which Method Is Best? Shoot Out at the OO Corra]
Panel Discussion, International Conference on Objcct—Oﬁenre;'{
Programming: Systems, Languages, and Applications
Washington, D. C, 1993, '
[23] Stonebraker, Michael., Kemnitz, Greg., "The Postgres
Next Generation Database Management System,"
Communication of the ACM, Vol. 34, No. 10, 1991,

[24] Stonebraker, Michael. et al., "Third Generation Data
Base Manifesto," SIGMOD Record, 1991.

[25] Postgres Reference Manval, University of California at
Berkeley, 1991.

[26] Chang, C, Lim, Billy B. L., "Integtating Object-Oriented
Technology inte an Undergraduate Database Course Using
SOD: A Simple Object Database," ISECON '93, Phoenix,
Arizona, November, 1993.

[27) The World of Objects, Borland International, 1992,

{28} Looniis, Mary, Object Database Technology session,
Building the Enterprise Through Object Technology,
Hewlett-Packet Inc., 1994,

[29} Object-Oriented Databases section, Object-Orfentation

- Across Undergraduate CS/IS Curricula, NSF Undergraduate

Faculty Enhancement grant, 1994.

Billy B. L. Lim, Ph.D

Applied Computer Science Diepartment
1llinois State University

Normal, IL 61790-5150

D Billy Lim is an assistant professor at the Applied
Computer Science Department of Hlinois State University.
His research and teaching interests include new generation
database systems, object-oriented systems development, and
user interface design. He has been very active in object
technology training and education and has recently
conducted NSF-sponsored workshops to integrate object-
arientation into undergraduate CS/IS curricula.

Reprmted from the Fall 1995 1ssue of
‘the Journal of Informatmn Systems
fEducatlon :

Volume 7, Number 3

The Journal of Information Systems Education is published four
times each year by EDSIG, the DPMA's special interest group for
education. Papers published in the Journal are submitted and
accepted through a formal, refereed process. Submissions for
other sections are slso welcomed. For more information sbout
submissions, contact the appropriate editor.

Capyright © 1995, EDSIG _
The Data Processing Management Asscciation’s
Special Tnterest Group for Education

All sights reserved including those of translation. The opinions
expressed by authors in the Journal of Information Systems
Education are their own and do not necessarily represent those

. of DPMA. and/or EDSIG. Letters addressed to the editor are

considered submitted for publication unless the writer states
atherwise. Reproduction of the Journal of Information Systems
Education, in whole or part, without written permission of
EDSIG, is strictly prohibited.

For information about permissions, reprints, advertising,
membership, subscription and change of address, contact the
publisher:

creative perspectives

310 East Main Street, Suite 220
Charlottesville, VA 22901
1-804-871-6795
creatvpers@aol.com

116-R

JOURNAL OF INFORMATION SYSTEMS EDUCATION Fall 1995

ISCCID Epsi6

Serving Information Systems Educators

Information Systems & Computing
Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1995 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

