Winter 1994-95

The Case for the Study of Sottware Management

ABSTRACT: Software management represents a meaningful and advantageous new direc-
tion for traditional Information Systems curricuta. The prevailing circumstance for 1.5, educa-
tion lends credence to the ancient curse..."may you live in interesting times.” Change has
become a stern task master. Hosts of fashionable ideas and newfangled innovations compete
to influence the tenor and composition of |.S. training. Software management, as distin-
guished from software engineering and traditional 1.S. study, offers a practical stratagem
focused on a pivotal issue in |.5. practice, cost-effective software production. A complete set
of principles and methods for efficient manufacture of software has never been studied as
such. It isn't that “current best practices” don't exist. It is just that they are not cardinal ele-
ments in traditional studies of computing, which quite appropriately center on the technology
itself. The University of Detroit Mercy's graduate curriculum establishes a consistent architec-
ture for an academic program to prepare executive leaders expressly for the software indus-
try. Pragmatically, the challenge was to adopt a reliable point of reference to identify and
consolidate a valid course array. Buttressed by a review of the literature, we adopted the the-
sis that the conceptual framework currently employed to depict the rational management of
software is incomplete. Instead, technology-centered approaches have been introduced
piecemeal. This has begotten the “silver bullet” mentality. Consequently, we organized our
model curriculum from a higher level of abstraction. This yielded six thematic areas that we
believe encompass the entire problem. Taken together these comprise the attributes that dif-
ferentiate software management from general business management and the other computer

disciplines. We present a pragmatic model that details our successful graduate program.

INTRODUCTION

It is time to acknowledge that the study
of software management offers a
legitimate cusricular alternative to tradi-
tional Information Systems education
programs, As a regimen, software man-
agement can be the sovereign remedy for
two of the industry’s dominant woes, cost
control and production efficiency. In
practice however, modern software man-
agement resembles Dickens more than
Demming. Which is understandable,
since it’s extraordinarily difficult to
establish and maintain organizational
control over an activity that is creative
and conceptual by nature. Effectiveness
demands strategic acumen that can only
be gained through broad experience, or
advanced training. Without this,
“Inexperienced, or inadequately trained
managers are noted with distressing fre-
quency on canceled projects and projects
that experience cost overruns and missed
schedules. Inadequate management
training is also commonly associated with
the problems of low productivity, low
quality, and of course, management mal-
practice (6).” Consequently, “the world is
beginning to realize that it needs people at
the highest levels who can combine the
skills of the technician with those of the
manager” (7)

WHY STUDY SOFTWARE
MANAGEMENT?

By 1995, the software industry plans to
bank a half-trillion-dollars annually (5). Yet,
with the stakes that high the manager who
is...“knowledgeable in the realms of new
technology is a rare breed” (7). To reinforce
the premise that competent software man-
agement is vital to business, let’s inspect the
trenches. Brynjolfsson provides a very apt
synopsis of their current state: “Productivity
is the fundamental economic measure of a
technology’s contribution. With this in
mind, CEOs and line managers have
increasingly begun to question their huge
investments in computers and related tech-
nologies. While major success stories exist,
so do equally impressive failures” (1), For
instance, a recent survey found that fully
one-third of the government’s software is
unusable when delivered and 29% is never
delivered at all (5). Over the last decade, the
GAO estimates that the federal government’s
bill for worthless systems topped $150
hillion (2). Tndustry is not exempt from this
either. An authoritative study quoted in the
Harvard Business Review (10) reveals a very
telling statistic. During the 1980’s, the
sector that invested the least in information
technology (manufacturing) achieved the
greaiest total increase in productivity. The
business sector with the highest investment

PAGE 202

Dan Shoemaker

Vladan Jovanovic

Computer and Information Systems
University of Detroit Mercy

Detroit, Michigan 48219

KEYWORDS: LS. Education, Software
Management, Software Process Optimization

(services) realized no gain at all. The
economist Robert Solow astutely sums up
this well documented and generally
appalling “productivity paradox” with the
following quip: “we see computers
everywhere except in the productivity
statistics”(1). That fact raises a valid
concern. If the point of information tech-
nology is to secure the competitive high
ground, what's the unavoidable conclusion
if that anticipated windfall turns out to be a
faint zephyr? Based on an extremely
rigorous review of the lilerature,
Brynjollsson found four possible expla-
nations. Of these, the two most likely
culprits were ineffective measures, or inef-
ficient management. In either case, a
shocking few people seem to fathom the sig-
nificant business implications of the tech-
nology they are spending billions of dollars
to acquire, O'Brien corroborates this:

“1t has become fashionable to talk of com-
petitive advantage and information tech-
nology in the same breath... yet it is clear
that the number of professionally educated
(to maximize competitive advantage using
technology), fully trained and experienced
information technologists is small (7).”

Higher education cleatly hasn’t found any
answers. In 1985, Datamation conducted an
extensive sutvey aimed at giving academia a
report card. They polled a laundry list of

https://core.ac.uk/display/301391086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

experts from every conceivable area of
business to find out whether college training
translated to success in business. The results
were less than auspicious. Everyone took
turns bashing the products of this country’s
post secondary education system for their
total lack of leadership, business knowledge
and communication skill. This was partic-
ularly true for computer science. The
comments of one Fortune 200 executive
were typical. He estimated that only “5
percent of the graduates (hired by his
company) were adequately prepared.” James
Martin was even more direct.

“ Neither the business schools ner
computer sciertisis have gotten near under-
standing what’s happening... (in com-
puting) ... let alone teaching it... I think
that many top people in computing at the
present time are extremely dismayed by
what’s happening. I was at an important
facility of one of the world's largest
computer manufacturers recently,
and the general manager commented that
he would literally, never hire a computer
science graduate (4).”

All of this factors into a single problem,
focus. Businesses want graduates with job
skills matched to current practice, who can
fit immediately into explicitly defined areas
of need. University curricula have a long-
term orientation stressing knowledge as a
whole (4). One would think that the
pressures of competition would make higher
education mote responsive to the
demands of industry, which is the ultimate
consumer of its graduates, Contrast the fol-
lowing quotation, froin a respected member
of the higher education community, with
Martin's earlier statements and draw your
own conclusions.

“ The impact of computer science
graduates is not in the DP room. The DP
manager and the DP room are undergoing a
tremendous transition right now and I'm
not sure we should be listening to them for
our university work (4).”

So, we have consumers who want to buy
apples and producers who are absolutely
convinced that what’s required is an orange.
Of course, this survey was conducted almast
ten years ago. Perhaps like fine wine the sit-
uation has improved with age? A compre-
hensive study of university catalogues, con-
ducted in 1993, found that 90% of business
school curricula were at best... “incomplete
and lagging behind the state of the art by
more than five vears (6)”... when it came to
the requirements of managing software.
More pertinent, although almost ten years

Journal of Information Systems Education

Winter 1994-95

Iigure 1, CONTINUUM OF PROCESS REQUIREMENTS AND ACTIVITIES

separate these two studies the same
symptomns were identilied: “weak, or inade-
quate business preparation and impractical,
or out-of-date curricula (4)." The underlying
basis is easy enough to spot. “The problem
of inadequate software management itself is
caused by the long time required to mod-
ernize university curricula in the face of
major paradigm shifts” (6).

Both studies make it clear that the key to
the formulation of a successful software
management curriculum relies on the ability
to amalgamate “current best practice” ideas
into an optimally valid and accurate model
of software process management. The
dilemma lies in the fact that,

...since 1976 the Software Engineering
Standards Committee of the [EEE Computer
Society has developed 19 standards in the
areas of terminology, requirements docu-
mentation, design documentation, user doc-
umentation, testing, verification and vali-
dation, reviews and audits. And if you
include all the major national standards
bodies, there are in fact more than 250
software engineering standards. (3)

Besides the implication that our eminent
standatds bodies need to be teashed, this
astonishing productivity (roughly 10 new
standards a year) proves the crucial
importance of a theoretical [ramework to
help us judge... “which practices to stan-
dardize™ (3).

BASIS

The challenge was to differentiate a reliable
frame of reference. through which a valid
curricular array could be identified and
related. As we've seen, it isn’t that “current
best practices” don't exist. It is just that they
are not cardinal elements in traditional
studies of computing, which quite
appropriately center on the technology
itself. It is this focus that begets the “silver
bullet” mind-set. O'Brien places this in its
social context.

“In today's world we see human beings
circling around technology, we see them
driven by that technology, indeed over-
powered by the technology; yet we con-
stantly try to appeal to that technology to

PAGE 203

save ourselves from its apparently domi-
nating power. My thesis is simple, the tech-
nology should be seen to revolve around us;
we ate fully responsible for our own views
and we control these views. By displacing
ourselves from the centre we have managed
to absolve ourselves of responsibility and .
simultaneously put ourselves at the whim of
something apparently beyond us, yet that
very something is made by us and ulti-
mately controlled by us (7).

At the theoretical nucleus of our under-
taking is the belief that software process
management’s conceptual framework is not
abstracted at the proper (e.g., the highest
possible) level. lnstead, technology centered
approaches are introduced piecerneal. This
is unsuyitable because by definition proper
management must incorporate methods for
handling the problem as a whole. That
implies understanding and mastery of all
rational principles, and methods that
optimize the software process as a complete
and consolidated entity set (11).

Practices that foster the software process
have never been merged into a distinct, cur-
riculum and studied as such. Our cur-
riculum was built on the thesis that every
aspect of software management can be
understood and described as a component
of four universal, highly correlated abstruse
behaviors: abstraction, description, verifi-
cation, and optimization. The purpose of
software management is to maintain an
optimum balance between maximum
degrees of creative freedom and man-
agement control. Under that practical
assumption, these universal behaviors can
be laid out along a process continuum of
dynamic activities (5) (see Figure 1 above):

This can be realized in many organiza-
tional forms. One concrete example is a
major Inter-European research initiative
{Esprit phase I1). The strategists behind this
are about to define a unified approach for
the management of projects across Furepe
(9). They believe that software and infor-
mation systems developinent are based on
abstraction and driven by a common set of
functions and activities. These pivotal
processes are often conflused with the

Journal of Information Systems Education

Winter 1994-95

Figare 2. MODEL CURRICULUM IN SOFTWARE MANAGEMENT

‘Key Process: Abstraction and Description
Strategic Issues in Database Management - _ R
Topics include conceptual modeling, logical and physical design, data-administration; . -
benchmarking, database tuning, Entity-Relationship and object databases, (LECTURES)

Specification and Design ™ o . S

Specification of software systems; principles, methods and techniques of effective

software development, including; structure representation and optimization, and
software engineering environments. (CLINIC)

Objact Oriented Sof_t_wafe Dev_elbﬁment.

Prificiples, and templates for developing effective software artifacts. This is nota
programming course however, an object oriented language (C++ or Ada) will-Be: used
JDESIGN STUDIC) el

to demonstrate principles advanced.
Key Process: Optimization
Strategic Software Process Development

| Capstone issues in software management: competitive analysis, organizational theory
‘and development of process models. Principles and practices for strategic
‘manageiment of production, software process maturity, risk assessment, softwiaré

acquisition, (DESIGN STUDIO)

Software Project Management

Software project management, toals and standards, including; organizational and
project planning, WBS, sizing, éstimation and sched

_dynamics and training.(CLINIC)

Software Maintenance Management

P_Iann_in? and management of mai
reusabilit

Key Process: Verification
Software Quality Management.

Mathods and pririciples employed to establish and manage a quality system in.
software production, including; quality metrics and improvemnent programs, SOA
standards and documentation.(DESIGN STUDIO)

Software Configuration Management

Strategic software product management; processes, tools, standards and-models for
the identification, authorization, and verification of software configurations, '
management of software assets through libraries.(CLINIC)

SQA and Test Management

Comprehensive coverage of unit, module, system and acceptance test
Methods, models, standards and tools-used in the process of testing.
a software quality assurance and testing process.(CASES)

ntenance; standards and tools, practical methods for
y, maintenance plans, program re-engineering, understanding and o
documentation of existing programs. This is not a programming course, but some.
Cobol will be used as a practical demonstration of principles advanced. {CASES) -

uling, team formulation, group

rinciples, -
anagement of

Figure 3. EVALUATION MODEL

Ev_ali]atidn Methods -

Delivery: Machanisms:

Competency Level

5. Optimizing Design

4, Design Presentation

3. Application Problem Analysis
2. Discernment Relationships

1. Knowledge Recall of Facts

DESIGN STUDIO (4-5)
CLINIC(3-5) ~
CASE STUDY (2-4)
LECTURE/LAB (1-4)
LECTURE (1-5)

physical concerns of application that lie at a
different level of operation. Esprit Il merges
both orientations into a single study, which
recognizes the common conceptual origins
of information systems management and
soltware engineering.

ARCHITECTURE

The University of Detroit Mercy’s
graduate curriculum is a deliberate
attempt to define a consistent archetype
for the effective study of software man-
agement. We adopted an observation by

Capers Jones as a practical touchstone for
this endeavor: _

* Universities and business schools that
have established close ties to industry and
particularly to leaders such as AT&T, IBM,
Hewlett-Packard and Motorola. .. tend to
have the most modern and dynamic cur-
ricula. Universities and business schools
that are more ot less detached from daily
contact with actual software producing
companies are the most susceptible... as of
1993 the numbers of software managers
trained in functional metrics (the basis of
good management practice) by private
instructors and management consultants
exceeds the number of students trained in
university and business school courses by
perhaps 1000 to 1”. {6)

A straightforward distinction has to be
made between software management and
software engineering. The software manager
builds on the software engineer, but does
not have the same orientation.
Pragmatically, it is not the same profession.
By definition, the software engineer is
focused on creating optimally efficient
software artifacts. The software manager is
concerned with creating optimally efficient
processes within which these artifacts are
built (5). Given this, our model curriculum
has been structured to provide the
maximum exposute to current best practice
in six thematic areas, which taken together
as an integrated set, makes-up the attributes
that differentiate software management from
general business management and the other
computer disciplines:

1. Abstraction: (abstraction)
understanding and description of the
problem space

2. Description: (description) models for
framing the artifact to meet criteria 3,
4,5, and 6

3. Optimization: (optimization)
practices and fools

4. Quality Control: (verification) SQA
and configuration management

5. Measurement: (optimization)
management through metrics

6. Manufacture: (abstraction,
verification and optimization) with
emphasis on reusability

PAGE 204

The practical realization of this is an inte-
gration of the large subject areas of: software
engineering (methods, models and criteria),
process and product quality management
(software quality assurance and metrics),
software project management (work decom-
position, planning, sizing and estimating),
and softwares’, Reconciliation of project and
configuration management is accomplished
by cross-referencing the problems, tools,
notations and solutions (through explicit
identification, authorization and validation
procedures). As a side agenda, we have also
stressed the need for re-engineering the vast
number of software products currently on
the shelves. Inevitably, most of our software
management graduate students are already
practitioners, who function at many levels
in the industry (from CIO to programmer).
Consequently, it was crucial to adapt the
course delivery system to the student’s
learning style. The direction can be top-
down; project planning through
requirements and design, to validation,
testing and code. The alternative starts at
detailed programming and moves upward
through requirements, testing and quality
assurance to software management prin-
ciples. This model plus germane simulated
real-world experience introduces all of the
relevant principles to the student within the
(currently understood) framework. It allows
them to develop and internalize their own
comprehensive understanding and for-
mulate a personal model of the disciplinary
body of knowledge. The curriculum this
produces is represented in (Figure 2).
Experience is the number one consideration
tor success.

General competency is evaluated based on
only two factors: their ability to function
and create artifacts within a simulated real-
world situation, and their ability to move up
through a set of learning/performance levels
adapted from Bloom's taxonomy (e.g., from
rote knowledge, through application).
Figure 3 details that evaluation model. It
provides explicit criteria for specification of
the educational objectives and outcomes for
each course. Standard syllabi enforce this by
addressing the criteria specified for each
tevel. Obviously, this is critically dependent
on the development of a body of expe-
rienced teachers.

General curricular strategy centers on the
ability to establish explicit relationships
among competency levels required, eval-
uation methods needed to assure
achievement of these competencies and
adequate delivery mechanisms. Competency

Journdl of Information Systems Education

Winter 1984-95

levels are analogous to the software process
maturity levels defined by Humphrey (8}.
Software Management as an academic study
represents a reorganization of the disciplines
that represent the fields of Information
Science and Software Engineering. Common
problems, tools, notations, and solutions are
cross referenced to achieve the synthesis,
The result is a general disciplinary structure
that integrates the functional areas of:
Software Development and Maintenance,
Software Quality Management, Software
Project Management, and Software
Configuration Management into a single
study [ocused on optimization of the
software process as a total entity.

CONCLUSION

The study of Software Management has
the potential to pilot Information Systems
curricula through the endless change that is
a fact of modern computer education.
Software management provides a unification
of proven ideas that can generate productive
and efficient information systems, while
maintaining the required focus on software
development and maintenance functions.
This new study is not a business discipline,
there is too much technical centent to justily
that, nor is it strictly speaking a technical
discipline. It is not a panacea, or the only
curricular option. However, as resoutces
become tighter and demands on computer
systems hecome increasingly complex, it is a
realistic, viable and attractive alternative to
traditional approaches. Fantastic advances
in technology are self-indulgent until they
are effectively applied. Effectiveness calls for
a deliberate study of how the computer
software development and maintenance
process can be made to meld optimally with
the competing needs of business organi-
zations. We are not proposing new theory,
or methods: that is exactly what we are not
proposing. What we do propose is that
Software Management’s conceptual frame of
reference provides the essential consoli-
dation of all necessary components into a
single productive direction.

REFERENCES

1. Erik Brynjolfsson, “The Productivity
Paradox of Information Technology”,
Communications of the ACM, Vol. 36,
No. 12, pp. 67-77, December 1992

2. "Federal Government Mismanages
Computer Costs”, Detroit Free Press,
March 17, 1993, p. 18

PAGE 205

3. Norman Fenton, Shari Lawrence Pfleeger,
and Robert Glass, “Science and
Substance, a Challenge to Software
Engineers”, IEEE Software, pp. 86-94,
July, 1994

4, Curtis Hartog, “Of Commerce And
Academia”, Datamation, September,
1985

5. Watts S. Humphrey, Managing the
Software Process, Addison-Wesley:
Reading, MA, 1993

6. Capers Jones, Assessment and Control of
Software Risks, Prentice-Hall: Englewood
Cliffs, 1994, NJ, pp. 217-218

7. M. O'Brien, Software Froduction
Management, NCC Blackwell Ltd.:
Oxford, UK., 1992

8. M. Paulk, B. Curtis, M. Chrissis, C.Weber,
"Capability Maturity Model, Version 1.1,"
Technical Report, Software Engineering
Institute, Carnegie-Mellon University,
1993

9. Project Survey "Software Research in
ESPRITs Second Phase”, IEEE Software,
Novernber, 1989

10. Stephen S. Roach, "Services Unider
Siege-The Restructuring Imperative.”
Harvard Business Review, pp. 82-92,
Sept.-Oct., 1991.

11. Tomayko, James E., "Software
Configuration Managerent”, Software
Engineering Institute, Carnegie-Mellon
University, 1987, p. 1-2

Authors' Biographies

Dan Shoemaher, Ph.D., is an Associate Professor and
Coordinator of the Computer and Information System
Program. He has extensive background as an MIS manager
and information system developer.

Vladan Jovanovic, Ph.D., is an Assistant Professor of
Computer and Information Systems. He has extensive
experience in European and American software engi-
neeting practice.

ISCCID Epsi6

Serving Information Systems Educators

Information Systems & Computing
Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1994 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

