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Competitive Strategies for On-Line Advertisement-Place Auction

Zhang E
Shanghai University of Finance and Economics, Shanghai, China, 200433

Email: eezhangee@hotmail.com

Abstract: For the online problem of Internet Search
Engines’ Keyword Advertisement-place auction, two
online models are present in this paper. The number
of the auction phases is known or unknown beforehand
respectively in the two models. For the first model we
propose the Multi-Level of Accepted Price Strategy
(abbr. MLAP) and prove it to be O(Φ1/4)-competitive,
where Φ is the ratio of the highest bid to the lowest
one in the auction. For the second model a strategy
similar to the first one (abbr. MLAP1) is put forward
and proved to be (2

√
Φ − 1)-competitive. Furthermore,

the experimental results show that in both models the
experimental ratios between what the optimal strategy
and the online strategies gain are much better than
the theoretical ones, indicating that the two strategies
perform much better in practice than in theory. In prac-
tice, these strategies may help to realize the automatic
auction of heterogeneous objects that have similar traits
to advertisement-places.

Keywords: Advertisement-Place Auction;
Online Strategy; Competitive Ratio.

I. Introduction

Since 1993, the advertisement-place auction has brought
Chinese CCTV great revenue each year. On Nov. 18,
2004, it obtained a revenue of 5.482 billion yuan by auc-
tioning some golden period advertisement-places of year
2005. Recently many Internet Content Providers (Abbr.
ICP) adopt to price their advertisement-place by auction
gradually [1]. In an auction, the highest bid wins the first
advertisement-place, the second highest bid wins the sec-
ond place, and so on. This is a kind of heterogenous ob-
ject auction in which each bidder demands one unit of
object.

In benchmark auction model, the auctioneer auctions
one object and each bidder demands one. The auctioneer
designs an auction mechanism to maximize his revenue.
In the online model, however, we use the competitive ra-
tio to gauge the efficiency of an online strategy or mech-
anism. The competitive ratio is equals to the revenue
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obtained by the optimal offline strategy to that by the
online strategy [2].

There are lots of literature on online auction. Ziv
Bar-Yossef et al. [3] presented an online model of digital
object auction and studied the competitiveness of an on-
line strategy in the condition of compatibility. They gave
a O(e

√
loglogh)-competitive randomized strategy where

h is the ratio between the highest and the lowest esti-
mated values by bidders. Avrim Blum et al. [4] studied
a digital multi-object online model. A randomized online
learning strategy, called WM, was given and proved to
be O(e

√
loglogh)-competitive. Both Ziv Bar-Yossef and

Avrim Blum assumed that the estimated values of all
the objects is in [1, h] and each bidder can only select
one of the l bids. That is, the bid is discrete. Thus, an
interesting question is what the competitive ratio will be
if a bid may be an arbitrary value in [1, h]. In this paper
we will focus on the continuous case of bid price.

The rest of this paper is organized as follows. Section
2 discusses the first model where the auctioneer knows
the number of auction phases at the beginning of the
auction. An effective strategy is put out and proved to
be O(Φ1/4)-competitive. The second model of unknow-
ing the number of auction phases at the beginning is
analyzed in section 3, and a competitive strategy is pro-
posed. In section 4 some simulation results of the two
strategies are presented. Finally, section 5 concludes this
paper.

II. The Number of the Auction Phases Is
Known Beforehand

II.1 Model Description

In this section we will discuss the case that the auction-
eer know the number of bidders or the auction phases at
the beginning. For expressional convenience, we call ad-
vertisement places heterogeneous objects. We first give
the following four assumptions.

a) There are totally m(≥ 2) heterogeneous objects.
The price of each bid is in [v, v] satisfying v

v = Φ. The
above information is the common knowledge.

b) The auctioneer obtains no value from a heteroge-
neous object if he keeps it. That is, the auctioneer gets
a profit from the object only when it is sold successfully.
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c) There are n bidders in the auction, only one of
which arrives and bids at each phase. Denote by σ =
{b1, . . . , bn} the whole auction process where bi is the
bid of bidder i (1 ≤ i ≤ n). n is known by the auctioneer
beforehand.

d) The auctioneer must decide whether to accept bid
bi on its arrival since bi will leave the system if it has not
been accepted before the arrival of the next bid.

By the assumption b), the auctioneer shall try to sell
as many heterogeneous objects as possible, and for each
object the price shall be as high as possible. The objec-
tive is to maximize the total revenue of accepted bids.
More precisely, max

∑m
j=1 pj where pj ∈ [v, v]

⋃{0} is
the accepted price for the jth heterogeneous object.
pj = 0 if the auctioneer keeps the jth object.

II.2 The Multi-Level of Accepted Price Strategy

According to the model given above, when a bid arrives,
the auctioneer decides whether to accept the bid but not
to assign an object to the bid immediately. The auc-
tioneer also knows n and [v, v] at the beginning of the
auction. Thus, we give an effective strategy called Multi-
Level of Accepted Price (Abbr. MLAP). The main idea
of MLAP is to divide the bidding support [v, v] into sev-
eral sub-supports and accept a fixed number of bids in
each sub-support.

MLAP is described as follows. Assume that there
are w bids accepted at the beginning of the ith phase. If
n− i < m− w, that is, the number of the rest phases is
less than the number of acceptable bids, MLAP accepts
all the bids arriving, including bi. Otherwise, MLAP
accepts x bids satisfying

αv ≤ bi <
√

φv, (1)

y bids satisfying
√

φv ≤ bi < βv, (2)

z bids satisfying
βv ≤ bi < φv, (3)

and (m− x− y − z) bids satisfying

bi = φv = v, (4)

respectively, where x, y, z 1 ≤ α <
√

Φ and
√

Φ ≤ β < Φ
are some positive constants determined later. The total
number of accepted bids is at most m. In special, if bi

satisfies (4) and MLAP has accepted (m − x − y − z)
bids satisfying (4), then MLAP will accept bi if only the
total number of accepted bids is less than m. Similarly,
if bi satisfies (3) and MLAP has accepted (m−x−y−z)
bids satisfying (4) and z bids satisfying (3), then MLAP
will accept bi if only the total number of accepted bids is
less than m. If bi satisfies (2) and MLAP has accepted y

bids satisfying (2) but less than x bids satisfying (1), then
MLAP will accept bi and count the number of accepted
bids by (1) plus 1.

II.3 Competitive Analysis

In this section we will analyze the competitiveness of
MLAP. We first give the following theorem and the rest
of this section is contributed to the proof of the theorem.

Theorem 1 MLAP is O(Φ1/4)-competitive.

Proof. We utilize the adversary strategy and worst case
analysis to prove the theorem. Assume that an adver-
sary always tries to design the worst bid input sequence
to make MLAP behave worst, making the optimal strat-
egy OPT obtain the most revenue and MLAP obtain the
least. More precisely, the adversary will make MLAP ac-
cept the lowest bids as many as possible and OPT accept
the highest bids as many as possible. For the whole auc-
tion process σ = {b1, . . . , bn}, denote by M(σ) and O(σ)
the total revenues obtained by MLAP and OPT respec-
tively. According to the construction of MLAP, there are
four possible bid input worst cases.

Case 1. The highest bid in σ is less than αv. The
adversary try to make MLAP accept the lowest bids as
many as possible and to make OPT accept bids with
value a little less than αv. In the first n − m phases,
all the bids equal αv − ε (ε → 0+), and the rest m bids
equal v. OPT will accept m bids with value αv − ε but
MLAP will accept the last m bids with value v for all the
bids do not satisfy the inequalities in the construction of
MLAP. Thus, in this case the ratio of what OPT obtains
to what MLAP obtains equals O(σ)

M(σ) = m(αv−ε)
mv < α.

Case 2. The highest bid in σ is less than
√

Φv. The
adversary releases the first x bids with value αv, the
following m bids with value

√
Φv−ε and the last n−x−m

bids with value v. MLAP will accept the first x bids and
the last m − x bids due to the construction of MLAP.
However, OPT will accept the m bids with value

√
Φv−

ε. Thus, in this case the ratio between what OPT and
MLAP obtain equals O(σ)

M(σ) = m(
√

Φv−ε)
xαv+(m−x)v < m

√
Φ

xα+m−x .

Let m
√

Φ
xα+m−x = α. We have that

x =
(
√

Φ− α)m
(α− 1)α

. (5)

Thus, if the above equation holds the ratio between what
OPT and MLAP obtain is at most α in this case.

Case 3. The highest bid in σ is less than βv. The
adversary releases the first x bids with value αv, the
following y bids with value

√
Φv and then m bids with

value βv − ε, and the last n− x− y −m bids with value
v. MLAP will accept the first x + y bids and the last
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m−x−y bids due to the construction of MLAP. However,
OPT will accept the m bids with value βv − ε. Thus, in
this case the ratio between what OPT and MLAP obtain
equals O(σ)

M(σ) = m(βv−ε)

xαv+y
√

Φv+(m−x−y)v
< mβ

xα+y
√

Φ+m−x−y
.

Let α = mβ

xα+y
√

Φ+m−x−y
. Together with equation (5),

we have that

y =
(β −√Φ)m
(
√

Φ− 1)α
. (6)

Thus, if equations (5,6) hold the ratio between what
OPT and MLAP obtain is at most α in this case.

Case 4. The highest bid in σ is less than v. The
adversary releases the first x bids with value αv, the
following y bids with value

√
Φv and z bids with value

βv, and then m bids with value v − ε, and the last n −
x− y − z −m bids with value v. MLAP will accept the
first x + y + z bids and the last m− x− y − z bids due
to the construction of MLAP. However, OPT will accept
the m bids with value v − ε. Thus, in this case the ratio
between what OPT and MLAP obtain equals O(σ)

M(σ) =
m(v−ε)

xαv+y
√

Φv+zβv+(m−x−y−z)v
< mΦ

xα+y
√

Φ+βz+m−x−y
. Let

mΦ
xα+y

√
Φ+βz+m−x−y

= α. Together with equations (5)
and (6), we have that

z =
(Φ− β)m
(β − 1)α

. (7)

Thus, if equations (5,6,7) hold the ratio between what
OPT and MLAP obtain is at most α in this case.

Based on the above argument, if x, y and z satisfy the
equations (5,6,7) respectively and inequality x + y + z ≤
m, MLAP is α-competitive. Combining x + y + z ≤ m
with equations (5,6,7), we have that

(
√

Φ− α)m
(α− 1)α

+
(β −√Φ)m
(
√

Φ− 1)α
+

(Φ− β)m
(β − 1)α

≤ m. (8)

The rest problem is to judge the existence of such
an α that inequality (8) holds and 1 ≤ α ≤ √

Φ.
Let B = (β−√Φ)

(
√

Φ−1)
+ (Φ−β)

(β−1) , inequality (8) turns out

to be α2 − αB + B − √
Φ ≥ 0. Solving the in-

equality we have that α ≤ B−
√

B2−4(B−√Φ)
2 or α ≥

B+
√

B2−4(B−√Φ)
2 . The solution α ≤ B−

√
B2−4(B−√Φ)

2
is deleted since it does not satisfy α ≥ 1. Thus,

α ≥ B+
√

B2−4(B−√Φ)
2 . Since the competitive ratio is

an increasing function of α, when α = B+
√

B2−4(B−√Φ)
2 ,

MLAP reaches the optimal competitive ratio. Let F (β)

= B+
√

B2−4(B−√Φ)
2 . Taking the differential of β and

equating it with zero, we get that B′ = 0 or −1 =
B−2√

B2−4(B−√Φ)
. The latter solution is deleted for Φ ≥ 1.

By B′ = 0, together with the definition of B, we

have that β = 1 + (
√

Φ − 1)
√√

Φ + 1 and then B =

2
√√

Φ + 1 − 2. Thus, α = B+
√

B2−4(B−√Φ)
2 = (

√
2 +

1)(
√√

Φ + 1 − 1) and MLAP is O(Φ1/4)-competitive.
The relevant values of x, y and z can be obtained by
equations (5), (6) and (7). We complete the proof.

III. The Number of the Auction Phases Is
Unknown Beforehand

III.1 Model Description

In this section we will discuss the case that the auction-
eer does not know the number of the auction phases at
the beginning. The assumptions of this model are basi-
cally the same as those of the previous model. The only
difference lies in assumption c) where the auctioneer does
not know n beforehand in this model. The objective is
to maximize the total revenue of accepted bids.

III.2 The Multi-Level of Accepted Price-1 Strat-
egy

Since the auctioneer does not know when the auction ac-
tivity will end, we give an effective strategy called Multi-
Level of Accepted Price-1 (Abbr. MLAP1). The main
idea of MLAP1 is that no matter at which phase the
auction ends, MLAP1 ensures that what it has obtained
is at least a fixed factor of what OPT has obtained.

MLAP1 is described as follows. MLAP1 accepts
m
α bids in [v,

√
φv), (1−1/

√
Φ)m

α bids in [
√

φv, v) and
[a−(2−1/

√
Φ)]m

α bids with value v respectively. The to-
tal number of accepted bids is at most m. In special,
if MLAP1 has accepted (1−1/

√
Φ)m

α bids in [
√

φv, v) but
less than m

α bids in [v,
√

φv), then a new bid with value
in [

√
φv, v) will be accepted and count the number of

the total accepted bids plus 1. Similarly, if MLAP1 has
accepted [a−(2−1/

√
Φ)]m

α bids with value v but less than
(1−1/

√
Φ)m

α bids in [
√

φv, v) or m
α bids in [v,

√
φv), then

a new bid with value in [
√

φv, v) or [v,
√

φv) will be ac-
cepted and count the number of the total accepted bids
plus 1.

III.3 Competitive Analysis

In this section we will analyze the competitiveness of
MLAP1. We give the following theorem and the rest of
this section is contributed to the proof of the theorem.

Theorem 2 MLAP1 is (2
√

Φ− 1)-competitive.

Proof. The proof idea is similar to that of MLAP. For
the whole auction process σ = {b1, . . . , bn}, denote by
M1(σ) and O(σ) the total revenues obtained by MLAP1
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and OPT respectively. There are two possible worst
cases for MLAP1.

Case 1. The highest bid is less than
√

Φv. The ad-
versary will release the first m

α bids with value v and the
following m bids with value (

√
Φ− ε)v and no more bid

arrives. In this case, MLAP1 will only accept the first m
α

bids and reject the following m bids due to its construc-
tion. OPT will accept the m bids with value (

√
Φ− ε)v.

Thus, the ratio between what OPT and MLAP1 obtain
equals O(σ)

M1(σ) = (
√

Φ−ε)vm
(m/α)v < α

√
Φ.

Case 2. The highest bid is less than Φv = v. The
adversary will release the first m

α bids with value v and

the following (1−1/
√

Φ)m
α bids with value

√
Φv, and m

bids with value (Φ− ε)v and no more bid arrives. In this
case, MLAP1 will only accept the first (2−1/

√
Φ)m

α bids
and reject the following m bids due to its construction.
OPT will accept the m bids with value (Φ− ε)v. Thus,
the ratio between what OPT and MLAP1 obtain equals
O(σ)

M1(σ) = (Φ−ε)vm

(m/α)v+
(1−1/

√
Φ)m

α

√
Φv

< αΦ
1+(1−1/

√
Φ)
√

Φ
= α

√
Φ.

Based on the analysis of the above two cases, MLAP1
is α

√
Φ-competitive. Moreover, the total accepted bids

shall be no more than m, that is, m
α + (1−1/

√
Φ)m

α ≤ m.
Solving the inequality we have that α ≥ 2−1/

√
Φ. Since

the competitive ratio is an increasing function of α. Let
α = 2 − 1/

√
Φ, then MLAP1 is (2

√
Φ − 1)-competitive.

Hence, the proof is completed.

IV. Experiment

In the previous two sections we proposed two effective
strategies for two models respectively and proved their
competitiveness theoretically. In this section we will give
some simulations and compare the experimental results
to the theoretical ones.

The following is the simulation for both mod-
els. The original data are from www.baidu.com
website. There are 83 bids for the keyword
”Flower” on Feb. 12, 2005. The highest bid is 6.75 yuan
and the lowest one is 0.3 yuan. Thus, for the model of
knowing the auction phases beforehand, the bid phases
n = 83 and the ratio between the highest bid and the
lowest one Φ = 22.5. The theoretical value of the com-
petitive ratio of MLAP can be obtained by Theorem 1,
equaling (

√
2 + 1)(

√√
Φ + 1 − 1) = 3.37. On the other

hand, in the experiment, the bid arrival sequence is equal
to the data list in the website. some of the experiment
results by MLAP are shown in form 1. m = 20, 30, 40
are the numbers of heterogeneous objects. For each m,
the x, y, z values are figured out by equations (5), (6)
and (7). We can see that the highest value of the com-
petitive ratio equals 1.96 in the form, which is much less
than the theoretical value. The reason is that the theo-

retical result is proved by worst case analysis. However,
in practice, the worst case rarely happens.

Form 1 Some simulation results of the first model.

Form 2 Some simulation results of the second model.

For the model of unknowing the auction phases before-
hand, the original data are the same as those of the previ-
ous model. The number of auction phases n are produced
randomized in [1, 83]. For each n, we randomly select n
numbers from the 83 bids, and the bid arrival sequence
is randomized produced by the n bids. For each exper-
iment, the relevant theoretical competitive ratio can be
figured out by the n bids and Theorem 2, as shown in
Form 2 below T-ratio. We set m = 20, 40 and obtain the
experiment results by MLAP1. The optimal revenue,
MLAP1 revenue and the competitive ratio below E-ratio
in the experiment are shown in Form 2. Obviously, all
the values below E-ratio are much less than those below
T-ratio. The reason is the same as that of the previous
model.

V. Conclusion

In this paper we analyze the online problem of
network advertisement-place auction. We present
two online models where the number of auc-
tion phases are known or unknown beforehand
respectively. Two deterministic strategies are
proposed and proved to be O(Φ1/4) and (2

√
Φ

− 1)-competitive respectively where Φ is the ratio
between the highest and the lowest bids in the auction.
In practice, these strategies may help to realize the
automatic auction of heterogeneous objects that have
similar traits to advertisement-places. There are still
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some problems that can be further analyzed. For
example, whether there exist better deterministic
strategies for the two models or what is the lower
bound of deterministic strategies? Moreover, if a bidder
can submit a vector of bids for different objects, then
whether there exists an efficient strategy for this case?
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