
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2005 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-5-2015

Knowledge Modeling for Developing Program Planning Agents Knowledge Modeling for Developing Program Planning Agents

Fuhua Lin

Qin Li

Dunwei Wen

Follow this and additional works at: https://aisel.aisnet.org/iceb2005

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2005 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301391019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2005
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2005?utm_source=aisel.aisnet.org%2Ficeb2005%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Knowledge Modeling for Developing Program Planning Agents

Fuhua Lin, Qin Li, Dunwei Wen
School of Computing and Information Systems, Athabasca University

Athabasca, AB, Canada, T9S 3A3
Tel: 1-780-4212548, Fax: 1-780-6756186

Email: [oscarl | qinl | dunweiw]@athabascau.ca

Abstract: This paper describes a method of domain
knowledge modeling for program planning and scheduling
in intelligent e-Learning advising systems, focusing on the
modeling and representation of precedence relations among
course learning objects encoded in model curricular and the
representation of domain experts’ knowledge using Petri nets
formalism and a XML-based markup language. We
developed a Web-based program model editor.

Keywords: E-Learning & innovations in teaching,
knowledge modeling and representation, program
planning, Petri nets.

I. Introduction

Curriculum planning for student advising is an interactive
decision-making process, which assist learners in the
development of meaningful learning plans which are
compatible with their career/life goals maximize educational
potential through communication and information exchanges
with an educator. An intelligent e-learning planning agent
is a knowledge-based system able to assist e-learners to
generate a personalized curriculum best suitable for them.
The abilities of such a system hinge on possessing
knowledge about the domain and program structure, learners,
and pedagogy.

One of the important tasks in developing intelligent
program planning systems is to model and represent the
program model in the context so that the scheduling agents
can use it to generate learning plans flexibly and adaptively.
Due to the complex pre-requisite relationships among the
course learning objects, this task is not trivial. This paper
presents a Petri nets based model of program structure
knowledge modeling and XML-based representation for
dynamic program planning. We develop a knowledge
editor for constructing and maintaining curriculum models.

To demonstrate the feasibility of the model, we
developed an intelligent advisor able to generate personal-
ized curriculum and generating a schedule for the courses
selection according to students’ temporal constraints, and
course availability.

This paper mainly describes the method of domain
knowledge modeling and representation for program
planning and scheduling in e-Learning, focusing on the
representation of precedence relations among course

Proceedings of the Fifth International Conference on Electronic Business,
Hong Kong, December 5-9, 2005, pp. 366 - 371.

learning objects encoded in model curricular and the
representation of domain experts’ knowledge.

We proposed an extended Petri nets model to represent
the logical relationships among courses in a curriculum.
We developed a Web-based knowledge editor providing
straightforward modification to accommodate addition or
deletion of courses, prerequisites, co-requisites, and rules.

To demonstrate the feasibility of the model and the editor,
we show a real-world example of Petri nets represented
course-flow for MSc IS program of Athabasca University of
Canada.

II. Literature Review

The literature records several efforts to employ computers to
reduce the tedium, and improve the consistency, in student
advising [1-7]. These systems exploit AI, expert systems
or knowledge-based systems to provide some of the
functions of a faculty advisor to students. Several of them
provide students with a prioritized list of suggested courses
and check prerequisites and sequencing. Most of them
were designed to run on mainframes environments or
standalone PCs. Gunadhi, et al., (1995) presented a
framework for an intelligent advisory system for college
students that combine object-oriented and knowledge-based
paradigms [3]. They did not address how to acquire and
incorporate “real-life” expertise and how to interface to
other systems in the university such as online registration
system, academic and student databases.

Flow diagrams, narrative descriptions, and time-line
analysis are useful for a variety of modeling problems.
Those tools however make it difficult or impossible to
expose critical time-dependencies, task concurrencies, and
event-driven behavior. Petri nets are a useful and powerful
modeling tool and overcome the aforementioned
shortcomings [8].

In curriculum modeling, an important task is
representing the complex logical relationships among the
prerequisites. Both state machines and graphs do not have
capability to model curricular. State machines with the
property that each transition has exactly one incoming and
one outgoing arc or flow relation. They are a subclass of
P/T nets [8]. State machines allow us to model choice or
decision. Because each place may have multiple output
transitions, they do not allow modeling of synchronization
or concurrent activities, which are common in a curriculum.
Concurrent activities require that several transitions be
enabled concurrently [9]. In a marked graph, each place has

KNOWLEDGE MODELING FOR DEVELOPING PROGRAM PLANNING AGENTS 367

only one incoming and one outgoing flow relation; thus,
marked graphs do not allow modeling of choice while
choices are important in course-choosing.

Knowledge modeling using Petri nets and its extensions
in AI applications has received much attention. Net related
models have been proposed for validating knowledge bases
[10]; diagnostic knowledge representation and reasoning
[11], determining requirements [12], and representing
knowledge in discrete event systems [13].

K. Lee and M. Y. Jung (1994) presented a method for
flexible operation planning using the Petri net approach [14].
A Petri net is used as a unified framework for both operation
planning and plan representation.

III. Curriculum Petri Nets

Before describing the proposed Petri nets model, let us
review the ordinary Place-Transition Nets.

III. 1 Place-Transition Nets (P/T nets)

Place-Transition nets (P/T nets) are the basic type of Petri
nets from which all other types are derived. They consist
of four elements [8]:

(1) Places: places model conditions or objects such as
program variables. They are represented by circles.

(2) Tokens: tokens are represented by black dots.
These are contained within places and represent the specific
value of the condition or object which that place represents.
The initial arrangement of tokens on places is known as the
initial marking of the Petri net.

(3) Transitions: transitions are represented by hollow
rectangles and model activities which change the values of
conditions and objects.

(4) Arcs: arcs are represented by lines connecting places
and transitions. These indicate which objects are changed
by which activities. As Place-Transition nets are bipartite,
arcs may only connect places to transitions or transitions to
places, but not places to places or transitions to transitions.
An arc may have a weight, which specifies how many tokens
are created or destroyed when a transition to which it is
attached is fired.

A P/T net can be defined formally using functional
notation:

Definition 3.1: (P/T nets)

A Place-Transition net is a 5-tuple
0(, , , ,)P N P T I I M− +=

where
1{ , ..., } (0)nP p p n= < is a finite and non-empty

set of places;
1{ , . . . , } (0)mT t t m= > is a finite and non-empty

set of transitions, P T∩ = Φ ;
() ()F P T T P⊆ × ×U is a set of directed arcs,

called flow relations;
,I I− + :

0P T× → Ν are the backward and forward

incidence functions respectively; If (,) 0I p t− > , an arc
leads from place p to transition t, whilst if (,) 0I p t+ >
then an arc leads from transition t to place p;

0 0:M P → Ν is the initial marking.
The dynamic behavior of a P/T net is determined by

rules concerning the enabling and firing of transitions.
When the arcs connecting a transition to its input places
have a weight of one, the transition is enabled if all of its
input places are marked with at least one token. Only an
enabled transition may fire. When it does, one token on each
of its input places is removed and one token is created on
each of its output places. It is possible, however, for an arc
to have a weight greater than one. In this case, if the arc is
an input arc then the transition is only enabled if the number
of tokens on the place to which it is connected is equal to or
greater than its weight. When then transition is fired, the
number of tokens removed on the place is equal to the arc’s
weight. If it is an output arc, firing the transition creates
the number of tokens on the output place equivalent to the
arc’s weight. The numerical values of each of the I− and I+
functions correspond to the weights of the arcs connecting
places and transitions. By convention arc weights of 1 are
not shown explicitly.

The rules for the enabling and firing of transitions can be
formalized thus:

Definition 3.2: (Firing rules of P/T nets)

If
0(, , , ,)P N P T I I M− += is a P/T net.

A marking of a P/T net is a function
0:M P →Ν , where

()M p is the number of tokens on place p, 0 {0, 1, ...}Ν = ;
A set 1P P⊆ is marked at marking M, only and if only

(iff) 1 : () 0p P M p∃ ∈ > ; otherwise 1P is unmarked or
empty at M; A transition t 　T is enabled at M, denoted by

[M t > , iff () (,),M p I p t p P−≥ ∀ ∈ ; A transition t 　T,
enabled at marking M, may fire yielding a new marking M’
where

' () () (,) (,),M p M p I p t I p t p P− += − + ∀ ∈ ,

denoted by '[M t M> . In this case 'M is directly

reachable from M and we write 'M M→ . Let *→ be the
reflexive and transitive closure of → . A marking 'M is
reachable from M, iff * 'M M→ ; A firing sequence of
PN is a finite sequence of transitions 1 ... 0nt t nσ = ≥
such that there are markings

1 1, ..., nM M +
 satisfying

![, 1, ..., .i i iM t M i n+> ∀ = A shorthand notation for this

case is 1[M σ > and 1 1[nM Mσ +> , respectively. The

empty firing sequence denoted by ε and [M Mε >
always holds.

The firing of a transition when the P/T net has one
marking creates a new marking. The set of all markings

368 FUHUA LIN, QIN LI, DUNWEI WEN

which are reachable from 0M is known as the reachability set
of the net and the connections between the markings in this
set are represented by the reachability graph.

We extended P/T nets to model concurrent course taking
activities, complex course dependency relations (e.g. pre-
requisites,co-requisites), preferences (priorities), and
exclusion.

III. 2 Curriculum P/T Nets

Course-taking process for an e-learner can be viewed as a
process of changing the states of knowledge of the e-learner.
To take a course, a learner’s state of knowledge must meet
the prerequisite requirement. After completing a course, the
learner’s state of knowledge is changed. The process of
taking courses is then represented by a nondeterministic
firing and passing the markers. The state of knowledge of
a learner is thus denoted by the markup of the Petri net.

Definition 3.3 (Curriculum P/T nets):

A Curriculum P/T net
0(, , , ,)P N P T I I M− +=

is an extended P/T net,
0(, , , ,)P N P T I I M− +=

defined in Definition 3.1 and Definition 3.2 with the
following extensions.

(1) Transitions T: Learning a course is mapped as a
transition in a curriculum Petri Net, called course transition.
(2) Places P: We use places of P/T nets to indicate three
types of the states in a program-perusing process.
(a) Done Places: There is only one output place for each
course transition. That output place is named as Done Place.
For example, the output place for course transition "Java
Programming" is done place p2 in Figure 1.
(b) Ready Places: We use an input place to represent the
readiness of a prerequisite course of a course transition.
There may be zero, one or many input places for a course
transition. If a course has no prerequisite course, we still
add an input place for that transition. That input places are
names as Ready Places. If a done place of a course
transition may be a ready place of another course transition.
For example, course “Object-Oriented Programming
(COMP501)” has no prerequisite courses in the program; its
input place is Ready place p1; p2 is also a Ready place of
course transition “Distributed Systems (COMP689)” as
shown in Figure 1.

Figure 1: Example for Ready Places, Done places, and course transition.

(c) Choice places: we use a special place as a common
input place of a set of course transitions to represent a
situation of multiple choices in a curriculum. For example,

an MSc IS student at Athabasca University can take only
either “IS integration essay” or “IS Integration Project”,
once the student completes the IS Foundation Courses and
Core Courses. So, we set a Choice place p3 to represent the
case of exclusion (see Figure 2).

Figure 2: Example for choice places

 (3) Markings M: The markings in an input place p of a
course transition t represent the readiness of the prerequisite
course t0 in which the place p is its output place. If there is
a token in an output place of a course transition, then the
student already finishes the course.
(4) Incidence functions I+, I-: Considering one course can
be the prerequisites of many courses, and it is hard to predict
how many succeed courses of course t will be selected by a
learner pursuing a program. Also, a learner may re-take a
course to get a better mark. To keep the status that this
course has been completed during the process of the
program completion, we use a special incidence functions
for all places in curriculum P/T nets:

• Once course t is done, one token will be created in
its Done place p, i.e. (,) 1I p t+ = ;

• No token in a Ready place p will be destroyed
when its course transition t is fired, i.e.

(,) 0I p t− = ;
• For a Choice place, one token will be removed

from it when its course transition is fired, i.e.
(,) 1I p t− = .

(5) Firing rules: We extend the ordinary P/T nets by
assigning a new firing rule:

A transition t in T is enabled at M, denoted by [,M t > iff
the condition predicate pre(t) holds: predicate pre(t) is
formed by using the Boolean operators (AND, OR, NOT)
over the place set {M(p): (,) 0, }I p t p P− > ∈ .

The predicate only contains Boolean operators OR, AND,
and NOT, and does not contain XOR operator, because the
case of exclusion is represented by Choice places.

We classify the all possible pre-requisites into four
categories:

Basic type:
(1) AND: 1 2 . . . nC C C∧ ∧ ∧ ;
(2) OR:

1 2 . . . mC C C∨ ∨ ∨ ;
(3) n OUT of m: {n, 1 2 ... mC C C∨ ∨ ∨ };
More generally, complex type:
(4) 1 2 ... lG G G∧ ∧ ∧ ,
Gi (i = 1, 2, …, m) is a condition expression of ‘n OUT OF

p1
OOP

p2
DS

p3

IS Integration

IS Integration

KNOWLEDGE MODELING FOR DEVELOPING PROGRAM PLANNING AGENTS 369

m’ type.
For example, one of the most commonly-used

prerequisite conditions is “to take course C, learners must
take X course out of Y courses, some are mandatory”. The
condition represents that a student must take X prerequisite
courses of course C, from Y courses to enable the course
transition P. some of them are mandatory, Then the pre(t)
can be described as follows:
 (1) ∀p in P, if the course transition which uses p as a Done
place is a necessary course (the inscription of Arc
connecting the input place and the transition is MAND-
ATORY) then () 0M p > ; and
(2) (() (,))P M p I p t X−× ≥∑ .

IV. Petri Net Markup Language

Petri Net Markup Language (PNML) is an XML based
standard format for the interchange of Petri nets. The main
elements in the PNML file for a curriculum are Transition,
Place, and Arc. These three elements represent the three
kinds of basic elements in a Curriculum Petri Net. Each of
those elements has its sub-elements. To represent
curriculum Petri nets using PNML, we do not have any
element for the firing rules in the PNML, because we do not
use a standard firing rule to fire the course Petri nets
automatically. Instead, we set up a special business rule
that implemented to fire the transitions of curriculum Petri
nets.

In order to illustrate the PNML format, Figure 3 shows a
very simple sub-net of a curriculum Petri net shown in
Figure 1 and its corresponding PNML description. In
between the <place id="p1"> and </place> tags, everything
about that place is described. The value of its initial
marking is contained between the tags of that name. The
transitions are similarly described, whilst the arcs record
their starts and ends as the nodes which they connect.

<?xml version="1.0" encoding="ISO-8859-1"?>
<pnml>
 <net id="n1" type="BlackTokenNet">
 <name> An Example of Curriculum Petri Net </name>
 <place id="READYCOMP501">
 <marking> <value>1</value> </marking>
 <name>
 <value>READYCOMP501</value>
 </name>

<initialMarking><value>1</value></initialMarking>
 </place>
 … …
 <arc id="a1" source="READYCOMP501"

target="COMP501">
 <inscription>

<requirement>MANDATORY</requirement>

 <direction>input</direction>
 <value>0</value>
 </inscription>
 </arc>
 … …
 <transition id="COMP501">
 <name>
 <value>1</value>
 </name>
 </transition>
 </net>
</pnml>

Figure 3: An example of PNML-represented curriculum Petri nets.

To represent the complex relation of prerequisite courses
in the <value> in transition node of the PNML, we use a
special expression

<value>
m1, course1, course 2, …, course n1;
m2, course1, course 2, …, course n2;
…
ml, course 1, course 2, …, course nl
<value>

(l > 0, mi < ni, i =1, 2, …, l). Here symbol ';' separates
course groups. l is the number of the groups. mi is the
number of the required courses and ni is the number of the
courses to be selected.

For example, the value element in the transition node of
the PNML for COMP696 is:

<value>
 4,COMP501, COMP503, COMP504, COMP601,;
 5,COMP603,COMP604,COMP605,COMP607,
 COMP610, COMP695,COMP617,;
 </value>

Here symbol ';' separates course groups. So, COMP696
has two course groups as its prerequisite courses. In the first
course group, there are four courses, and four courses are
required to be taken in that course group. It actually means
every course is MANDATORY. In the second course group,
there are seven courses, and five courses are required to be
taken in that course group.

In this value string, we can’t tell which course is
MANDATORY or OPTIONAL. We can get that information
from the inscription of Arc connecting the input place and
the transition. In this example, among all these prerequisite
courses in the second course group, only COMP695 is
MANDATORY.

V. Web-Based Program Knowledge Editor

We developed a Petri nets based knowledge editor by using
an extended PNK [15] which is a Java-based Petri Net

370 FUHUA LIN, QIN LI, DUNWEI WEN

Kernel (PNK) providing an infrastructure for bringing ideas
for analyzing, for simulating, or for verifying Petri Nets into
action. Petri nets can be loaded and saved in PNML [16], a
language for the description of Petri nets based on XML.
This Web-based knowledge editor provides administrators
with a convenient tool for the construction and maintenance
of program models by adding, updating, or deleting courses,
prerequisites, co-requisites, and rules. Figure 4 and 5 show
the four steps to adding a course into course dependency
database using the developed Web-based program
knowledge editor.

Figure 4: Step 1 and step 2 of adding a course into course dependency

database using the Web-based program knowledge editor.

Figure 5: Step 3 and step 4 of adding a course into course dependency using

Web-based program knowledge editor.

We applied the ontology-driven software development
methodology for Web services and agents for the Semantic
Web to develop a program planning agent --- e-Advisor [17].
Maximizing openness and choice can lead to learners
making poor choices, thus flexible systems need to be
accompanied by strong advice, monitoring and support
systems [18]. Our continuing challenge is to maximize the
quality and, availability of this support while continually
reducing its cost. Given the wide number of courses
choices or paths through the curriculum, it is important that
each student be assigned an academic advisor who is a

faculty member of the School of Computing and Information
Systems. To be effective, advisors and faculty need to
understand each individual student’s educational and career
objectives, their time and financial constraints, and their
progress through the program. These can then be matched
against degree requirements, course start dates, course
availability, and prerequisites in order to generate a
personalized course path. The provision of effective
program advice for the average of 30 graduate students per
faculty member is a time consuming task. In order to meet
the students’ needs and to reduce the workload of the
advisors, we are developing an intelligent agent able to
provide the students with an automated MSc IS Graduate
program scheduling service (GPSS). On behalf of the
students’ advisors, the agent will assist them in generating
up-to-date, personalized, and optimal study plans by
constantly monitoring and utilizing related information
resources.

The plan generation is executed by the Petri net program
in the MSc IS ontology as a constraint-solving process. To
communicate with Web services, the scheduling agent has to
wrap its messages as SOAP messages. We are using Axis
(http://ws.apache.org/axis/) and Java to build and deploy all
Web services.

VI. Conclusions

The curriculum P/T net model proposed in this paper is able
to represent accurately and dynamically the course-taking
procedure for a given curriculum, provide a graphic tool for
knowledge representation of the type of precedence relations
constraints, provide a powerful simulation tool for program
planning, give all possible solutions/study plans by
simulation tracing or reachability analysis.

We are working on the verification (model-checking)
module of curriculum Petri nets based program models and
Web Services for Accessing PNML-represented program
models. We are also exploring how to apply this approach
to modeling concept ontology for developing intelligent e-
learning systems.

Acknowledement

We would like to thank National Science & Engineering
Research Council (NSERC) of Canada and Athabasca
University for sponsoring this research project.

References

[1] Golumbic, M. C., M. Markovich, S. Tsur, and U. J. Schild, A

Knowledge-Based Expert System for Student Advising, IEEE
Transactions on Education, Vol. E-29, No. 2, May 1986，pp 120-
124。

[2] Cutright, K. W., R. Williams and D. Debald, Design of a PC-based
Expert System for Academic Advising, Computers & Industrial

KNOWLEDGE MODELING FOR DEVELOPING PROGRAM PLANNING AGENTS 371

Engineering, Vol. 21, No. 1-4, pp.423-427, 1991.
[3] Gunadhi, H., K-H Lim, W-Y Yeong, PACE: a planning advisor on

curriculum and enrolment, Proceedings of the 28th Hawaii International
Conference on System Sciences (HICSS'95), 01 04 - 01, 1995, Hawaii,
USA, pp.23-31.

[4] Mallory, J. R., Using Current Artificial Intelligence Techniques to
Advise Students, Computer Applications in Engineering Education, Vol.
1 (2), pp. 173-177, 1993.

[5] Kim, J. J., A Framework of an Integrated Knowledge-Based System for
Academic Advising, Int. J. Engng. Ed. Vol. 8, No. 6, pp. 427-435, 1992

[6] Napper, S. A., K. V. Bertrand and B. L. Robey, REGAD: An Expert
System for Registration Advising, Int. J. Engng. Ed. Vol. 8, No. 4, pp.
258-263, 1992.

[7] Miller, S. L., and L. G. Occeña, Design and Development of an Expert
System for Undergraduate Course Advising, Int. J. Engng. Ed. Vol. 8,
No. 1, pp. 43-55, 1992.

[8] Reisig, W., EATCS, Monographs on Theoretical Computer Science,
W.Brauer, G. Rozenberg, A. Salomaa (Eds.), Springer Verlag, Berlin,
1985.

[9] Marinescu, D. C., Internet-Based Workflow Management: Towards a
Semantic Web, John Wiley & Sons, ISBN 0-471-43962-2

[10] Nazareth, D. L., Investigating the Applicability of Petri nets for Rule-
based system verification, IEEE Trans. on Knowledge and Data
Engineering, vol.4, no.3, 1993, pp.402-415.

[11]Portinale, L., Behavioral Petri Nets: A Model for Diagnostic

Knowledge Representation and Reasoning, IEEE Trans. on SMC –Parts
B, vol. 27, no. 2, 1997, pp184-195

[12] Perdu, Didier M. and Alexander H. Levis, Requirements
Determination using the Cube Tool Methodology and Petri Nets, IEEE
Trans. on SMC, vol.23, no.5, 1993, pp1255-1264

[13] Muro-Medrano, P. R., J. A. Banares, and J. Luis Villarroel, Knowledge
Representation-Oriented Nets for Discrete Event System Applications,
IEEE Trans. on SMC --- Part A: Systems and Humans, vol. 28, No.2,
March 1998 pp.183-198

[14] Lee, K., and M. Y. Jung, Petri Net Application in Flexible Process
Planning, Computers and Industrial Engineering, Vol. 27, No. 1-4,
pp.505-508, 1994

[15] PNK: http://www.informatik.hu-berlin.de/top/pnk/.
[16] Billington, J., S. Christensen, K. van Hee, E. Kindler, O. Kummer, L.

Petrucci, R. Post, C. Stehno, M. Weber, The Petri Net Markup Language:
Concepts, Technology, and Tools, ICATPN 2003, Eindhoven,
Netherlands, June 2003

[17] Lin, F, P. Holt, S. Leung, Q. Lin, A Multi-Agent and Service-Oriented
Architecture for Developing Adaptive E-Learning Systems, IJCEELL
Special Issue on Semantic Web in E-Learning (to appear）

[18] Tait, A., & Mills, R. (2003). Rethinking learner support in distance
education: Change and continuity in an international context. London:
Routledge.

	Knowledge Modeling for Developing Program Planning Agents
	Microsoft Word - 366-371 LinLiWen_soft_.doc

