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Abstract: Protection of privacy is one of important
problems in data mining. The unwillingness to share
their data frequently results in failure of collaborative
data mining. This paper studies how to build a decision
tree classifier under the following scenario: a database
is horizontally partitioned into multiple pieces, with
each piece owned by a particular party. All the parties
want to build a decision tree classifier based on such a
database, but due to the privacy constraints, neither of
them wants to disclose their private pieces. We build
a privacy-preserving system, including a set of secure
protocols, that allows the parties to construct such
a classifier. We guarantee that the private data are
securely protected.

Keywords: Privacy, decision tree, classification.

I. Introduction

Business success often relies on collaboration. The col-
laboration is even more critical in the modern business
world, not only because of mutual benefit it brings but
also because the coalition of multiple parters will be more
competitive than each individual. Assuming they trust
each other to a degree that they can share their private
data, the collaboration becomes straightforward. How-
ever, in many scenarios, sharing data are impossible be-
cause of privacy concerns. Thus, collaboration without
sharing private data becomes extremely important.

In this paper, we study a prevalent collaboration sce-
nario, the collaboration involving a data mining task:
multiple parties, each having a private data set, want to
conduct data mining on the joint data set that is the
union of all individual data sets; however, because of the
privacy constraints, no party wants to disclose its pri-
vate data set to each other. The objective of this paper
is to develop efficient methods that enable this type of
computation while minimizing the amount of the private
information that each party has to disclose.
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Figure 1:

Data mining includes various algorithms such as clas-
sification, association rule mining, and clustering. In this
paper, we focus on classification. There are two types
of classification between two collaborative parties: Fig-
ure 1(a) shows the data classification on the horizontally
partitioned data, and Figure 1(b) shows the data clas-
sification on the vertically partitioned data. We study
the classification on the horizontally partitioned data. In
particular, we study how to build a decision tree classifier
on private data. We have developed a privacy-preserving
system that allows them to build a decision tree classifier
based on their joint data.

II. Privacy-Preserving Decision-Tree
Classification

Classification is an important problem in the field of data
mining. In classification, we are given a set of example
records, called the training data set, with each record
consisting of several attributes. One of the categorical
attributes, called the class label, indicates the class to
which each record belongs. The objective of classification
is to use the training data set to build a model of the class
label such that it can be used to classify new data whose
class labels are unknown.

Many types of models have been built for classifica-
tion, such as neural networks, statistical models, genetic
models, and decision tree models. The decision tree mod-
els are found to be the most useful in the domain of data
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mining since they obtain reasonable accuracy and they
are relatively inexpensive to compute. We define our
problem as follows:

Problem 1 We consider the scenario where n parties,
each having a private data set (denoted by S1, S2, · · · ,
and Sn respectively), want to collaboratively conduct de-
cision tree classification on the union of their data sets.
The data sets are assumed to be horizontally partitioned.
Because they are concerned about the data privacy, nei-
ther party is willing to disclose its raw data set to others.

Next, we give the notations that we will follow.

II.1 Notations

• e: public key.

• d: private key.

• Pi: the ith party.

• n: the total number of parties. Assuming n > 2.

• m: the total number of class.

• α is the number of bits for each transmitted element
in the privacy-preserving protocols.

• N: the total number of records.

II.2 Decision Tree Classification Algorithm

Classification is one of the forms for data analysis that
can be used to extract models describing important data
classes or to predict future data. It has been studied
extensively by the community in machine learning,
expert system, and statistics as a possible solution to
knowledge discovery problems. The decision tree is one
of the classification methods. A decision tree is a class
discriminator that recursively partitions the training set
until each partition entirely or dominantly consists of
examples from one class. A well known algorithm for
building decision tree classifiers is ID3 [13]. We describe
the algorithm below where S represents the training
samples and AL represents the attribute list:

ID3(S, AL)

1. Create a node V.
2. If S consists of samples with all the same class C

then return V as a leaf node labelled with class C.
3. If AL is empty, then return V as a leaf-node with

the majority class in S.
4. Select test attribute (TA) among the AL with the

highest information gain.
5. Label node V with TA.

6. For each known value ai of TA

(a) Grow a branch from node V for the condition
TA = ai.

(b) Let si be the set of samples in S for which
TA = ai.

(c) If si is empty then attach a leaf labelled with
the majority class in S.

(d) Else attach the node returned by ID3(si,
AL− TA).

According to ID3 algorithm, each non-leaf node of
the tree contains a splitting point, and the main task
for building a decision tree is to identify an attribute
for the splitting point based on the information gain.
Information gain can be computed using entropy. In the
following, we assume there are m classes in the whole
training data set. Entropy(S) is defined as follows:

Entropy(S) = −
m∑

j=1

Qj log Qj , (1)

where Qj is the relative frequency of class j in S. Based
on the entropy, we can compute the information gain for
any candidate attribute A if it is used to partition S:

Gain(S, A) = Entropy(S)−
∑

v∈A

(
|Sv|
|S| Entropy(Sv)), (2)

where v represents any possible values of attribute A;
Sv is the subset of S for which attribute A has value v;
|Sv| is the number of elements in Sv; |S| is the number of
elements in S. To find the best split for a tree node, we
compute information gain for each attribute. We then
use the attribute with the largest information gain to
split the node.

II.3 Cryptography Tools

In this paper, we use the concept of homomorphic en-
cryption which was originally proposed in [18]. Since
then, many such systems have been proposed [3, 15,
16, 17]. We observe that some homomorphic encryp-
tion schemes, such as [4], are not robust against chosen
cleartext attacks. However, we base our secure protocols
on [17], which is semantically secure [9].

In our secure protocols, we use additive homomor-
phism offered by [17]. In particular, we utilize the follow-
ing characterizer of the homomorphic encryption func-
tions: e(a1)×e(a2) = e(a1+a2) where e is an encryption
function; a1 and a2 are the data to be encrypted. Be-
cause of the property of associativity, e(a1 +a2 + ..+an)
can be computed as e(a1) × e(a2) × · · · × e(an) where
e(ai) 6= 0. That is

d(e(a1 + a2 + · · ·+ an)) = d(e(a1)× e(a2)× · · · × e(an)) (3)

d(e(α1)
α2 ) = d(e(α1α2)) (4)
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II.4 Privacy-Preserving Decision Tree Classifica-
tion System

The privacy-preserving classification system contains
several secure protocols that multiple parties need fol-
low. There are five major steps:

• To compute Entropy(Sv).

• To compute |Sv|
|S| .

• To compute |Sv|
|S| Entropy(Sv).

• To compute information gain for each candidate at-
tribute.

• To compute the attribute with the largest informa-
tion gain.

The goal of our privacy-preserving classification sys-
tem is to disclose no private data in every step. We firstly
select a key generator who produces the encryption and
decryption key pairs. The computation of the whole sys-
tem is under encryption. For the purpose of illustration,
let’s assume that Pn is the key generator who generates
a homomorphic encryption key pair (e, d). Next, we will
show how to conduct each step.

II.4.1 Computation of e(Entropy(Sv))

Protocol 1 To compute e(Qj)

1. Each party computes their own share of |Sv|. As-
suming P1 gets c1, P2 gets c2, · · · , Pn gets cn.

2. Pn sends e(cn) to P1.

3. P1 computes e(cn)× e(c1) = e(c1 + cn) and sends it
to P2.

4. Repeat until Pn−1 obtains e(c1 + c2 + · · ·+ cn).

5. Pn−1 computes e(
∑n

i=1 ci)
1
N = e(Qj).

Protocol 2 To compute e(Qj log(Qj))

1. Pn−1 generates a set of random numbers r1, r2, · · · ,
and rt.

2. Pn−1 sends the sequence of e(Qj), e(r1), e(r2), · · · ,
e(rt) to Pn in a random order.

3. Pn decrypts each element in the sequence, and sends
log(Qj), log(r1), log(r2), · · · , log(rt) to P1 in the
same order as Pn−1 did.

4. P1 adds a random number R to each of the elements,
then sends them to Pn−1.

5. Pn−1 obtains log(Qj) + R and computes
e(Qj)(log(Qj)+R) = e(Qj log(Qj) + RQj).

6. Pn−1 sends e(Qj) to P1.

7. P1 computes e(Qj)−R = e(−RQj) and sends it to
Pn−1.

8. Pn−1 computes e(Qj log(Qj) + RQj) × e(−RQj) =
e(Qj log(Qj)).

Protocol 3 To compute e(Entropy(Sv))

1. Repeat protocol 1-2 to compute e(Qj log(Qj)) for all
j’s.

2. Pn−1 computes e(Entropy(Sv)) =∏
j e(Qj log(Qj)) = e(

∑
j Qj log(Qj)).

Theorem 1 (Correctness). Protocol 1-3 correctly com-
pute Entropy.

Proof In protocol 1, Pn−1 obtains e(Qj). In protocol 2,
Pn−1 gets e(Qj log(Qj)). These two protocols are re-
peatedly used until Pn−1 obtains e(Qj log(Qj)) for all
j’s. In protocol 3, Pn−1 computes the entropy by all
the terms previously obtained. Notice that although we
use Entropy(Sv) to illustrate, Entropy(S) can be com-
puted following the above protocols with different input
attributes.

Theorem 2 (Privacy-Preserving). Assuming the par-
ties follow the protocol, the private data are securely pro-
tected.

Proof In protocol 1, all the data transmission are hid-
den under encryption. The parties who are not the key
generator can’t see other parties’ private data. On the
other hand, the key generator doesn’t obtain the encryp-
tion of other parties’s private data. Therefore, protocol 1
discloses no private data. In protocol 2, although Pn−1

sends e(Qj) to Pn, Qj is hidden by a set of random num-
bers known only by Pn−1. Thus private data are not
revealed. In protocol 3, the computations are still under
encryption, no private data are disclosed either.

Theorem 3 (Efficiency). The computation of Entropy
is efficient from both computation and communication
point of view.

Proof To prove the efficiency, we need conduct com-
plexity analysis of the protocol. The bit-wise commu-
nication cost of protocol 1 is α(n − 1), of protocol 2 is
α(3t + 5). The total communication cost has the upper
bound of αm(n+3t+4). The computation cost of proto-
col 1 is nN , of protocol 2 is 5t+3. The total computation
cost is upper bounded by mnN + 5mt + 4m. Therefore,
the protocols are sufficient fast.
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II.4.2 The Computation of |Sv|
|S| Entropy(Sv)

Protocol 4 To Compute |Sv|
|S|

1. Pn−1 sends e(|Sv|) to P1.

2. Pn−1 generates a set of random numbers: r1, r2,
· · · , rt.

3. Pn−1 sends e(|S|), e(r1), · · · , and e(rt) to Pn in
a random order. Note that e(|S|) can be computed
following the first four steps of protocol 1.

4. Pn decrypts each element, then sends the sequence
of 1

|S| ,
1
r1

, · · · , and 1
rt

to P1 in the same order as
Pn−1 did.

5. P1 computes e(|Sv|)$ where $ denotes for each de-
crypted element, then sends the sequence to Pn−1 in
the same order as Pn did.

6. Pn−1 obtains e( |Sv|
|S| ) since he knows the original per-

mutations.

Up to now, Pn−1 has obtained e( |Sv|
|S| ) and

e(Entropy(Sv)). Next, we discuss how to compute
|Sv|
|S| Entropy(Sv).

Protocol 5 To Compute |Sv|
|S| Entropy(Sv)

1. Pn−1 sends e( |Sv|
|S| ) to P1.

2. P1 computes e( |Sv|
|S| )× e(R′) = e( |Sv|

|S| +R′) where R′

is a random number only known by P1, then sends
e( |Sv|

|S| + R′) to Pn.

3. Pn decrypts it and sends |Sv|
|S| + R′ to Pn−1.

4. Pn−1 computes e(Entropy(Sv))(
|Sv|
|S| +R′) =

e( |Sv|
|S| Entropy(Sv) + R′Entropy(Sv)).

5. Pn−1 sends e(Entropy(Sv)) to P1.

6. P1 computes e(Entropy(Sv))−R′ =
e(−R′Entropy(Sv)), and sends it to Pn−1.

7. Pn−1 computes e( |Sv|
|S| Entropy(Sv) +

R′Entropy(Sv)) × e(−R′Entropy(Sv)) =
e( |Sv|

|S| Entropy(Sv)).

Theorem 4 (Correctness). Protocol 4-5 correctly com-
putes |Sv|

|S| Entropy(Sv).

Proof In protocol 4, Pn−1 obtains e( |Sv|
|S| ). In proto-

col 5, Pn−1 gets |Sv|
|S| Entropy(Sv). The computation uses

the both properties of homomorphic encryption.

Theorem 5 (Privacy-Preserving). Assuming the par-
ties follow the protocol, the private data are securely pro-
tected.

Proof In protocol 4, Pn sends e(|S|) to Pn but it is
hidden by a set of random numbers known only by Pn−1.
Although P1 receives a decrypted sequence, 1

|S| is also
hidden by a set of random numbers. Thus, P1 and Pn

are prevented from knowing |S|. On the other hand,
Pn−1 is also hidden from knowing |S| since all the terms
he holds are under encryption. In protocol 5, although
P1 sends e( |Sv|

|S| + R′) to Pn, |Sv|
|S| is hidden by a random

number known only by P1. Therefore, private data are
not revealed.

Theorem 6 (Efficiency). The computation of proto-
col 4 and protocol 5 is efficient from both computation
and communication point of view.

Proof To prove the efficiency, we need conduct com-
plexity analysis of the protocol. The total communica-
tion cost is α(3t + 4). The total computation cost is
upper bounded by 6t. Therefore, the protocols are very
efficient.

II.4.3 The Computation of the Attribute With
the Largest Information Gain

Following the above protocols, we can compute
e(Entropy(S)), |Sv|

|S| Entropy(Sv). What left is to com-
pute information gain for each attribute and select the
attribute with the largest information gain.

Protocol 6 To Compute Information Gain for An At-
tribute

1. Pn−1 computes
∏

v∈A e( |Sv|
|S| Entropy(Sv)) =

∑
v∈A

|Sv|
|S| Entropy(Sv).

2. He computes e(
∑

v∈A
|Sv|
|S| Entropy(Sv))−1 =

e(−∑
v∈A

|Sv|
|S| Entropy(Sv)).

3. He computes e(Gain(S,A)) = e(Entropy(S)) ×
e(−∑

v∈A
|Sv|
|S| Entropy(Sv)).

Once we compute the information gain for each can-
didate attribute, we then compute the attribute with the
largest information gain. Without loss of generality, as-
suming there are k information gains: e(g1), e(g2), · · · ,
and e(gk), with each corresponding to a particular at-
tribute.

Protocol 7 To Compute the Largest Information Gain
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g1 g2 g3 · · · gk

g1 +1 +1 -1 · · · -1
g2 -1 +1 -1 · · · -1
g3 +1 +1 +1 · · · +1
· · · · · · · · · · · · · · · · · ·
gk +1 +1 -1 · · · +1

Table 1:

S1 S2 S3 S4 Weight
S1 +1 -1 -1 -1 -2
S2 +1 +1 -1 +1 +2
S3 +1 +1 +1 +1 +4
S4 +1 -1 -1 +1 0

Table 2:

1. Pn−1 computes e(gi) × e(gj)−1 = e(gi − gj) for all
i, j ∈ [1, k], i > j, and sends the sequence denoted by
ϕ to Pn in a random order.

2. Pn decrypts each element in the sequence ϕ. He
assigns the element +1 if the result of decryption
is not less than 0, and −1, otherwise. Finally, he
obtains a +1/− 1 sequence denoted by ϕ′.

3. Pn sends +1/−1 sequence ϕ′ to Pn−1 who computes
the largest element.

Theorem 7 (Correctness). Protocol 6-7 correctly com-
putes the attribute with the largest information gain.

Proof In protocol 6, Pn−1 obtains e(Gain(S,A)). In
protocol 7, Pn−1 gets the attribute with the largest in-
formation. We discuss the details as follows:

Pn−1 is able to remove permutation effects from ϕ′

(the resultant sequence is denoted by ϕ′′) since she has
the permutation function that she used to permute ϕ,
so that the elements in ϕ and ϕ′′ have the same or-
der. It means that if the qth position in sequence ϕ
denotes e(gi − gj), then the qth position in sequence ϕ′′

denotes the evaluation results of gi − gj . We encode it
as +1 if gi ≥ gj , and as -1 otherwise. Pn−1 has two
sequences: one is the ϕ, the sequence of e(gi − gj), for
i, j ∈ [1, k](i > j), and the other is ϕ′′, the sequence of
+1/−1. The two sequences have the same number of ele-
ments. Pn−1 knows whether or not gi is larger than gj by
checking the corresponding value in the ϕ′′ sequence. For
example, if the first element ϕ′′ is −1, Pn−1 concludes
gi < gj . Pn−1 examines the two sequences and con-
structs the index table (Table 1) to compute the largest
element.

In Table 1, +1 in entry ij indicates that the informa-
tion gain of the row (e.g., gi of the ith row) is not less
than the information gain of a column (e.g., gj of the
jth column); -1, otherwise. Pn−1 sums the index values

of each row and uses this number as the weight of the
information gain in that row. She then selects the one
that corresponds to the largest weight.

To make it clearer, let’s illustrate it by an example.
Assume that: (1) there are 4 information gains with g1 <
g4 < g2 < g3; (2) the sequence ϕ is [e(g1 − g2), e(g1 −
g3), e(g1 − g4), e(g2 − g3), e(g2 − g4), e(g3 − g4)]. The
sequence ϕ′′ will be [−1,−1,−1,−1,+1,+1]. According
to ϕ and ϕ′′, Pn−1 builds the Table 2. From the table,
Pn−1 knows g3 is the largest element since its weight,
which is +4, is the largest.

Theorem 8 (Privacy-Preserving). Assuming the par-
ties follow the protocol, the private data are securely pro-
tected.

Proof In protocol 6, there is no data transmission. In
protocol 7, we need prove it from two aspects: (1) Pn−1

doesn’t get information gain (e.g.,gi) for each attribute.
What Pn−1 gets are e(gi − gj) for all i, j ∈ [1, k], i > j
and +1/− 1 sequence. By e(gi− gj), Pn−1 cannot know
each information gain since it is encrypted. By +1/ −
1 sequence, Pn−1 can only know whether or not gi is
greater than Pj . (2) Pn doesn’t obtain information gain
for each attribute either. Since the sequence of e(gi −
gj) is randomized before being send to Pn who can only
know the sequence of gi−gj , he can’t get each individual
information gain. Thus private data are not revealed.

Theorem 9 (Efficiency). The computation of proto-
col 6 and protocol 7 is efficient from both computation
and communication point of view.

Proof The total communication cost is upper bounded
by αm2. The total computation cost is upper bounded
by m2 + m + 1. Therefore, the protocols are very fast.

III. Overall Discussion

Our privacy-preserving classification system contains
several components. In Section , we show how to cor-
rectly compute e(Entropy(Sv)). In Section , we present
protocols to compute |Sv|

|S| Entropy(Sv). In Section , we
show how to compute information gain for each candi-
date attribute; we then describe how to obtain the at-
tribute with the largest information gain. We discussed
the correctness of the computation in each section. Over-
all correctness is also guaranteed.

As for the privacy protection, all the communica-
tions between the parties are encrypted, therefore, the
parties who has no decryption key cannot gain anything
out of the communication. On the other hand, there
are some communication between the key generator and
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other parties. Although the communications are still en-
crypted, the key generator may gain some useful infor-
mation. However, we guarantee that the key generator
cannot gain the private data by adding random num-
bers in the original encrypted data so that even if the
key generator get the intermediate results, there is lit-
tle possibility that he can know the intermediate results.
Therefore, the private data are securely protected with
overwhelming probability.

IV. Conclusion

Prior to conclude this paper. We describe the most
related works. In early work on privacy-preserving
data mining, Lindell and Pinkas [14] propose a so-
lution to privacy-preserving classification problem us-
ing oblivious transfer protocol, a powerful tool de-
veloped by secure multi-party computation (SMC) re-
search [22, 10]. The techniques based on SMC for effi-
ciently dealing with large data sets have been addressed
in [21]. Randomization approaches were firstly proposed
by Agrawal and Srikant in [2] to solve privacy-preserving
data mining problem. Researchers proposed more ran-
dom perturbation-based techniques to tackle the prob-
lems (e.g., [5, 19, 7]). In addition to perturbation, aggre-
gation of data values [20] provides another alternative
to mask the actual data values. In [1], authors stud-
ied the problem of computing the kth-ranked element.
Dwork and Nissim [6] showed how to learn certain types
of boolean functions from statistical databases in terms
of a measure of probability difference with respect to
probabilistic implication, where data are perturbed with
noise for the release of statistics.

The problem we are studying is actually a special
case of a more general problem, the Secure Multi-party
Computation (SMC) problem. Briefly, a SMC problem
deals with computing any function on any input, in a
distributed network where each participant holds one of
the inputs, while ensuring that no more information is
revealed to a participant in the computation than can
be inferred from that participant’s input and output [12].
The SMC problem literature is extensive, having been in-
troduced by Yao [22] and expanded by Goldreich, Micali,
and Wigderson [11] and others [8]. It has been proved
that for any function, there is a secure multi-party com-
putation solution [10]. The approach used is as follows:
the function F to be computed is first represented as a
combinatorial circuit, and then the parties run a short
protocol for every gate in the circuit. Every participant
gets corresponding shares of the input wires and the out-
put wires for every gate. This approach, though appeal-
ing in its generality and simplicity, means that the size
of the protocol depends on the size of the circuit, which
depends on the size of the input. This is highly ineffi-

cient for large inputs, as in data mining. It has been well
accepted that for special cases of computations, special
solutions should be developed for efficiency reasons.

In this paper, we provide a novel solution for deci-
sion tree classification over horizontally partitioned pri-
vate data. Instead of using data transformation, we
define a protocol using homomorphic encryption to ex-
change the data while keeping it private. Our classifica-
tion system is quite efficient that can be envisioned by
the communication and computation complexity. The
total communication complexity is upper bounded by
α(m2 +nm+3tm+4m+3t+4). The computation com-
plexity is upper bounded by mnN+m2+5mt+5m+6t+1.
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