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Abstract: Protection of privacy is a critical problem
in data mining. Preserving data privacy in distributed
data mining is even more challenging. In this paper,
we consider the problem of privacy-preserving naive
Bayesian classification over vertically partitioned data.
The problem is one of important issues in privacy-
preserving distributed data mining. Our approach is
based on homomorphic encryption. The scheme is very
efficient in the term of computation and communication
cost.

Keywords: Privacy, security, naive Bayesian classifica-
tion.

I. Introduction

Recent advances in computer networking and database
technologies have resulted in creation of large quantities
of data which are located in different sites. Data mining
is a useful tool to extract valuable knowledge from this
data. Well known data mining algorithms include asso-
ciation rule mining, classification, clustering , outlier de-
tection, etc. However, extracting useful knowledge from
distributed sites is often challenging due to real world
constraints such as privacy, communication and compu-
tation overhead.

In this paper, we focus on privacy-preserving data
mining in a distributed setting where the different sites
have diverse sets of features. Specially, we consider the
problem of privacy-preserving naive Bayesian classifica-
tion that is one of the most successful algorithms in many
classification domains. A Bayesian network is a high-
level representation of a probability distribution over a
set of variables that are used for constructing a model
of the problem domain. It has been widely used in sales
decision making, marketing systems, risk analysis, cost
benefit factor inference in E-services, and other business
applications. A Bayesian network have many applica-
tions. For instance it can be used to compute the pre-
dictive distribution on effects of possible actions since it
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is a model of the problem domain probability distribu-
tion.

A naive Bayesian classifier is one of Bayesian classi-
fiers under conditional independence assumption of dif-
ferent features. Over the last decade, the naive Bayesian
classification has been widely utilized. Although the
techniques that have been developed are effective, new
techniques dealing with naive Bayesian classification over
private data are required. In other words, we need meth-
ods to learn a naive Bayesian classifier over distributed
private data. In this paper, we develop a novel scheme
based on homomorphic encryption without compromis-
ing data privacy.

II. Related Work

In early work on privacy-preserving data mining, Lindell
and Pinkas [13] propose a solution to privacy-preserving
classification problem using oblivious transfer protocol,
a powerful tool developed by secure multi-party compu-
tation (SMC) research [21, 10]. The techniques based
on SMC for efficiently dealing with large data sets have
been addressed in [20]. Randomization approaches were
firstly proposed by Agrawal and Srikant in [2] to solve
privacy-preserving data mining problem. Researchers
proposed more random perturbation-based techniques to
tackle the problems (e.g., [5, 18, 7]). In addition to per-
turbation, aggregation of data values [19] provides an-
other alternative to mask the actual data values. In
[1], authors studied the problem of computing the kth-
ranked element. Dwork and Nissim [6] showed how to
learn certain types of boolean functions from statistical
databases in terms of a measure of probability difference
with respect to probabilistic implication, where data are
perturbed with noise for the release of statistics. The
problem we are studying is actually a special case of a
more general problem, the Secure Multi-party Computa-
tion (SMC) problem. Briefly, a SMC problem deals with
computing any function on any input, in a distributed
network where each participant holds one of the inputs,
while ensuring that no more information is revealed to a
participant in the computation than can be inferred from
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that participant’s input and output [12]. The SMC prob-
lem literature is extensive, having been introduced by
Yao [21] and expanded by Goldreich, Micali, and Wigder-
son [11] and others [8]. It has been proved that for any
function, there is a secure multi-party computation solu-
tion [10]. The approach used is as follows: the function
F to be computed is first represented as a combinato-
rial circuit, and then the parties run a short protocol for
every gate in the circuit. Every participant gets corre-
sponding shares of the input wires and the output wires
for every gate. This approach, though appealing in its
generality and simplicity, means that the size of the pro-
tocol depends on the size of the circuit, which depends on
the size of the input. This is highly inefficient for large
inputs, as in data mining. It has been well accepted
that for special cases of computations, special solutions
should be developed for efficiency reasons.

III. Building Naive Bayesian Classifiers

III.1 Notations

• e: public key.

• d: private key.

• Pi: the ith party.

• n: the total number of parties. Assuming n > 2.

• m: the total number of class.

• α is the number of bits for each transmitted element
in the privacy-preserving protocols.

• N: the total number of records.

III.2 Cryptography Tools

Our scheme is based on homomorphic encryption which
was originally proposed in [17]. Since then, many such
systems have been proposed [3, 14, 15, 16]. We observe
that some homomorphic encryption schemes, such as [4],
are not robust against chosen cleartext attacks. However,
we base our secure protocols on [16], which is semanti-
cally secure [9].

In our secure protocols, we use additive homomor-
phism offered by [16]. In particular, we utilize the follow-
ing characterizer of the homomorphic encryption func-
tions: e(a1)×e(a2) = e(a1+a2) where e is an encryption
function; a1 and a2 are the data to be encrypted. Be-
cause of the property of associativity, e(a1 +a2 + ..+an)
can be computed as e(a1) × e(a2) × · · · × e(an) where
e(ai) 6= 0. That is

d(e(a1 + a2 + · · ·+ an)) = d(e(a1)× e(a2)× · · · × e(an)) (1)

d(e(a1)a2) = d(e(a1a2)) (2)

III.3 Introducing Naive Bayesian Classification

The naive Bayesian classification is one of the most suc-
cessful algorithms in many classification domains. De-
spite of its simplicity, it is shown to be competitive with
other complex approaches, especially in text categoriza-
tion and content based filtering. The naive Bayesian
classifier applies to learning tasks where each instance
x is described by a conjunction of attribute values and
where the target function f(x) can take on any value
from some finite set V. A set of training examples of
the target function is provided, and a new instance is
presented, described by the tuple of attribute values
< a1, a2, · · · , an >. The learner is asked to predict the
target value for this new instance. Under a conditional
independence assumption, i.e., Pr(a1, a2, · · · , an|vj) =∏n

i=1 Pr(ai|vj) , a naive Bayesian classifier can be de-
rived as follows:

VNB = argmaxvj∈V Pr(vj)
n∏

i=1

Pr(ai|vj)

= argmaxvj∈V Pr(vj)
n∏

i=1

Pr(ai, vj)
Pr(vj)

To build a NB classifier, we need to compute Pr(vj)
and Pr(ai, vj). Pr(vj) can be computed by the owner
of vj without breaching privacy. To compute Pr(ai, vj)
, we need consider two aspects: (1) All the parties share
the class label; (2) The class label is hosted by only one
party. For the first case, Pr(ai, vj) can be calculated
by the owner of vj without breaching privacy. For the
second case, if the owner of vj also owns the class label,
he can compute Pr(ai, vj). However, when ai and vj

belong to different parties, the computation of Pr(ai, vj)
is challenging.

In this paper, we will design a privacy-preserving sys-
tem to show how to compute a naive Bayesian classifier.
The goal of our privacy-preserving classification system
is to disclose no private data in every step. We firstly
select a key generator who produces the encryption and
decryption key pairs. The computation of the whole sys-
tem is under encryption. For the purpose of illustration,
let’s assume that Pn is the key generator who generates
a homomorphic encryption key pair (e, d). The key gen-
erator should not host the class label. For the purpose
of illustration, let’s assume that P1 holds the class label.
Next, we will show how to conduct each step.
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III.4 Privacy-Preserving Naive Bayesian Classifi-
cation

III.4.1 To Compute e(Pr(ai, vj))

Protocol 1 .

1. Pl for l ∈ [2, n] performs the following operations:

(a) She computes e(aik)s (k ∈ [1, N ]) and sends
them to P1.

2. P1 performs the following operations:

(a) He computes t1 = e(ai1)vj1 = e(ai1 · vj1), t2 =
e(ai2)vj2 = e(ai2 · vj2), · · · , tN = e(aiN )vjN =
e(aiN · vjN ).

(b) He computes t1 × t2 × · · · × tN = e(ai1 · vj1 +
ai2 · vj2 + · · ·+ aiN · vjN ) = e(−→ai · −→vj ).

(c) He computes e(−→ai · −→vj )
1
N = e( (−→ai·−→vj)

N ) =
e(Pr(ai, vj)).

Theorem 1 (Correctness). Protocol 1 correctly com-
putes e(Pr(ai, vj)).

Proof When P1 receives e(aik)(k ∈ [1, N ]), he computes
tk = e(aik)vjk . According to Eq. 2, it is equal to e(aikvjk)
for k ∈ [1, N ]. He then computes

∏N
k=1 tk which is equal

to e(−→ai · −→vj ) according to Eq. 1. Finally, he computes
e(−→ai · −→vj )

1
N = e(Pr(ai, vj)). Therefore, the protocol 1

correctly computes e(Pr(ai, vj)).

Theorem 2 (Privacy-Preserving). Assuming the par-
ties follow the protocol, the private data are securely pro-
tected.

Proof In protocol 1, all the data transmission are hid-
den under encryption. The parties who are not the key
generator can’t see other parties’ private data. On the
other hand, the key generator doesn’t obtain the encryp-
tion of other parties’ private data. Therefore, protocol 1
discloses no private data.

Theorem 3 (Efficiency). Protocol 1 is efficient in
terms of computation and communication complexity.

Proof To prove the efficiency, we need conduct com-
plexity analysis of the protocol. The bit-wise communi-
cation cost of this protocol is αmN . The computation
cost is upper bounded by (m + 2)N . Therefore, the pro-
tocol is sufficient fast.

Via the above protocol, the class holder P1 gets
e(Pr(ai, vj))(Pl) for l ∈ [2, n] and e(Pr(ai, vj))(Pl) de-
notes e(Pr(ai, vj)) for lth party. Next, we will show how
to construct a NB classifier.

III.4.2 To Compute e(Pr(vj)
∏n

i=1
Pr(ai,vj)

Pr(vj)
) for each

vj ∈ V

Protocol 2 .

1. P1 generates a set of random numbers, r2, r3, · · · ,
and rn.

2. P1 computes e(Pr(ai, vj)(P2)) × e(r2) =
e(Pr(ai, vj)(P2) + r2), e(Pr(ai, vj)(P3)) × e(r3) =
e(Pr(ai, vj)(P3) + r3), · · · , e(Pr(ai, vj)(Pn)) ×
e(rn) = e(Pr(ai, vj)(Pn) + rn).

3. P1 sends e(Pr(ai, vj)(Pl)+rl) to Pn where l ∈ [2, n].

4. Pn decrypts them and obtains Pr(ai, vj)(Pl)+ rl for
l ∈ [2, n].

5. Pn sends Pr(ai, vj)(Pl) + rl to Pl for l ∈ [2, n− 1].

6. P1 computes e(
∏

vj∈P1

Pr(ai,vj)
Pr(vj)

) for ai ∈ P1. Let’s
denote it by e(G1). P1 sends e(G1) to P2.

7. P2 computes e(G1)(Pr(ai,vj)(P2)+r2) = e((Pr(ai +
vj)(P2) + r2)×G1) and sends it to P1.

8. P1 computes e((Pr(ai + vj)(P2) + r2) × G1) ×
e(−r2G1) = e(

∏
ai∈P1,P2

Pr(ai,vj)
Pr(vj)

) denoted by
e(G2).

9. Continue until P1 gets
e(

∏
ai∈P1,P2,··· ,Pn

Pr(ai,vj)
Pr(vj)

) = e(
∏n

i=1
Pr(ai,vj)

Pr(vj)
).

10. P1 computes e(
∏n

i=1
Pr(ai,vj)

Pr(vj)
)Pr(vj) =

e(Pr(vj)
∏n

i=1
Pr(ai,vj)

Pr(vj)
).

Theorem 4 (Correctness). Protocol 2 correctly com-
putes e(Pr(ai, vj)).

Proof In step 3, Pn obtains e(Pr(ai, vj)(Pl) + rl)
for l ∈ [2, n]. In step 6, P1 computes e(G1) =
e(

∏
vj∈P1

Pr(ai,vj)
Pr(vj)

) for ai ∈ P1 based on his own data.
In step 9, P1 obtains e(G2) = e((Pr(ai + vj)(P2) + r2)×
G1)×e(−r2G1) = e(

∏
ai∈P1,P2

Pr(ai,vj)
Pr(vj)

) according Eq. 1

and Eq. 2. Finally, P1 obtains e(
∏n

i=1
Pr(ai,vj)

Pr(vj)
)Pr(vj) =

e(Pr(vj)
∏n

i=1
Pr(ai,vj)

Pr(vj)
) according to Eq. 2.

Theorem 5 (Privacy-Preserving). Assuming the par-
ties follow the protocol, the private data are securely pro-
tected.

Proof In protocol 2, all the data transmission, among
the parties who have no decryption key, are hidden un-
der encryption. Therefore, these parties cannot know the
private data. In step 4, Pn obtains Pr(ai, vj)(Pl)+rl for
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l ∈ [2, n]. Since it is hidden by a random number rl

known only by P1. Pn cannot get Pr(ai, vj)(Pl). There-
fore, protocol 2 discloses no private data.

Theorem 6 (Efficiency). Protocol 2 is efficient in
terms of computation and communication complexity.

Proof The bit-wise communication cost of this protocol
is upper bounded by 4nα. The computation cost is upper
bounded by 8n. Therefore, the protocol is sufficient fast.

Through the above protocol, e(Pr(vj)
∏n

i=1
Pr(ai,vj)

Pr(vj)
)

can be computed for each vj ∈ V . Without loss of
generality, let’s assume P1 gets e(VNB1), e(VNB2), · · · ,
e(VNBk

) The goal is to find the largest one.

III.4.3 To Compute VNB

Protocol 3 .

1. P1 computes e(VNBi
)×e(VNBj

)−1 = e(VNBi
−VNBj

)
for all i, j ∈ [1, k], i > j, and sends the sequence
denoted by ϕ to Pn in a random order.

2. Pn decrypts each element in the sequence ϕ. He
assigns the element +1 if the result of decryption
is not less than 0, and −1, otherwise. Finally, he
obtains a +1/− 1 sequence denoted by ϕ′.

3. Pn sends +1/ − 1 sequence ϕ′ to P1 who computes
the largest element.

Theorem 7 (Correctness). Protocol 3 correctly com-
putes VNB.

Proof P1 is able to remove permutation effects from ϕ′

(the resultant sequence is denoted by ϕ′′) since she has
the permutation function that she used to permute ϕ,
so that the elements in ϕ and ϕ′′ have the same order.
It means that if the qth position in sequence ϕ denotes
e(VNBi−VNBj ), then the qth position in sequence ϕ′′ de-
notes the evaluation results of VNBi

− VNBj
. We encode

it as +1 if VNBi
≥ VNBj

, and as -1 otherwise. P1 has two
sequences: one is the ϕ, the sequence of e(VNBi

−VNBj
),

for i, j ∈ [1, k](i > j), and the other is ϕ′′, the sequence
of +1/− 1. The two sequences have the same number of
elements. P1 knows whether or not VNBi

is larger than
VNBj

by checking the corresponding value in the ϕ′′ se-
quence. For example, if the first element ϕ′′ is −1, P1

concludes VNBi
< VNBj

. P1 examines the two sequences
and constructs the index table (Table 1) to compute the
largest element.

In Table 1, +1 in entry ij indicates that the infor-
mation gain of the row (e.g., VNBi

of the ith row) is not
less than the information gain of a column (e.g., VNBj

of

VNB1 VNB2 VNB3 · · · VNBk

VNB1 +1 +1 -1 · · · -1
VNB2 -1 +1 -1 · · · -1
VNB3 +1 +1 +1 · · · +1
· · · · · · · · · · · · · · · · · ·
VNBk

+1 +1 -1 · · · +1

Table 1:

S1 S2 S3 S4 Weight
S1 +1 -1 -1 -1 -2
S2 +1 +1 -1 +1 +2
S3 +1 +1 +1 +1 +4
S4 +1 -1 -1 +1 0

Table 2:

the jth column); -1, otherwise. P1 sums the index values
of each row and uses this number as the weight of the
information gain in that row. She then selects the one
that corresponds to the largest weight.

To make it clearer, let’s illustrate it by an ex-
ample. Assume that: (1) there are 4 informa-
tion gains with VNB1 < VNB4 < VNB2 < VNB3 ;
(2) the sequence ϕ is [e(VNB1 − VNB2), e(VNB1 −
VNB3), e(VNB1 − VNB4), e(VNB2 − VNB3), e(VNB2 −
VNB4), e(VNB3 − VNB4)]. The sequence ϕ′′ will be
[−1,−1,−1,−1,+1,+1]. According to ϕ and ϕ′′, P1

builds the Table 2. From the table, P1 knows VNB3 is
the largest element since its weight, which is +4, is the
largest.

Theorem 8 (Privacy-Preserving). Assuming the par-
ties follow the protocol, the private data are securely pro-
tected.

Proof In protocol 3, we need prove it from two as-
pects: (1) P1 doesn’t get information gain (e.g.,VNBi

)
for each attribute. What P1 gets are e(VNBi

− VNBj
)

for all i, j ∈ [1, k], i > j and +1/ − 1 sequence. By
e(VNBi − VNBj ), P1 cannot know each information gain
since it is encrypted. By +1/− 1 sequence, P1 can only
know whether or not VNBi

is greater than Pj . (2) Pn

doesn’t obtain information gain for each attribute either.
Since the sequence of e(VNBi

−VNBj
) is randomized be-

fore being send to Pn who can only know the sequence
of VNBi−VNBj , he can’t get each individual information
gain. Thus private data are not revealed.

Theorem 9 (Efficiency). The computation of proto-
col 3 is efficient from both computation and communi-
cation point of view.
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Proof The total communication cost is upper bounded
by αm2. The total computation cost is upper bounded
by m2 + m + 1. Therefore, the protocols are very fast.

IV. Overall Discussion

Our privacy-preserving classification system contains
several components. In Section , we show how to cor-
rectly compute e(Pr(ai, vj))). In Section , we present
protocols to compute e(Pr(vj)

∏n
i=1

Pr(ai,vj)
Pr(vj)

) for each
vj ∈ V . In Section , we show how to compute the final
naive Bayesian classifier. We discussed the correctness
of the computation in each section. Overall correctness
is also guaranteed.

As for the privacy protection, all the communica-
tions between the parties are encrypted, therefore, the
parties who has no decryption key cannot gain anything
out of the communication. On the other hand, there
are some communication between the key generator and
other parties. Although the communications are still en-
crypted, the key generator may gain some useful infor-
mation. However, we guarantee that the key generator
cannot gain the private data by adding random num-
bers in the original encrypted data so that even if the
key generator get the intermediate results, there is lit-
tle possibility that he can know the intermediate results.
Therefore, the private data are securely protected with
overwhelming probability.

In conclusion, we provide a novel solution for naive
Bayesian classification over vertically partitioned pri-
vate data. Instead of using data transformation, we
define a protocol using homomorphic encryption to ex-
change the data while keeping it private. Our classifica-
tion system is quite efficient that can be envisioned by
the communication and computation complexity. The
total communication complexity is upper bounded by
α(mN +m2+4n). The computation complexity is upper
bounded by mN + 2N + 8n + m2 + m + 1.
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