
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2005 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-5-2005

Privacy-Preserving Sequential Pattern Mining Over Vertically Privacy-Preserving Sequential Pattern Mining Over Vertically

Partitioned Data Partitioned Data

Justin Zhan

Stan Matwin

LiWu Chang

Follow this and additional works at: https://aisel.aisnet.org/iceb2005

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2005 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301391048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2005
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2005?utm_source=aisel.aisnet.org%2Ficeb2005%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Privacy-Preserving Sequential Pattern Mining Over Vertically
Partitioned Data

Justin Zhan1, Stan Matwin2, LiWu Chang3

1,2School of Information Technology & Engineering, University of Ottawa, Canada
3Center for High Assurance Computer Systems, Naval Research Laboratory, USA

{zhizhan, stan}@site.uottawa.ca, lchang@itd.nrl.navy.mil

Abstract: Privacy-preserving data mining in dis-
tributed environments is an important issue in the field
of data mining. In this paper, we study how to conduct
sequential patterns mining, which is one of the data
mining computations, on private data in the following
scenario: Multiple parties, each having a private data
set, want to jointly conduct sequential pattern mining.
Since no party wants to disclose its private data to other
parties, a secure method needs to be provided to make
such a computation feasible. We develop a practical
solution to the above problem in this paper.

Keywords: Privacy, security, sequential pattern min-
ing.

I. Introduction

Data mining and knowledge discovery in databases is
an important research area that investigates the auto-
matic extraction of previously unknown patterns from
large amounts of data. They connect the three worlds of
databases, artificial intelligence and statistics. The in-
formation age has enabled many organizations to gather
large volumes of data. However, the usefulness of this
data is negligible if meaningful information or knowledge
cannot be extracted from it. Data mining and knowl-
edge discovery, attempts to answer this need. In contrast
to standard statistical methods, data mining techniques
search for interesting information without demanding a
priori hypotheses. As a field, it has introduced new con-
cepts and are becoming more and more popular with
time.

One of important computations is sequential pattern
mining [1, 8, 2, 7, 3], which is concerned of inducing
rules from a set of sequences of ordered items. The main
computation in sequential pattern mining is to calculate
the support measures of sequences by iteratively join-
ing those sub-sequences whose supports exceed a given
threshold. In each of above works, an algorithm is pro-
vided to conduct such a computation assume that the

Proceedings of the Fifth International Conference on Electronic Busi-
ness, Hong Kong, December 5-9, 2005, pp. 489 - 495.

original data are available. However, conducting such a
mining without knowing the original data is challenging.

Generic solutions for any kind of secure collaborative
computing exist in the literature [4, 5, 6]. These solutions
are the results of the studies of the Secure Multi-party
computation problem [9, 5, 6, 4], which is a more gen-
eral form of secure collaborative computing. However,
the proposed generic solutions are usually impractical.
They are not scalable and cannot handle large-scale data
sets because of the prohibitive extra cost in protecting
data secrecy. Therefore, practical solutions need to be
developed. This need underlies the rationale for our re-
search.

The paper is organized as follows: Section 2 discusses
the related work. We then formally defines the mining
sequential patterns on private data problem in Section 3.
In Section 4, we describe our secure protocols. Section
5 analyzes the security and communication cost of our
solution. We give our conclusion in Section 6.

II. Mining Sequential Patterns on Private
Data

II.1 Background

Data mining includes a number of different tasks. This
paper studies the sequential pattern mining problem.
Since its introduction in 1995 [1], the sequential pattern
mining has received a great deal of attention. It is still
one of the most popular pattern-discovery methods in the
field of Knowledge Discovery. Sequential pattern mining
provides a means for discovering meaningful sequential
patterns among a large quantity of data. For example,
let us consider the sales database of a bookstore. The
discovered sequential pattern could be like “70% of peo-
ple who bought Harry Porter also bought Lord of Ring
at a later time”. The bookstore can use this information
for shelf placement, promotions, etc.

In the sequential pattern mining, we are given a
database D of customer transactions. Each transaction
consists of the following fields: customer-ID, transaction-
time, and the items purchased in the transaction. No

490 JUSTIN ZHAN, STAN MATWIN, LIWU CHANG

customer has more than one transaction with the same
transaction-time. We do not consider quantities of items
bought in a transaction: each item is a binary variable
representing whether an item was bought or not. An
itemset is a non-empty set of items. A sequence is an
ordered list of itemsets. A customer support is a se-
quence s if s is contained in the customer-sequence for
this customer. The support for a sequence is defined
as the fraction of total customers who support this se-
quence. Given a database D of customer transactions,
the problem of mining sequential patterns is to find the
maximal sequences among all sequences that have a cer-
tain user-specified minimum support. Each such maxi-
mal sequence represents a sequential pattern.

Mining Sequential Patterns On Private Data
problem: Party 1 has a private data set D1, party 2
has a private data set D2, · · · , and party n has a private
data set Dn, data set [D1 ∪D2 ∪ · · · ∪Dn] is the union
of D1, D2, · · · , and Dn (by vertically putting D1, D2,
· · · , and Dn together.)∗ Let N be a set of transactions
with Nk representing the kth transaction. These n par-
ties want to conduct the sequential pattern mining on
[D1 ∪D2 ∪D3 · · · ∪Dn] and to find the sequential pat-
terns with support greater than the given threshold, but
they do not want to share their private data sets with
each other. We say that a sequential pattern of xi ≤ yj ,
where xi occurs before or at the same time as yj , has
support s in [D1 ∪ D2 ∪ · · · ∪ Dn] if s% of the transac-
tions in [D1 ∪D2 · · · ∪Dn] contain both xi and yj with
xi happening before or at the same time as yj (namely,
s% = Pr(xi ≤ yj)).

II.2 Sequential Pattern Mining Procedure

The procedure of mining sequential patterns contains the
following steps:

Step I: Sorting
The database [D1 ∪ D2 · · · ∪ Dn] is sorted, with

customer ID as the major key and transaction time as
the minor key. This step implicitly converts the original
transaction database into a database of customer
sequences. As a result, transactions of a customer
may appear in more than one row which contains
information of a customer ID, a particular transaction
time and items bought at this transaction time. For
example, suppose that datasets after being sorted by
their customer-ID numbers are shown in Fig. 1. Then
after being sorted by the transaction time, data tables
of Fig. 1 will become those of Fig. 2.

∗Vertically partitioned datasets are also called heterogeneous
partitioned datasets where different datasets contain different
types of items with customer IDs are identical for each transac-
tion.

Step II: Mapping
Each item of a row is considered as an attribute. We

map each item of a row (i.e., an attribute) to an inte-
ger in an increasing order and repeat for all rows. Re-
occurrence of an item will be mapped to the same inte-
ger. As a result, each item becomes an attribute and all
attributes are binary-valued. For instance, the sequence
< B, (A,C) >, indicating that the transaction B occurs
prior to the transaction (A,C) with A and C occurring
together, will be mapped to integers in the order B → 1,
A → 2, C → 3, (A,C) → 4. During the mapping,
the corresponding transaction time will be kept. For in-
stance, based on the sorted dataset of Fig. 2, we may
construct the mapping table as shown in Fig. 3. After
the mapping, the mapped datasets are shown in Fig. 4.

Step III: Mining
Our mining procedure will be based on mapped

dataset. The general sequential pattern mining proce-
dure contains multiple passes over the data. In each pass,
we start with a seed set of large sequences, where a large
sequence refers to a sequence whose itemsets all satisfy
the minimum support. We utilize the seed set for gener-
ating new potentially large sequences, called candidate
sequences. We find the support for these candidate se-
quences during the pass over the data. At the end of each
pass, we determine which of the candidate sequences are
actually large. These large candidates become the seed
for the next pass.

The following is the procedure for mining sequential
patterns on [D1 ∪ D2 · · · ∪ Dn].

1. L1 = large 1-sequence
2. for (k = 2; Lk−1 6= φ; k++) do{
3. Ck = apriori-generate(Lk−1)
4. for all candidates c ∈ Ck do {
5. Compute c.count

(Section will show how to compute this count on
private data)

6. Lk = Lk ∪ c | c.count ≥ minsup
7. end
8. end
9. Return UkLk

where Lk stands for a sequence with k itemsets and Ck

stands for the collection of candidate k-sequences. The
procedure apriori-generate is described as follows:

First: join Lk−1 with Lk−1:

1. insert into Ck

2. select p.litemset1, · · · , p.litemsetk−1,
q.litemsetk−1, where p.litemset1 = q.litemset1,
· · · ,
p.litemsetk−2 = q.litemsetk−2

3. from Lk−1 p, Lk−1 q.

PRIVACY-PRESERVING SEQUENTIAL PATTERN MINING OVER VERTICALLY PARTITIONED DATA 491

 Alice Bob Carol

1 06/25/03 30 1 06/30/03 90 1 06/28/03 110

2 06/10/03 10, 20 2 06/15/03 40, 60 2 06/13/03 107

3 06/25/03 30 3 06/10/03 45, 70 3 06/26/03 105, 106

2 06/20/03 9, 15 3 06/18/03 35, 50 3 06/19/03 103

3 06/30/03 5, 10 3 06/21/03 101, 102

 C-ID T-time Items Bought C-ID T-time Items Bought C-ID T-time Items Bought

Figure 1: Raw Data Sorted By Customer ID

Alice Bob Carol

 1 06/28/03 110

1 06/30/03 90

2 06/10/03 10, 20

2 06/13/03 107

2 06/15/03 40, 60

2 06/20/03 9, 15

3 06/10/03 45, 70

3 06/18/03 35, 50

3 06/19/03 103

3 06/21/03 101, 102

3 06/25/03 30

3 06/26/03 105, 106

3 06/30/03 5, 10

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A: The information is not available.

C-ID T-tme Items Bought C-ID T-time Item Bought C-ID T-time Item Bought

N/A

N/A

1 06/25/03 30 N/A N/A

N/A

 N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A

Figure 2: Raw Data Sorted By Customer ID and Transaction Time

Second: delete all sequences c ∈ Ck such that some
(k-1)-subsequence of c is not in Lk−1.

Step IV: Maximization

Having found the set of all large sequences S, we
provide the following procedure to find the maximal se-
quences.

1. for (k = m; k ≤ 1; k- -) do
2. for each k-sequence sk do
3. Delete all subsequences of sk from S

Step V: Converting

The items in the final large sequences are converted
back to the original item representations used before the
mapping step. For example, if 1A belongs to some large

sequential pattern, then 1A will be converted to item
30, according to the mapping table, in the final large
sequential patterns.

II.3 How to compute c.count

To compute c.count, in other words, to compute the sup-
port for some candidate pattern (e.g., P (xi∩yi∩ zi|xi ≥
yi ≥ zi)), we need to conduct two steps: one is to deal
with the condition part where zi occurs before yi and
both of them occur before xi; the other is to compute
the actual counts for this sequential pattern.

If all the candidates belong to one party, then c.count,
which refers to the frequency counts for candidates, can
be computed by this party since this party has all the
information needed to compute it. However, if the can-

492 JUSTIN ZHAN, STAN MATWIN, LIWU CHANG

 Alice 30 - 1A 10 - 2A 20 - 3A (10, 20) - 4A 9 - 5A 15 - 6A (9, 15) - 7A 5 - 8A (5, 10) - 9A

Note that, in Alice’s dataset, item 30 and 10 are reoccurred, so we map them to the same mapped-ID.

Bob 90 - 1B 40 - 2B 60 - 3B (40, 60) - 4B 35 - 5B 50 - 6B (35, 50) - 7B 45 - 8B 70 - 9B (45, 70)- 10B

Carol 110 - 1C 107 - 2C 103 - 3C 101 - 4C 102 - 5C (101,102)- 6C 105 - 7C 106 - 8C (105,106) - 9C

Figure 3: Mapping Table

Mapped

3 0 N/A 0 N/A 0 N/A 0 N/A 1 06/18/03 1 06/18/03 1 06/10/03 1 06/10/03 1 06/10/03 1 06/10/03

2 0 N/A 1 06/15/03 1 06/15/03 1 06/15/03 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A

1 1 06/30/03 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A

 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B

3 0 N/A 0 N/A 1 06/19/03 1 06/21/03 1 06/21/03 1 06/21/03 1 06/26/03 1 06/26/03 1 06/26/03

2 0 N/A 1 06/10/03 1 06/10/03 1 06/10/03 1 06/20/03 1 06/20/03 1 06/20/03 0 N/A 0 N/A

N/A : The information is not available.

C-ID ID

C-ID ID

C-ID ID

2 0 N/A 1 06/13/03 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A

 1C 2C 3C 4C 5C 6C 7C 8C 9C

1 1 06/28/03 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A

Carol

Mapped

Bob

 Alice

Mapped

3 1 06/25/03 1 06/30/03 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 1 06/30/03 1 06/30/03

1 1 06/25/03 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A

 1A 2A 3A 4A 5A 6A 7A 8A 9A

Figure 4: Data After Being Mapped

didates belong to different parties, it is a non-trivial task
to conduct the joint frequency counts while protecting
the security of data. We provide the following steps to
conduct this cross-parties’ computation.

II.3.1 Vector Construction

The parties construct vectors for their own attributes
(mapped-ID). In each vector constructed from the
mapped dataset, there are two components: one consists
of the binary values (called the value vector); the other
consists of the transaction time (called the transaction
time vector). Suppose we want to compute the c.count
for 2A ≥ 2B ≥ 6C in Fig. 4. We construct three vectors:
2A, 2B and 6C depicted in Fig. 5.

II.3.2 Transaction time comparison

To compare the transaction time, each time vector
should have a value. We let all the parties randomly
generate a set of transaction time for entries in the vec-
tor where their values are 0’s. They then transform their
values in time vector into real numbers so that if trans-
action tr1 happens earlier than the transaction tr2, then
the real number to denote tr1 should smaller than the
number that denotes tr2. For instance, ”06/30/2003”
and ”06/18/2003” can be transform to 363 and 361.8 re-
spectively. The purpose of transformation is that we will
securely compare them based their real number denota-
tion. The comparison can be conducted pairwise. Next,
we will present a secure protocol that allows n parties to
compare their transaction time.

The goal of our privacy-preserving classification sys-

PRIVACY-PRESERVING SEQUENTIAL PATTERN MINING OVER VERTICALLY PARTITIONED DATA 493

 0 N/A

0 N/A

1 06/30/03

1 06/10/03

0 N/A

 2A 6C

Step II

Step I

Step III

 c.count

 Secure Number Product Protocol

 T

0 06/23/03

1 06/15/03

0 06/14/03

1 06/30/03 1 1 06/18/03

1 06/10/03 0 0 06/19/03

0 06/10/03 0 0 06/18/03

0 N/A

 1 06/15/03

 0 N/A

2B

 1 06/18/03

Figure 5: An Protocol To Compute c.count

tem is to disclose no private data in every step. We firstly
select a key generator who produces the encryption and
decryption key pairs. The computation of the whole sys-
tem is under encryption. For the purpose of illustration,
let’s assume that Pn is the key generator who generates
a homomorphic encryption key pair (e, d). Next, we will
show how to conduct each step.

II.3.3 The Comparison of Transaction Time

Without loss of generality, assuming there are k transac-
tion time: e(g1), e(g2), · · · , and e(gk), with each corre-
sponding to a transaction of a particular party.

Protocol 1 .

1. Pn−1 computes e(gi) × e(gj)−1 = e(gi − gj) for all
i, j ∈ [1, k], i > j, and sends the sequence denoted by
ϕ to Pn in a random order.

2. Pn decrypts each element in the sequence ϕ. He
assigns the element +1 if the result of decryption
is not less than 0, and −1, otherwise. Finally, he
obtains a +1/− 1 sequence denoted by ϕ′.

3. Pn sends +1/− 1 sequence ϕ′.

4. Pn−1 compares the transaction time of each entry
of vectors such as 2A, 2B, and 6C in our example.
She makes a temporary vector T. If the transaction
time does not satisfy the requirement of 2A ≥ 2B ≥
6C, she sets the corresponding entries of T to 0’s;

otherwise, she copies the original values in 6C to T
(Fig. 5).

Theorem 1 (Correctness). Protocol 1 correctly sort the
transaction time.

Proof Pn−1 is able to remove permutation effects from
ϕ′ (the resultant sequence is denoted by ϕ′′) since she
has the permutation function that she used to permute
ϕ, so that the elements in ϕ and ϕ′′ have the same or-
der. It means that if the qth position in sequence ϕ
denotes e(gi − gj), then the qth position in sequence ϕ′′

denotes the evaluation results of gi − gj . We encode it
as +1 if gi ≥ gj , and as -1 otherwise. Pn−1 has two
sequences: one is the ϕ, the sequence of e(gi − gj), for
i, j ∈ [1, k](i > j), and the other is ϕ′′, the sequence of
+1/−1. The two sequences have the same number of ele-
ments. Pn−1 knows whether or not gi is larger than gj by
checking the corresponding value in the ϕ′′ sequence. For
example, if the first element ϕ′′ is −1, Pn−1 concludes
gi < gj . Pn−1 examines the two sequences and con-
structs the index table (Table 1) to compute the largest
element.

In Table 1, +1 in entry ij indicates that the value of
the row (e.g., gi of the ith row) is not less than the value
of a column (e.g., gj of the jth column); -1, otherwise.
Pn−1 sums the index values of each row and uses this
number as the weight of the information gain in that
row. She then sorts the sequence according the weight.

To make it clearer, let’s illustrate it by an example.
Assume that: (1) there are 4 elements with g1 < g4 <

494 JUSTIN ZHAN, STAN MATWIN, LIWU CHANG

g1 g2 g3 · · · gk

g1 +1 +1 -1 · · · -1
g2 -1 +1 -1 · · · -1
g3 +1 +1 +1 · · · +1
· · · · · · · · · · · · · · · · · ·
gk +1 +1 -1 · · · +1

Table 1:

S1 S2 S3 S4 Weight
S1 +1 -1 -1 -1 -2
S2 +1 +1 -1 +1 +2
S3 +1 +1 +1 +1 +4
S4 +1 -1 -1 +1 0

Table 2:

g2 < g3; (2) the sequence ϕ is [e(g1−g2), e(g1−g3), e(g1−
g4), e(g2 − g3), e(g2 − g4), e(g3 − g4)]. The sequence ϕ′′

will be [−1,−1,−1,−1,+1,+1]. According to ϕ and ϕ′′,
Pn−1 builds the Table 2. From the table, Pn−1 knows
g3 > g2 > g4 > g1 since g3 has the largest weight, g2 has
the second largest weight, g4 is third largest weight, g1

has the smallest weight.

Theorem 2 (Privacy-Preserving). Assuming the par-
ties follow the protocol, the private data are securely pro-
tected.

Proof We need prove it from two aspects: (1) Pn−1

doesn’t get transaction time (e.g.,gi) for each vector.
What Pn−1 gets are e(gi−gj) for all i, j ∈ [1, k], i > j and
+1/−1 sequence. By e(gi−gj), Pn−1 cannot know each
transaction time since it is encrypted. By +1/ − 1 se-
quence, Pn−1 can only know whether or not gi is greater
than Pj . (2) Pn doesn’t obtain transaction time for each
vector either. Since the sequence of e(gi − gj) is ran-
domized before being send to Pn who can only know the
sequence of gi− gj , he can’t get each individual transac-
tion time. Thus private data are not revealed.

Theorem 3 (Efficiency). The computation of proto-
col 1 is efficient from both computation and communi-
cation point of view.

Proof The total communication cost is upper bounded
by αm2. The total computation cost is upper bounded
by m2 + m + 1. Therefore, the protocols are very fast.

After the above step, they need to compute c.count
based their value vector. For example, to obtain c.count
for 2A ≥ 2B ≥ 6C in Fig. 5, they need to compute∑N

i=1 2A[i] · 2B[i] · T [i] =
∑N

i=1 2A[i] · 2B[i] · T [i] =∑3
i=1 2A[i]·2B[i]·T [i] = 0, where N is the total number of

values in each vector. In general, let’s assume the value
vectors for P1, · · · , Pn are x1, · · · , xn respectively. Note
that P1’s vector is T . For the purpose of illustration,
we denote T by xn−1. Next, we will show how n parties
compute this count. without revealing their private data
to each other.

II.3.4 The Computation of c.count

Protocol 2 Privacy-Preserving Number Product Proto-
col

1. Pn sends e(xn1) to P1.

2. P1 computes e(xn1)x11 = e(xn1x11), then sends it to
P2.

3. P2 computes e(xn1x11)x21 = e(xn1x11x21).

4. Continue until Pn−1 obtains e(x11x21 · · ·xn1).

5. Repeat all the above steps for x1i, x2i, · · · , and xni

until Pn−1 gets e(x1ix2i · · ·xni) for all i ∈ [1, N].

6. Pn−1 computes e(x11x21 · · ·xn1)×e(x12x22 · · ·xn2)×
· · · × e(x1Nx2N · · ·xnN) = e(x11x21 · · ·xn1 +
x12x22 · · ·xn2 + · · ·+ x1Nx2N · · ·xnN) = c.count.

Theorem 4 (Correctness). Protocol 2 correctly com-
pute c.count.

Proof In step 2, P1 obtains e(xn1). He then computes
e(xn1x11). In step 3, P2 computes e(xn1x11x21). Fi-
nally, in step 5, Pn−1 gets e(x1ix2i · · ·xni). He then
computes e(x11x21 · · ·xn1) × e(x12x22 · · ·xn2) × · · · ×
e(x1Nx2N · · ·xnN) = e(x11x21 · · ·xn1 + x12x22 · · ·xn2 +
· · ·+ x1Nx2N · · ·xnN) which is equal to c.count.

Theorem 5 (Privacy-Preserving). Assuming the par-
ties follow the protocol, the private data are securely pro-
tected.

Proof In protocol 2, all the data transmission are hid-
den under encryption. The parties who are not the key
generator can’t see other parties’ private data. On the
other hand, the key generator doesn’t obtain the encryp-
tion of other parties’s private data. Therefore, protocol 2
discloses no private data.

Theorem 6 (Efficiency). The computation of c.count
is efficient from both computation and communication
point of view.

PRIVACY-PRESERVING SEQUENTIAL PATTERN MINING OVER VERTICALLY PARTITIONED DATA 495

Proof To prove the efficiency, we need conduct com-
plexity analysis of the protocol. The bit-wise communi-
cation cost of protocol 2 is α(n−1)N . The computation
cost of protocol 2 is nN , of protocol 2 is 5t+3. The total
computation cost is upper bounded by nN − 1. There-
fore, the protocols are sufficient fast.

III. Overall Discussion

Our privacy-preserving classification system contains
several components. In Section , we show how to cor-
rectly compare the transaction time. In Section , we
present protocols to compute c.count. We discussed the
correctness of the computation in each section.

As for the privacy protection, all the communica-
tions between the parties are encrypted, therefore, the
parties who has no decryption key cannot gain anything
out of the communication. On the other hand, there
are some communication between the key generator and
other parties. Although the communications are still en-
crypted, the key generator may gain some useful infor-
mation. However, we guarantee that the key generator
cannot gain the private data by adding random num-
bers in the original encrypted data so that even if the
key generator get the intermediate results, there is lit-
tle possibility that he can know the intermediate results.
Therefore, the private data are securely protected with
overwhelming probability.

In summary, we provide a novel solution for sequen-
tial pattern mining over vertically partitioned private
data. Instead of using data transformation, we de-
fine a protocol using homomorphic encryption to ex-
change the data while keeping it private. Our min-
ing system is quite efficient that can be envisioned by
the communication and computation complexity. The
total communication complexity is upper bounded by
α(nN +m2−N). The computation complexity is upper
bounded by m2 + m + 5t + 4.

References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Mining se-
quential patterns. In Philip S. Yu and Arbee S. P. Chen,
editors, Eleventh International Conference on Data En-
gineering, pages 3–14, Taipei, Taiwan, 1995. IEEE Com-
puter Society Press.

[2] Jay Ayres, Johannes Gehrke, Tomi Yiu, and Jason Flan-
nick. Sequential pattern mining using a bitmap represen-
tation.

[3] G. Chirn. Pattern discovery in sequence databases: Al-
gorithms and applications to DNA/protein classification.
PhD thesis, Department of Computer and Information
Science, New Jersey Institute of Technology, 1996.

[4] O. Goldreich. Secure multi-party computation
(working draft). http://www.wisdom.weizmann.ac.il
/home/oded/public html/foc.html, 1998.

[5] O. Goldreich, S. Micali, and A. Wigderson. How to play
any mental game. In Proceedings of the 19th Annual
ACM Symposium on Theory of Computing, pages 218–
229, 1987.

[6] S. Goldwasser. Multi-party computations: Past and
present. In Proceedings of the 16th Annual ACM Sympo-
sium on Principles of Distributed Computing, Santa Bar-
bara, CA USA, August 21-24 1997.

[7] H. Kum, J. Pei, W. Wang, and D. Duncan. Approx-
MAP: Approximate mining of consensus sequential pat-
terns. Technical Report TR02-031, UNC-CH, 2002.

[8] Ramakrishnan Srikant and Rakesh Agrawal. Mining se-
quential patterns: Generalizations and performance im-
provements. In Peter M. G. Apers, Mokrane Bouzeghoub,
and Georges Gardarin, editors, Proc. 5th Int. Conf. Ex-
tending Database Technology, EDBT, volume 1057, pages
3–17. Springer-Verlag, 25–29 1996.

[9] A. C. Yao. Protocols for secure computations. In Proceed-
ings of the 23rd Annual IEEE Symposium on Foundations
of Computer Science, 1982.

	Privacy-Preserving Sequential Pattern Mining Over Vertically Partitioned Data
	tmp.1584944796.pdf.hTF8u

