
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2005 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-5-2005

Based on MIPv6 with Support to Improve the Mobile Commerce Based on MIPv6 with Support to Improve the Mobile Commerce

Transaction Transaction

Yen-Chu Hung

Zhong-Hong Hang

Chia-Wei Tsai

Chia-Hung Hong

Follow this and additional works at: https://aisel.aisnet.org/iceb2005

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2005 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301391058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2005
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2005?utm_source=aisel.aisnet.org%2Ficeb2005%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Based on MIPv6 with Support to Improve the Mobile Commerce Transaction

Yen-Chu Hung1 , Zhong-Hong Hang 1, Chia-Wei Tsai2 , Chia-Hung Hong3

1Andrew@mail.ncyu.edu.tw 2s0930316@mail.ncyu.edu.tw 3chhong@csie.ncyu.edu.tw

Abstract: Mobile Commerce is anticipated to be the next
business revolution. Under the trend of mobile age, a person
begins to realize the benefits of transaction by mobility
operations. We can access information, shop and bank on
line, work from home and speak and send messages via
mobile appliances throughout all over the world. The
research that is mobile transaction managing on database has
begun since 1950 and skips the Link and Network Layer
with support to improve mobile commerce. This paper focus
on how effectually to make the new generation of mobile
network protocol apply on mobile commerce and improve
the mainly four properties required by mobile transactions.
The four properties are respectively atomicity, consistency,
isolation and durability. The purpose based on the mobile
commerce environment and making mobile transactions
complete and personal by means of the Destination
Extension Header based on IPv6 and the Java Transaction
Service. After experiment and testing, this paper verify that
we improve the mobile commerce environment and make
the mobile transaction more complete with the optimization
of the Destination Extension Header based on IPv6 and the
Java Transaction Service under the comparison with the
environment on IPv4.

Keywords: IPv6, Destination Extension Header, Java
Transaction Service.

I. Introduction

Mobile Commerce, or m-Commerce, is about the of
applications and services that are becoming accessible from
Internet-enabled mobile devices. It involves new
technologies, services and business models. It is quite
different from traditional e-Commerce. Mobile commerce is
defined as the exchanges or buying and selling of
commodities, service, or information on the Internet by
using mobile handled devices such as PDA, cellular phone
and laptop. It is estimated that 12 hundred million wireless
device users in the global village will use their hand-held
devices to authorize payment for premium content and
physical goods. It is obviously trend that mobile commerce
is more and more customary with the population of mobile
handed devices. At the turn of the 21st century, the focus of
telecommunication changed quickly, from traditional wired
telephony-oriented services to data-based services; from
homogeneous to heterogeneous networks; from non-
intelligent devices to smart handhelds, personal digital
assistants and mobile computers [23]. With the imminent

Proceedings of the Fifth International Conference on Electronic Business,
Hong Kong, December 5-9, 2005, pp. 631 - 641.

deployment of 3G and the the emergence of 4G mobile
networks in the near future, it is expected that a sizable
proportion of e-commerce traffic will move to mobile and
wireless networks in the near future. To realize this above-
mentioned potential, there has been some research in the
field of mobile commerce including a three dimensional
framework using four levels: applications, user infrast-
ructure, middleware, and network infrastructure. With these
advances in mobile commerce, it is expected that there will
be an exponential surge in mobile commerce applications. In
this paper, introduces the four standard attributes of mobile
commerce transactions and identifys the requirements of
mobile commerce transactions. More specifically, this thesis
makes a sketchy investigation about the QoS requirements
of mobile transactions and address how such transactions
could be supported when the users of mobile commerce
services experience a connectivity problem. As the existing
IPv4 networks are not adequate to represent the quality for
mobile commerce transactions, this paper makes it better
then traditionally transactions management system to utilize
the IPv6 packet header. IPv6 has a new way to deal with
options that has substantially improved processing. It
handles options in additional headers called Extension
headers. This paper delves into one of six extension headers
and it is called “Destination Option header” and a
destination option header carries optional information that is
examined by the destination node only. This thesis utilizes
the IPv6 extension header and Java Transaction Service to
improve four situations:

 All intermediate results must be kept hidden inside of
the transaction
 To avoid inconsistencies due to conflicts of concurrent
operations
 A transaction which access to some data must not
know other transactions which concurrently access to
the same data
 The produced output of a transaction must be visible
and permanent as soon as the transaction commits.

II. Background

Mobile commerce systems often involve many activities and
actors, which may work together to solve a given problem,
or completely independent. In most of cases, different
kinds of concurrent transactions are involved in complex
applications, which require a mechanism for controlling and
coordinating complex concurrent activities. Additionally,
transaction models have been developed for database
systems, ensuring fault tolerance properties in spite of
concurrent access to the same data. Techniques have been
proposed to deal with faults in complex distributed systems.

632 YEN-CHU HUNG, ZHONG-HONG HANG, CHIA-WEI TSAI, CHIA-HUNG HONG

Therefore, this paper introduced the basic definition of
mobile transaction and the four important properties a
transaction must satisfy.

Transactions

Transactions were introduced to ensure the database systems
integrity when concurrent programs work on same data. The
transaction model is employed to prevent software or
hardware failures and concurrent accesses to same data by
different activities. Thus, a transaction groups simple
operations together to form an indivisible set of operations
with respect of concurrent transactions. A transaction must
satisfy four properties, known as the ACID properties [18]:
Atomicity、Consistency、Isolation、Durability；Classical
implementations of a transaction model ensure transaction
isolation by a locking mechanism. Data objects are locked
if they are manipulated by a transaction, and until the
transaction is committed or aborted. To achieve atomicity
and consistency, the system orchestrates recovery in case of
failure. Recovery is based on ensuring durability of the
committed transactions’ effects and discarding the effects of
transactions that were being executed at the time of the
failure and thus will be aborted. Logging is the principal
service that is used to support recovery. Additional
mechanisms are often used to ensure consistency and
durability. In database systems we are interested only in
data, whereas in distributed systems a resource is usually
data together with related operations, often called a
transactional object.

Mobile transaction models

Advances in wireless communications technology and
portable computing devices have created a new paradigm,
called mobile computing. Mobile computing is
distinguished from classical, fixed-connection computing by
the mobility of users and their computers and the mobile
resource constraints such as limited wireless bandwidth and
limited battery life. The model of a system that supports
mobile computing consists of static and mobile components,
where the only mobile component is the Mobile Units.
Static elements are Fixed Hosts and Base Stations. A fixed
host is not capable of connecting to the mobile units, while a
base station is capable of connecting with mobile unit and is
equipped with a wireless interface. Base stations act as an
interface between the mobile computers and fixed hosts.
They are also known as Mobile Support Stations. The
geographical area covered by a base station is called a cell.
To lessen the difficulty, this paper will represent the
conceptual Figure 1 with the global view and it is formal to
view not only mobile nodes as mobile units but also GSM as
TCS in this framework. The disconnection of mobile
stations for possibly long periods of time and bandwidth
limitations requires a re-evaluation of transaction model and
transaction processing techniques. There have been many
proposals to model mobile transactions with different
notions of a mobile transaction. Most of these approaches
view a mobile transaction as consisting of sub-transactions

which have some flexibility in consistency and commit
processing. In many of the models presented in the
following sections, relaxing some of the ACID properties
and non-blocking execution in the disconnected mobile unit,
caching of data before the request, adaptation of commit
protocols and recovery issues are examined [18].

Advanced transaction models

a. Reporting and Co-Transactions Model

The Reporting approach [12] proposes an extension to the
open-nested transaction model by addressing cell migration
issues, in which a mobile transaction is structured as a set of
sub-transactions (termed component transactions) and this
model is shown in the Figure 2. The model is devised for
mobile units constantly connected to the network, but
moving through different cells. The model supports four
types of sub-transactions that are expected to run on both
mobile unit and fixed host:

 Atomic transactions with the classical ACID
properties

 Non-compensatable transactions which cannot be
compensated and therefore are not permitted
committing their effect before its parent commits.

 Reporting transactions can report some of their results
to other transactions at any point during execution. A
report can be considered as a delegation of state
between transactions.

 Co-Transactions are reporting transactions where
control is passed from the reporting transaction to the
one that receives the report. Co-transactions are
suspended at the time of delegation and they resume
their execution when they receive a report.

Figure 1: Conceptual Mobile Commerce Environment Framework

BASED ON MIPV6 WITH SUPPORT TO IMPROVE THE MOBILE COMMERCE TRANSACTION 633

However, mobile units are assumed to be always
connected to the network, so disconnection handling is not
considered in this model.

b. Clustering Model

A flexible, two-level consistency model has been introduced
in [5] to deal with the frequent, predictable and varying
disconnections and this model is shown in the Figure 3. It
is also pointed out that, maintaining data consistency over all
distributed sites injects unbearable overheads on mobile
computing, and a more flexible open nested model is
proposed. The model is based on grouping semantically
related or closely located data together to form a cluster.
Data are stored or cached at a mobile unit to support its
autonomous operations during disconnections. A fully
distributed environment is assumed where users submit
transactions from both mobile and fixed terminals.
Transactions may involve both remote data and data stored
locally at the user’s device. The database is dynamically
divided into clusters, and all data items inside a cluster are
required to be fully consistent, while replicated data at
different clusters may exhibit bounded inconsistencies. A
cluster may be distributed on several strongly connected
units. When a mobile unit is disconnected it becomes a
cluster by itself. Therefore, clusters of data may be
explicitly created or merged by a probable disconnection or
connection of the associated mobile unit. Also, the
movement of the mobile will cause the place of the mobile
in the cluster, when it enters a new cell, it can change its
cluster too. For every object two copies are maintained,
one of them (strict version) must be globally consistent, and
the other (weak version) can tolerate some degree of
inconsistency but must be locally consistent. Weak
transactions access only weak versions whereas strict
transactions access strict versions. Weak transactions have
two commit points, a local commit in the associated cluster
and an implicit global commit after cluster merging. When
reconnection is possible (or when application consistency
requires it) a synchronization process, executed on the
database server, allows the database to be globally consistent.
Thus, weak operations support disconnected operation since
a mobile device can operate disconnected as long as
applications are satisfied with local copies. Users can use
weak transactions to update mostly private data and strict
transactions to update highly used common data.

Furthermore, by allowing applications to specify their
consistency requirements, better bandwidth utilization can
be achieved.

c. Semantics-based Model

The Semantics-based approach [6] proposes the focus on the
use of object semantics information to improve the mobile
unit autonomy in disconnected mode. This contribution
concentrates on object fragmentation as a solution to
concurrent operations and to limitations of mobile unit
storage capacity. This approach uses objects organization
and application semantics to split large and complex data
into smaller and manageable fragments of the same type.
Each fragment can be cached independently and
manipulated asynchronously. Fragment objects can be
aggregate items, sets, stacks and queues. This model is
shown in the Figure 4.

d. Pro-motion Model

The Pro-Motion approach [7] focuses on ensuring data
consistency under disconnections and mobility and this
model is shown in the Figure 5. Its fundamental building
block is the compact which functions as basic unit of
replication for caching, prefetching, and hoarding. A
compact is an abstraction that encapsulates the caching data,
methods for access of the cached data, current state
information, consistency rules, obligations and interface
methods to allow interaction between compacts and the
mobile unit. It represents an agreement between the
database server and the mobile host where the database

Figure 2: Reporting Model

Figure 3: Clustering Model

Figure 4: Semantics-Based Model

634 YEN-CHU HUNG, ZHONG-HONG HANG, CHIA-WEI TSAI, CHIA-HUNG HONG

server delegates control of some data to the mobile unit to be
used for local transaction processing. The database server
is not aware of what the mobile unit will do with the
compact data. It only receives back updates of those data
when the computation on the mobile unit is ready to be
reported. The mobile unit must comply with the methods
and obligations specified in the compact. To improve
autonomy and to increase concurrency, object semantics are
used in the construction of compacts whenever possible.
The mainly disadvantage is that the original fixed element
called Base Station was modified in this proposal.
Consequently, this shortcut will obstruct the implementation
of the framework based on the mobile IPv4 network.

The Communication Protocol Introduction

The success of a session in wireless networks depends on the
link quality at the time the session is in progress. A poor
quality link is possible to result in the disconnection of
mobile commerce session. The disconnection of a session
could lead to the termination of any on-going mobile
commerce transactions, thus resulting in lots of effects such
as loss of opportunities for the users on loss of revenue for
the wireless service provider. Although it is not practical
that all possible reasons for disconnection can be avoided, it
is possible that some transactions could still be completed in
such an environment. This paper utilizes the extension
header based on IPv6 to construct the mobile environment
and adopts the Destination Option Header, one of six
Extension headers defined by the current IPv6 specification
(RFC2460). Essentially speaking, IPv6 has a new way to
deal with options that has substantially improved processing
and handles options in additional headers called Extension
headers. There can be zero, one, or more than one
Extension header between the IPv6 header and the upper-
layer protocol header. Each Extension header is identified
by the Next Header field in the preceding header. The
Extension headers are examined or processed only by the
node identified in the Destination Address field of the IPv6
header. Consequently, this thesis introduces the basic
operation of IPv6 and mobility support of IPv6 and makes
some comparisons between IPv4 and IPv6 in the following
subsections.

a. Mobile IPv6 Operation

We put the operation procedure of whole Mobile IPv6
sequentially as follows step by step, shown as Figure 6.

1. The MN travels to a foreign network and get a new

CoA (Care of Address).
2. The MN performs a binding update to its Home Agent

(HA) and the new CoA gets registered at HA. HA
sends a binding acknowledgement to MN.

3. A CN wants to contact the MN. The HA intercepts
packets destined to the MN.

4. The HA tunnels all packets to the MN from the CN
using MN’s CoA.

When the MN answers the CN, it may use its current
CoA and perform a binding to the CN and communicate
with the CN directly (optimized routing) or it can tunnel all
its packets through the HA.

b. Mobility Support of IPv6

Mobile IPv6 allows a portable device to be move from one
network to another network without changing its IP address
and without its exiting connections. Additionally, no need
to change its IP address makes it possible for mobile node to
act as both client and server. The Mobile IPv6 solution
presented here deals with macro-mobility mechanisms at
layer3. This solution is the following:

 Keeping alive any communication between a mobile
node and a correspondent node while the Mobile
Nodes moves from an IP sub-network to another IP
sub-networks. This innovative mechanism makes the
action of a mobile node be as seamless as possible.

 Allowing a mobile node to be connected with the same
IP address wherever the IP sub-networks the Mobile
Node is connected to.

c. Compare IPv6 to IPv4

There are many significant differences between IPv6 and
IPv4 and this section will examine the most significant
difference. The most significant differences are:

 Streamlined Header Format

Figure 5: Pro-motion Model

Figure 2.6: Mobile IPv6 Operation Sequentially

BASED ON MIPV6 WITH SUPPORT TO IMPROVE THE MOBILE COMMERCE TRANSACTION 635

 Flow Label
 128-bits Network Address
 Elimination of Header Checksum
 Fragmentation Only by Source Host
 Extension Headers
 Built-in Security

d. Header Comparison

IPv6 provides a more streamlined header than that of IPv4.
Five fields are eliminated, including the variable-length IPv4
options field. Removal of the variable length field and
other fields permits the IPv6 header to have a fixed format
of 40 bytes in length. A comparison of the two types of
headers is summarized in Table 1.

Table 1: Header Comparison Between IPv6 and IPv4
 IPv6 IPv4
Header Format Fixed Variable
Header Field 8 13
Header Length 40 bytes 20~60 bytes
Address length 128 bits 32 bits
Header Checksum No Yes
Fragmentation
Fields No Yes

Extension Headers Yes No

e. Technology Comparison

Although Mobile IPv6 operated in coordination with the
usability of IPv6, it was incompatible with Mobile IPv4.
This paper delves into the evolution of the mobile network
protocol.

1. The designation of Mobile IPv6 was penetrated in
the IPv6:
a. Mobile IPv6 revoked the necessary existence of

Foreign Agent (FA) based on Mobile IPv4 and
embedded the original functions of FA in a
router.

b. Mobile IPv6 revoked the designation of FA’s
CoA in order to support only the co-located
CoA., because it considered the importance of
End to End Security.

2. The utilization that transmitting packets as often as
delivering Mobile IP messages improved the
proceeding rate.

3. .Mobile IPv6 was simplifying the mobile IP
messages.

4. The route optimization and the smooth handover
were the necessary support of mobile network based
on Mobile IPv6.

III. Method

From the of Pro-Motion Model, this thesis recognized that
what possible approaches this research can simulate and
what possible disadvantages this research can modified. In

the section「Usability Challenges of Mobile Services」,
this thesis listed the crucial usability challenges of mobile
services and the major issues about the mobile services
based on Mobile IPv4 network. In the section「Mobile
Commerce Transaction Based on Mobile IPv6」, this thesis
constructs the Mobile Commerce Transaction based on
Mobile IPv6 and represents the Java Transaction Service
Object (JTSO) in the Waterfall view. Finally this thesis
proposes the Client-Server algorithm which ensures the
Destination Option header to guarantee the connection End
to End.

Usability Challenges of Mobile Services

When services are offered and transactions are operating via
wireless connection to mobile users using handheld devices.
Additionally, mobile user moved from Home Network to
Foreign Network, crucial usability issues are [18]:

 How to facilitate the use of heterogeneous services
 How to adapt service interaction and display of

content to the limitations of handheld devices,
especially use the small displays.

 How to keep users’ expenses for the wireless
connection and use of services low and adequate to
what they finally get

 How to deal with changing technical environments
(e.g. changing quality of services for the underlying
network connections)

 How to enhance the trust that users feels towards their
service providers and how to protect user privacy

Most of mobile commerce system based on Mobile IPv4
network had not only lots of usability challenges but also
many the basic layer problems. Via the Figure.7, this paper
listed some major issues, the following are:

 The existence of Foreign Agent made mobile
commerce transaction time-consuming and risk-
doubling.

 Most of Mobile IPv4 messages were complicated and
especially in the Foreign Network.

 The mobile commerce environment based on Mobile
IPv4 could not guarantee the connection End to End.

Figure 7: Mobile IPv4 Operation

636 YEN-CHU HUNG, ZHONG-HONG HANG, CHIA-WEI TSAI, CHIA-HUNG HONG

 The Mobile IPv4 was the lake of security and the
disconnection would make the content of transactions
stolen.

 The address space of Mobile IPv4 is running out.

Mobile Commerce Transaction Based on Mobile IPv6

This thesis proposes the sketch framework shown in the
figure 8 and this framework is modified from the Pro-
Motion model and constructed in the Mobile IPv6 network.
In this framework, the Base Stations were moved out and the
Java Transaction Service Object (JTSO) is abstraction that
encapsulates the caching data and interface methods to allow
interaction between JTSO and the mobile unit to fit the
ACID properties. The mainly consideration about ACID is
the following in the general view:

 Atomicity: Mainly actions/operations of mobile user
 Consistency: Mainly encapsulating transaction

declaration of system
 Isolation: Mainly privacy mechanism and trusted

system necessarily
 Durability: Mainly protecting mechanism of system

In the Waterfall model, it is famous to make software in
the process that is requirement, analyzing, designing and
testing. To introduce the JTSO clearly, this thesis make the
literal combination requirement & general view, analyzing &
normalizing view and designing & engineering view.

Java Transaction Service System

The JTS provide an innovative mechanism across the
elements of a client/server implementation. Furthermore,
the external user will be added in the JTS and the analyzing
model about the JTS is in the normalizing view. A
transaction can involve multiple objects performing multiple
requests. The scope of a transaction is defined by a
transaction context that is shared by the participating objects.
The JTS places no constraints on the number of objects
involved, the topology of the application, or the way in
which the application is distributed across a network. In the
Figure 9, a client first begins a transaction (by issuing a
request to an object defined by the JTS), which establishes a
transaction context associated with the client. The client
then issues requests. These requests are implicitly associated

with the client’s transaction; they share the client’s
transaction context. Eventually, the client decides to end
the transaction (by issuing another request). If there were
no failures, the changes produced as a consequence of the
client’s requests would then be committed; otherwise, the
changes would be rolled back. The JTS also supports
scenarios where the client directly controls the propagation
of the transaction context. For example, a client can pass the
transaction context to an object as an explicit parameter in a
request. An implementation of the JTS might limit the
client’s ability to explicitly propagate the transaction context
in order to guarantee transaction integrity. The
implementation supported by the JTS consists of the
following entities:

 Transactional Client (TC)

A transactional client is an arbitrary program that can invoke
operations of many transactional objects in a single
transaction. The program that begins a transaction is called
the transaction originator.

 Transactional Object (TO)

This paper shows the term transactional object to refer to an
object whose behavior is affected by being invoked within
the scope of a transaction. A transactional object typically
contains or indirectly refers to persistent data that can be
modified by requests. The Transaction Service does not
require that all requests have transactional behavior, even
when issued within the scope of a transaction. An object
can choose to not support transactional behavior, or to
support transactional behavior for some requests but not
others. This paper uses the term non-transactional object to
refer to an object none of whose operations are affected by
being invoked within the scope of a transaction. If an
object does not support transactional behavior for a request,
then the changes produced by the request might not survive
a failure and the changes will not be undone if the
transaction associated with the request is rolled back. An
object can also choose to support transactional behavior for
some requests but not others. This choice can be exercised
by both the client and the server of the request.

 Recoverable Object (RO) & Resource

To implement transactional behavior, an object must
participate in a certain protocol defined by JTS Service and
the protocol is MIPv6. The protocol is used to ensure that
all participants in the transaction agree on the outcome
(commit or rollback) and to recover from failures. To be
more precise, an object is required to participate in this
protocol only if it directly manages data whose state is
subject to change within a transaction. An object whose data
is affected by committing or rolling back a transaction is
called a recoverable object. A recoverable object is by
definition a transactional object. However, an object can be
transactional but not recoverable by implementing its state
using some other (recoverable) object. A client is concerned
only that an object is transactional; a client cannot tell

Figure 8: JTS Based on IPv6

BASED ON MIPV6 WITH SUPPORT TO IMPROVE THE MOBILE COMMERCE TRANSACTION 637

whether a transactional object is or is not a recoverable
object. A recoverable object must participate in the
protocol provided by JTS. It does so by registering an
object called a Resource with the JTS. JTS drives the
commit protocol by issuing requests to the resources
registered for a transaction. A recoverable object typically
involves itself in a transaction because it is required to retain
in stable storage certain information at critical times in its
processing. When a recoverable object restarts after a
failure, it participates in a recovery protocol based on the
contents (or lack of contents) of its stable storage. A
transaction can be used to coordinate non-durable activities
not to require permanent changes to storage.

 Transactional/Recoverable Servers

On the one hand, this server is a collection of one or more
objects whose behaviors are affected by the transaction, but
have no recoverable states of their own. Instead, it
implements transactional changes using other recoverable
objects. This server when retaining a transactional object
does not participate in the completion of the transaction, but
it can force the transaction to be rolled back. On the other
hand, this server when retaining recoverable objects is a
collection of objects.

Java Transaction Service System Architecture

Figure 10 illustrates the major components and interfaces
defined by the JTS and Figure 11 illustrates the interfaces
and methods operated by the JTS to satisfy the ACID
properties.

The transaction originator is an arbitrary program that
begins a transaction. The recoverable server implements
an object with recoverable state that is invoked within the
scope of the transaction, either directly by the transaction
originator or indirectly through one or more transactional
objects. The transaction originator creates a transaction
using a TransactionFactory; a Control is returned that
provides access to a Terminator and a Coordinator. The
transaction originator uses the Terminator to commit or
rollback the transaction. The Coordinator is made available
to recoverable servers, either explicitly or implicitly. A
recoverable server registers a Resource with the Coordinator.
The Resource implements the two-phase commit protocol
which is driven by the JTS. A recoverable server can
register a specialized resource called a Subtransaction Aware
Resource to track the completion of subtransactions. The
interfaces for JTS are as follows:

 Current Interface

The Current interface defines operations that allow a client
of the JTS to explicitly manage the association between
transactions on the connection. The Current interface also
defines operations that simplify the use of the JTS for most
applications. These operations can be used to begin and
end transactions and to obtain information about the current
transaction. The Current interface is a locality-
constrained interface whose behavior depends upon and may
alter the transaction context.

interface Current {
void begin()

 raises(SubtransactionsUnavailable);
void commit()
 raises(NoTransaction);
void rollback()
 raise(NoPermission)
Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds)
unsigned long get_timeout();
};

 begin
A new transaction is created. The transaction context of the

Figure 9: Java Transaction Service

Figure 10: Major Components and Interface of the JTS

Figure 11: Engineering JTS Based on IPv6

638 YEN-CHU HUNG, ZHONG-HONG HANG, CHIA-WEI TSAI, CHIA-HUNG HONG

client is modified so that the original transaction is
associated with the new transaction. If the client is
currently associated with a transaction, the new transaction
is a subtransaction of the oringinal transaction. Otherwise,
the new transaction is a top-level transaction.

 commit

If there is no transaction associated with the client, the
NoTransaction exception is raised. Otherwise, the
transaction associated with the client is completed.

 rollback

If the client does not have permission to rollback the
transaction, the NO_PERMISSION exception is raised.
Otherwise, the transaction associated with the client is rolled
back.

 get_status

This operation returns the status of the transaction associated
with the client.

 get_transaction_name

If there is no transaction associated with the client thread, an
empty string is returned. Otherwise, this operation returns a
printable string describing the transaction.

 set_timeout

This operation modifies a state variable associated with the
target object and the target object affects the time-out period
in number of seconds. Besides, this period is associated
with top-level transactions. If the parameter has a non-zero
value n, then top-level transactions will be subject to being
rolled back if they do not complete before n seconds after
their creation. If the parameter is zero, then no application
specified time-out is established.

 get_timeout

This operation returns the state variable associated with the
target object that affects the time-out period in number of
seconds associated with top-level transactions created by the
begin operation.

 TransactionFactory interface
The TransactionFactory interface is provided to allow the
transaction originator to begin a transaction. This interface
defines two operations, create and recreate, which create a
new representation of a top-level transaction.
interface TransactionFactory {
Control create(in unsigned long time_out);
Control recreate(in PropagationContext ctx);
};

 create

A new top-level transaction is created and a Control object
is returned. The Control object can be used to manage or
to control participation in the new transaction. An
implementation of the JTS may restrict the ability for the
Control object to be transmitted to or used in other

execution environments. At a minimum, it can be used by
the client thread. If the parameter has a nonzero value n,
then the new transaction will be subject to being rolled back
if it does not complete before n seconds have elapsed. If the
parameter is zero, then no application specified time-out is
established.

 recreate

A new representation is created for an existing transaction
defined by the PropagationContext and a Control object is
returned. The Control object can be used to manage or to
control participation in the transaction. An implementation
of JTS, which supports inter-position uses recreate to create
a new representation of the transaction being imported,
subordinate to the representation in ctx. The recreate
operation can also be used to import a transaction that
originated outside of the JTS.

 Control interface
The Control interface allows a program to explicitly
manage or propagate a transaction context. An object
supporting the Control interface is implicitly associated
with one specific transaction.
interface Control {
Terminator get_terminator()
raises(Unavailable);
Coordinator get_coordinator()
raises(Unavailable);
};
The Control interface defines two operations,
get_terminator and get_coordinator. The get_terminator
operation returns a Terminator object, which supports
operations to end the transaction. The get_coordinator
operation returns a Coordinator object, which supports
operations needed by resources to participate in the
transaction. The two objects support operations that are
typically performed by different parties. Providing two
objects allow each set of operations to be made available
only to the parties that require those operations. A Control
object for a transaction is obtained using the operations
defined by the TransactionFactory interface or the
create_subtransaction operation defined by the
Coordinator interface.

 Terminator interface
The Terminator interface supports operations to commit or
rollback a transaction. Typically, these operations are used
by the transaction originator.
interface Terminator {
void commit(in boolean report);
void rollback();
};

 commit

If the transaction has not been marked rollback only, and all
of the participants in the transaction agree to commit, the
transaction is committed and the operation terminates
normally. Otherwise, the transaction is rolled back. The
report parameter allows the application to control how long

BASED ON MIPV6 WITH SUPPORT TO IMPROVE THE MOBILE COMMERCE TRANSACTION 639

it will block after issuing a commit. If the report parameter
is true, the call will block until the commit protocol is
complete and all outcomes are known. The JTS will report
inconsistent or possibly inconsistent outcomes. If the
parameter is false, the implementations of the JTS may make
use of this fact to block only. When a top-level transaction
is committed, all changes to recoverable objects made in the
scope of this transaction are made permanent and visible to
other transactions or clients. When a subtransaction is
committed, the changes are made visible to other related
transactions as appropriate to the degree of isolation
enforced by the resources.

 rollback

The transaction is rolled back. When a transaction is rolled
back, all changes to recoverable objects made in the scope of
this transaction (including changes made by descendant
transactions) are rolled back. All resources locked by the
transaction are made available to other transactions as
appropriate to the degree of isolation enforced by the
resources.

 Coordinator interface

The Coordinator interface provides operations that are used
by participants in a transaction. These participants are
typically recoverable objects. Each object supporting the
Coordinator interface is implicitly associated with a single
transaction.

interface Coordinator {
Status get_status();
Status get_parent_status();
Status get_top_level_status();
boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator
tc);
boolean is_top_level_transaction();
};

 get_status

This operation returns the status of the transaction associated
with the target object: Status_Active, Status_Prepare,
Status_Commit, Status_RolledBack, Status_Unknown and
Status_NoTransaction.

 get_parent_status

If the transaction associated with the target object is a top-
level transaction, then this operation is equivalent to the
get_status operation. Otherwise, this operation returns the
status of the parent of the transaction associated with the
target object.

 get_top_level_status

This operation returns the status of the top-level ancestor of
the transaction associated with the target object. If the
transaction is a top-level transaction, then this operation is

equivalent to the get_status operation.

 is_same_transaction

This operation returns true if and only if the target object and
the parameter object both refer to the same transaction.

 is_related_transaction

This operation returns true if and only if the transaction
associated with the target object is related to the transaction
associated with the parameter object. A transaction T1 is
related to a transaction T2 if and only if there is a transaction
T3 such that T3 is an ancestor of T1 and T3 is an ancestor of
T2.

 is_ancestor_transaction

This operation returns true if and only if the transaction
associated with the target object is an ancestor of the
transaction associated with the parameter object. A
transaction T1 is an ancestor of a transaction T2 if and only if
T1 is the same as T2 or T1 is an ancestor of the parent of T2.

 is_descendant_transaction.

This operation returns true if and only if the transaction
associated with the target object is a descendant of the
transaction associated with the parameter object. A
transaction T1 is a descendant of a transaction T2 if and only
if T2 is an ancestor of T1.

 is_top_level_transaction

This operation returns true if and only if the transaction
associated with the target object is a top-level transaction.
A transaction is a top-level transaction if it has no parent.

 Resource interface

The Resource interface defines the operations invoked by
the transaction service on each resource. Each object
supporting the Resource interface is implicitly associated
with a single top-level transaction. Note that in the case of
failure, the completion sequence will continue after the
failure is repaired. A resource should be prepared to
receive duplicate requests for the commit or rollback
operation and to respond consistently.

interface Resource {
is_prepare();
 raises(Unaccessiable);
void rollback();
void commit();
void forget();
};

 is_prepare

If no persistent data associated with the resource has been
modified by the transaction, the resource can return read
only or not. After receiving this response, the JTS is not
required to perform any additional operations on this
resource. Furthermore, the resource can forget all knowledge
of the transaction. If the resource is able to write (or has

640 YEN-CHU HUNG, ZHONG-HONG HANG, CHIA-WEI TSAI, CHIA-HUNG HONG

already written) all the data needed to commit the
transaction to stable storage, as well as an indication that it
has prepared the transaction, it can call commit. After call
the commit, the JTS is required to eventually perform either
the commit or the rollback operation on this object.

 rollback

If necessary, the resource should rollback all changes made
as part of the transaction. If the resource has forgotten the
transaction, it should do nothing.

 commit

If necessary, the resource should commit all changes made
as part of the transaction. If the resource has forgotten the
transaction, it should do nothing.

 forget

This operation is performed only if the resource raised the
exception to rollback, commit, or prepare. Once the
coordinator has determined that the situation of the
transaction’s resource has been addressed, it should issue
forget on the resource. The resource can forget all
knowledge of the transaction.

 Subtransaction Aware Resource interface

Recoverable objects that implement nested transaction
behavior may support a specialization of the Resource
interface called the SubtransactionAwareResource
interface. A recoverable object can be notified of the
completion of a subtransaction by registering a specialized
resource object that offers this interface with the JTS. The
JTS uses this interface on each Resource object registered
with a subtransaction. Each object supporting this interface
is implicitly associated with a single subtransaction.

interface SubtransactionAwareResource : Resource
{
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();
};

 commit_subtransaction

This operation is invoked only if the resource has been
registered with a subtransaction and the subtransaction has
been committed. The Resource object is provided with a
Coordinator that represents the parent transaction. Note
that the results of a committed subtransaction are relative to
the completion of its ancestor transactions, that is, these
results can be undone if any ancestor transaction is rolled
back.

 rollback_subtransaction

This operation is invoked only if the resource has been
registered with a subtransaction and notifies the resource
that the subtransaction has rolled back.

The Destination Options Header Based on Mobile IPv6

This paper adopts the quotation about the header structure of

an IPv6 packet specified in RFC2460 in order to make a
transaction complete possibly [1]. A Destination Options
header carries optional information that is examined by the
destination node only. The Next Header value identifying
this type of header is the value 60. Figure11 shows the
format of the Destination Option header.

The following list describes each field:

 Next Header

The Next Header field identifies the type of header that
follows the Destination Options header.

 Header Extension Length

This field identifies the length of the Destination Options
header in 8 byte units. The length calculation does not
include the first 8 bytes.

 Options

There can be one or more options and the length of the
options is variable and determined in the Header Extension
Length field.

The utilization of Destination Option header to const
ruct mobile commerce

Before the basic construction based on Mobile IPv6, this
research makes some considerations listed in the following
issues:

How well do it make each component of mobile network
perform under realistic conditions to utilize the Destination
Option header

How well should this research perform both before and
after a new application is extended or a new priority scheme
is introduced in the proposed methods listed in the
background.

Is the highest priority of a transaction maximum
throughput, or minimal response time for each type of
network transaction

According the above considerations, this paper proposes
the Client-Server algorithm that not only utilizes the
Destination Option header to guarantee the connection End
to End but also sets Time variable and parameter to measure
both before and after a transaction. This algorithm is listed
in Figure 12 and the description of variable value in this
algorithm is listed in Table 2.

Figure 11: Format of the Destination Options header

BASED ON MIPV6 WITH SUPPORT TO IMPROVE THE MOBILE COMMERCE TRANSACTION 641

IV. Coclusion and Future Work

As this thesis mentioned above, Mobile commerce will
become the major tendency toward electronic business
because of the benefits such convenience and instantaneous,
etc. We also find the government is rapidly moving toward
adopting the new Internet Protocol called “IPv6” to provide
a standard mobile infrastructure for loosely-coupled large-
scale distributed systems. Our thesis has suffered
characteristics make developing efficient and effective
scheduling algorithm for wireless mobile networks very
challenging. The JTS has satisfied the following ACID
characteristics that are first a transaction is atomic; if
interrupted by failure, all effects are undone, second a
transaction produces consistent results; the effects of a
transaction preserve invariant properties, third a transaction
is isolated; its intermediate states are not visible to other
transactions and forth a transaction is durable; the effects of
a completed transaction are persistent.

Recognizing that there are still many significant
technical challenges exist in the development, deployment
and management of such Java Transaction Service mobile
commerce applications. The biggest challenge for such a
service is the fragmentation of the security requirements.
However, their standardized definitions are still evolving
and we don’t go deep into this issue too much. On the other
hand, another future work is to increase data availability and
reduce the load on a server by balancing the service access
among the replicated transaction servers.

References

[1] A. Conta, S. Deering, Internet Control Message Protocol (ICMPv6) for
the Internet Protocol Version 6 (IPv6) , RFC 2460, December 1998

[2] C. Partridge, Using the Flow Label Field in IPv6 , RFC1809 , June
1995.

[3] Chris Houser, Patricia Thornton, David Kluge Kinjo Gakuin
University ， ”Mobile Learning: Cell Phones and PDAs for
Education” ， Proceedings of the International Conference on
Computers in Education，Japan，ICCE’02.

[4] Chung-wei Lee, Wen-Chen Hu, Jyh-haw Yeh, “A System Model for
Mobile Commerce”, proceedings of the 23 rd International Conference
on Distriduted Computing System Workshops, 2003 IEEE Computer
Society.

[5] E. Pitoura, B. Bhargava, Maintaining Consistency of Data in Mobile
DistributedEnvironments, 15th International Conference on
Distributed Computing Systems, Vancouver, British Columbia,
Canada, pp.404-413, 1995.

[6] G.D. Walborn, P.K. Chrysanthis, Supporting Semantics-Based
Transaction Processing in Mobile Database Applications, 14th IEEE
Symposium on Reliable Distributed Systems, pp.31-40, 1995.

[7] G.D. Walborn, P.K. Chrysanthis, PRO-MOTION: Management of
Mobile Transactions, 11th ACM Annual Symposium on Applied
Computing, San José, CA, USA, 1997.

[8] Josef F. Huber, Suemens, Germany, “Mobile Next-Generation
Networks”, published by the IEEE Computer Society, pp.72-83
January-March 2004.

[9] OMG, UML 2.0 Superstructure Final Adopted Specification,
Specifications OMG, 2003.

[10]P. Thornton & C. Houser, “Learning on the Move: Foreign language
vocabulary via SMS.” ED-Media 2001 Proceedings,” Norfolk, Virginia:
Association for the Advancement of Computing in Education”
pp.1846-1847., 2001.

[11] P.A, J. Knight, Data diversity: An approach to software fault-
tolerance, IEEE Transactions on Computers, vol.37, pp.418-425, 1988.

[12] P.K. Chrysanthis, Transaction Processing in Mobile Computing
Environment, IEEE Workshop on Advances in Parallel and Distributed
Systems, pp.77-83, 1993.

[13] R. Scott, J. Gault, D. McAllister, Fault-tolerant Software Reliability
Modeling, IEEE Transactions on Software Engineering, IEEE Press,
pp. 582-92, 1987

[14] S. Deering, R. Hinden, Internet Protocol, Version 6 (IPv6)
Specification , RFC 2460, December 1998.

[15] S. Kent, R. Atkinson, IP Authentication Header , RFC 2402 ,
November 1998.

[16] S. Kent, R. Atkinson, IP Encapsulating Security Payload (ESP) , RFC
2406 , November 1998

[17] T. Narten, R. Draves, Privacy Extensions for Stateless Address
Autoconfiguration in IPv6 , RFC3041 January 2001

[18] Guillaume Le Cousin, “State of the Art on Modeling Distributed
Fault-Tolerant Systems” Retrieved July 28, 2004 from
http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[19] OMG, OMG Web Site, Retrieved August 30 2004 from
http://www.omg.org/

[20] Over 50% of large U.S. enterprises plan to implement a
wireless/mobile solution by 2003. The Yankee Group, 2001. Retrieved
July 10, 2004 from http://www.yankeegroup.com/public/
ews_releases/news_release_detail.jsp?ID=Press
Releases/new_09102002_wmec.htm

[21] The Yankee Group publishes U.S. mobile commerce forecast. Reuters,
2001. Retrieved July 16, 2004 from http://about.reuters.com/
newsreleases/art_31-10-2001_id765.asp

[22] Vagan Terziyan, Oleksandra Vitko, “Intelligent Information
Management in Mobile Electronic Commerce” Retrieved July 5, 2004
from http://www.cs.jyu.fi/ai/papers/IAI-01.pdf

[23] WAP: Wireless Application Protocol, Open Mobile Alliance.
Retrieved July 21, 2004 from http://www.openmobilealliance.org/
tech/affiliates/wap/wapindex.html

Figure 12: Client-Server Algorithm

Table 2: Variable value description

	Based on MIPv6 with Support to Improve the Mobile Commerce Transaction
	Microsoft Word - 631-641 HungHangTsaiHong_soft_.doc

