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Abstract:  Data warehouses contain data consolidated 
from several operational databases and provide the historical, 
and summarized data which is more appropriate for analysis 
than detail, individual records. Fast response time is 
essential for on-line decision support. A bitmap index could 
reach this goal in read-mostly environments. For the data 
with high cardinality in data warehouses, a bitmap index 
consists of a lot of bitmap vectors, and the size of the bitmap 
index could be much larger than the capacity of the disk. 
The WAH strategy has been presented to solve the storage 
overhead. However, when the bit density and clustering 
factor of 1's increase, the bit strings of the WAH strategy 
become less compressible. Therefore, in this paper, we 
propose the FZ strategy which compresses each bitmap 
vector to reduce the size of the storage space and provide 
efficient bitwise operations without decompressing these 
bitmap vectors. From our performance simulation, the FZ 
strategy could reduce the storage space more than the WAH 
strategy. 
 
Keywords:   bitmap index,  compress,  data warehouse,  
OLAP, storage. 
 
I. Introduction 
 
The Data Warehouse (DW) is a subject-oriented, integrated, 
time-variant, and non-volatile collection of data in support 
of management's decision-making process. In other words, a 
DW is large, special-purpose database that contains data 
integrated form a number of independent sources, supporting 
clients who wish to analyze the data for trends and 
anomalies. The process of analysis is usually performed with 
queries that aggregate, filter, and group the data in a variety 
of ways. OLAP is designed to provide aggregate information 
that can be used to analyze the contents of databases and 
data warehouses. Because the queries are often complex and 
the warehouse database is often very large, processing the 
queries quickly is a critical issue in the warehousing 
environment. 

The read-mostly environment of data warehousing 
makes it possible to use more complex indexes to speed up 
queries than in situations where concurrent updates are 
present [19]. Bitmap indexing has been touted as a 
promising strategy for processing complex adhoc queries in 
read-mostly environments, like those of decision support  
                                                        

The WAH strategy [21] has been presented to solve the 
storage overhead. The main advantage of the WAH strategy 
is that compressed indexes are much smaller than the 
uncompressed ones and the average processing time is about 
the same [22]. However, when the bit density and clustering 
factor of 1's increase, the bit strings of the WAH strategy 
become less compressible. Therefore, we propose the 
Filtering-Out-Zeros (FZ) strategy to compress each bitmap 
vector to reduce the size of the storage space. The basic idea 
of the FZ strategy is to remove some continuous 0's in the 
bitmap vector, since there often exist large amount of 0's in 
the bitmap vector. For the bitmap vector with 128 bits (as 
shown in Figure 1-(a)), after compression, our FZ strategy 
stores only 40 bits (as shown in Figure 1-(b)), as compared 
to 96 bits in WAN strategy (as shown in Figure 1-(c)), where 
the length of the basic unit for compressing in FZ strategy is 
eight bits and that in WAH strategy is a word (= 32 bits).  
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systems. Most of the major commercial database systems 
now support some form of a bitmap index. A significant 
advantage of bitmap indices is that complex logical selection 
operations can be performed very quickly, by performing 
bitwise AND, OR, and NOT operations. 

Data warehouses are essential for modern business to 
support the decision making. For various applications in data 
warehouses, where most of the attributes have high 
cardinality, the classical bitmap index produces one bitmap 
for each distinct value of the attribute being indexed [4] [5] 
[6] [8] [11] [13] [14] [15] [16] [17] [18] [19]. The size of the 
indices could be much larger than the size of the dataset. The 
main advantage for using a compressed bitmap index is to 
reduce the space requirement. However, the bitmaps from 
the bitmap indices are often very sparse; that is, they contain 
mostly zero bits. Moreover, most of the generic compression 
algorithms do not support fast bitwise logical operations, the 
compressed bitmap indices are usually slower in processing 
queries than their uncompressed counterparts. To increase 
the efficiency of query processing, a number of specialized 
compression algorithms have been developed 
[1][7][12][17][18][21][22]. The Byte-aligned Bitmap Code 
(BBC) is an example of such a strategy [1]. This strategy 
permits efficient operations without decompression, thereby 
reducing both the disk space requirement and the memory 
requirement for performing operations. Another specialized 
compression strategy called the Word-Aligned Hybrid run-
length code (WAH) [21] is an efficient strategy that 
significantly outperforms BBC. 
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Figure 1: A comparison of compressed bitmap vector: (a) the bitmap 

vector with 128 bits; (b) the bitmap vector compressed by the WAH strategy; 
(c) the bitmap vector compressed by the FZ strategy. 

 
Although it is easy to compress bitmap vectors, the 

query processing time is increasing on those compressed 
bitmap vectors. This is because the operations on the 
compressed bitmaps are much slower than the same 
operations on the uncompressed ones [22]. Therefore, we 
also propose the related bitwise AND and OR operations on 
those bit strings compressed by the FZ strategy. The time 
needed by one such operation on two operands is related to 
the size of the compressed bitmap vectors [21]. Therefore, 
the FZ strategy needs the smaller storage space than the 
WAH strategy, but also could take less time to perform the 
bitwise operation than the WAH strategy. In conclusion, our 
proposed range-based bitmap index strategies and the FZ 
strategy are suitable for processing attributes with thousands 
of distinct values. 

The rest of the paper is organized as follows. In Section 
2, we give a survey of the strategies of bitmap indexing for 
data warehouses. In Section 3, we present the FZ strategy to 
compress the bitmap vector by filtering out many zeros to 
reduce the size of the storage space. In Section 4, we study 
the performance of the FZ strategy. In Section 5, we give the 
conclusion. 
 

II.  Background 
 
Bitmap indexes were first developed for database use in the 
Model 204 product from Computer Corporation of America 
[9]. The strategy has been implemented in several 
commercial DBMSs (IBM, Informix, Oracle, Sybase) [3]. A 
significant advantage of bitmap indices over conventional 
hash and tree index is that complex logical selection 
operations can be performed very quickly, by performing 
bitwise AND, OR, XOR, and NOT operations supported by 
the hardware. And bitmap indexes can be much compact 
than the traditional B+ tree, especially for attributes with low 
cardinality [3][12]. On the other hand, tree structures, like 
the B-tree and R-tree, have a great drawback in the data 
warehouse. It is a well-known fact that tree structures 
degenerate when the number of dimensions is increased. 

Previous strategies for constructing bitmap indexes could 
be classified into two classes based on the goals of the 

improvement: (1) time, (2) space. Basically, some of 
strategies are related to improve the query processing time, 
while some of strategies are related to improve the huge 
storage space. For the strategies which aim to improve the 
query processing time could be further classified into two 
groups according to query types: exact query, including 
Simple Bitmap Index [10], Bit-Sliced Index [10], Encoded 
Bitmap Index [23] and range query, including Range-Based 
Bitmap Index [23], Range-Encoded Bitmap Index and 
Compressing Bitmap Index[12][21]. 

The basic idea behind bitmap indexing is to use a string 
of bits (0 or 1) to indicate whether an attribute in a tuple is 
equal to a specific value or not [10][23]. The position of a bit 
in the string denotes the position of a tuple in the table. The 
bit is set, if the content of an attribute is associated with a 
specific value. For example, the Simple Bitmap Index (SBI) 
on an attribute GENDER, with domain {Male, Female}, 
results in two bitmap vectors, say BM and BF. For BM, the bit 
is set to 1, if the corresponding tuple has the attribute 
GENDER = Male; otherwise, the bit is set to 0. For BF, the 
bit is set to 1, if the associated tuple has the attribute 
GENDER = Female; otherwise, the bit is set to 0, as shown 
in Figure 2. The simple bitmap index on the attribute 
GENDER, BGENDER, is the collection of bitmap vectors {BM , 
BF}. 
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Figure 2: An example of the simple bitmap index 

In the range-based index, a bitmap vector is used to 
represent a range, instead of a distinct value. For strategies 
supporting the range query, they could be further classified 
into two types: static and dynamic. For the static type, we 
mean that the range of each partition has the same width, 
regardless the type of data distribution. Two of well-known 
strategies for supporting static range bitmap indexes are the 
range encoding [2][20] and the interval encoding [3]. On the 
other hand, when the size of the range of each partition is 
not always the same, we call this approach dynamic range 
index. The Dynamic Bucket Expansion and Contraction 
strategy (DBEC) [23] dynamically construct bitmap vectors 
according to the types of data. 

Moreover, some strategies concern to reduce the storage 
space needed by large number of bitmap indexes. The Byte-
aligned Bitmap Code (BBC) [1] is based on the idea of run-
length encoding that represents consecutive identical bits by 
their bit values and their lengths. Given a bit sequence, the 
BBC strategy first divides it into bytes, and then groups the 
bytes. The Word-Aligned Hybrid code (WAH) [21] is much 
simpler and it stores compressed data in words rather than in 
bytes. 

WAH is similar to BBC which is a hybrid between the 
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run-length encoding and the literal strategy. There are two 
types of words in WAH: literal words and fill words. WAH 
uses the most significant bit of a word to distinguish 
between a literal word (0) and a fill word (1). This choice 
allows one to easily distinguish a literal word from a fill 
word without explicitly extracting the bit. The lower bits of a 
literal word contain the bit values from the bitmap. The 
second most significant bit of a fill word is the fill bit and 
the lower bits store the fill length. WAH imposes the word-
alignment requirement on the fills, it requires that all fill 
lengths be integer multiples of the number of bits in a literal 
word. The word-alignment ensures that logical operation 
functions only need to access words not bytes or bits.  

Figure 3 shows a WAH bit vector representing 128 bits. 
In this example, each computer word contains 32 bits. Each 
literal word stores 31 bits from the bitmap and each fill word 
represents a fill with a multiple of 31 bits. If the machine has 
64-bit words, each literal word would store 63 bits from the 
bitmap and each fill would have a multiple of 63 bits. The 
second line in Figure 3 shows how the bitmap is divided into 
31-bit groups and the third line shows the hexadecimal 
representation of the groups. The last line shows the values 
of the WAH words. The first three words are normal words, 
two literal words and one fill word. The fill word 80000002 
indicates a 0-fill of two-word long (containing 62 
consecutive zero bits). Note that the fill word stores the fill 
length as two rather than 62. In other word, we represent the 
fill length by multiples of the literal word size. The fourth 
word is the active word that store the last few bits that can 
not be stored in a normal word, and another word (not 
shown) is needed to stores the number of useful bits in the 
active word. Each WAH word (last row) represents a 
multiple of 31 bits from the bit sequence, except the last 
word that represents the four leftover bits. 

0000000F001FFFFF8000000240000380WAH (hex)

0000000F001FFFFF000000000000000040000380Group in hex

4 *110 *0, 21 *162 * 01, 20*0, 3*1, 7*031-bit groups

1, 20*0, 3*1, 79*0, 25*1128 bits

0000000F001FFFFF8000000240000380WAH (hex)

0000000F001FFFFF000000000000000040000380Group in hex

4 *110 *0, 21 *162 * 01, 20*0, 3*1, 7*031-bit groups

1, 20*0, 3*1, 79*0, 25*1128 bits

 
Figure 3: A WAH bitmap vector 

 
III.   The Filtering-Out-Zeros (FZ) Strategy 
 
A bitmap index consists of a set of bitmap vectors and the 
size of the bitmap index could be much larger than that of 
the disk. This is especially true for scientific databases 
where most of the attributes have high cardinality. The WAH 
strategy [21] has been presented to solve the storage 
overhead. The main advantage of the WAH strategy is that 
compressed indexes are much smaller than the 
uncompressed ones and the average processing time is about 
the same [22]. However, when the bit density and clustering 
factor of 1's increase, the bit strings of the WAH strategy 
become less compressible. Take Table 1 as an example, we 
observe an interesting property that there are magnificent 
continuous zeros in the bitmap index. If we can filter out the 

consecutive 0's and only record the rest of bits, the storage 
space of the bitmap index could be reduced. 

Table 1: An example of the range-based bitmap index 

 
To reduce the storage space of the bitmap index, we 

present the Filtering-out-Zeros (FZ) strategy. We take bitmap 
vector 4 in Table 1 as an example to illustrate the FZ strategy. 
First, we divide the total 16 bits into 2 bit strings, i.e., 
[00000000 01101001], and the length of each bit string is 8. 
Next, the first bit string includes only consecutive 0's, and 
the second one includes 1's. Therefore, we record the first bit 
string by 0, and the second one by 1, i.e., the first two bits in 
[01 01101001]. We still record the whole bits of the second 
bit string, [01101001], i.e., the last eight bits in [01 
01101001]. Finally, the original bitmap vector 4 [00000000 
01101001] has been stored as [01 01101001] after the 
process of the FZ strategy. In this example, the FZ strategy 
reduces the storage cost from 16 bits to 10 bits. 

Let's take another example shown in Table 2 to describe 
the FZ procedure in Figure 4. The variables used in the FZ 
strategy is shown in Table 3. In Table 2, the bitmap vector of 
raw data contains 48 bits, and every 8 bits among these 48 
bits construct a bit string. Therefore, there are 
w=n/BL=48/8=6 bit strings, where n is the number of the 
bits in each bitmap vector and BL is the length of the bit 
string. We use an array NZflag to record whether the bit 
string includes only consecutive 0's or not. The first, third, 
and 4th bit strings include only consecutive 0's in this 
example, and the first, third, and 4th bits of array NZflag are 
set to 0. The rest of bits of array NZflag are set to 1. The 
array NZflag is [010011] as shown in Table 2. According to 
NZflag, we know which bit string includes some 1's. Then, 
we use another array NZString to record the whole bits of the 
bit strings that include 1's. In Table 2, array NZString records 
3 bit strings that are composed of 0's and 1's. 

Table 2: An example of the FZ strategy 
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Figure 4: The FZ procedure 

 
Table 3: Variables used in the FZ, FZ_Retrieve, FZ_AND, and FZ_OR 

procedures 

 
 
 

 
Figure 5: The FZ_Retrieve procedure 

 
 
 
 

Table 4: An example of the FZ_Retrieve strategy 

 
 

Figure 5 states how to retrieve data from the compressed 
bitmap index. For example, shown in Table 4, there are 4 1's 
in the bitmap vector of raw data. After the process of the FZ 
strategy, the resulting arrays, NZflag and NZString, are 
shown in Table 4. Array NZString records those 4 1's. We 
use the array NZflag to calculate the position of 1's. The 
formula is 8*(i-1)+k, where i is the position of the ith bit 
string that contains 1's, and k is the kth 1's in this bit string. 
Therefore, the positions of the 4 bits are 8 (=0*8+8), 21 
(=2*8+5), 41 (=5*8+1), and 43 (=5*8+3), respectively. 
According to the calculation, we directly retrieve the 8th, 
21th, 41th, and 43th records, respectively. 

A significant advantage of bitmap indices is that 
complex bitwise operations can be performed very quickly, 
such as bitwise AND, OR, and NOT operations. Therefore, 
we explain the bitwise operations, including FZ_Retrieve, 
FZ_AND, and FZ_OR, on bitmap vectors which are stored 
after the process of the FZ strategy. 

Figure 6 illustrates how to perform an FZ_AND 
operation on those two compressed bitmap vectors. The 
variables used in FZ_AND operation are shown in Table 3, 
and the FZ_AND procedure is shown in   

Figure 7. The bitmap vector in Table 2 is recorded by 
NZflag1 and NZString1, and the bit vector in Table 4 is 
recorded by NZflag2 and NZString2. First, we get the 
finalNZflag=[000001] by NZflag1=[010011] AND 
NZflag2=[101001], as shown in the left part of Figure 6-(a). 
Next, according to the position of 1's in finalNZflag, we 
retrieve the corresponding bit strings temp1 and temp2 in 
NZflag1 and NZflag2, respectively, and add temp3 into 
finalNZString, where temp3 = temp1 AND temp2. Since the 
6th bit of finalNZflag in Figure 6-(a) is 1, we retrieve the bit 
string related to the 6th bit in NZflag1 from NZString1, 
[10101000], to temp1, and that in NZflag2 from NZString2, 
[10100000], to temp2, as shown in Figure 6-(b). After 
getting temp1 and temp2, we perform an AND operation on 
them, i.e., temp3 = [10101000] AND [10100000] = 
[10100000], as shown in Figure 6-(c), and add the bit string 
[10100000] into finalNZString, as shown in Figure 6-(d). 
After the process of the FZ_AND operation, we have 
finalNZString equal to [10100000], as shown in Figure 6-(d). 

This strategy provides efficient bitwise operations 
without decompression, which reduces both the requirement 
of the disk space and the memory space for performing 
bitwise operations. In this example, we perform 4 (=6+8) 
bitwise AND operations on them, where finalNZflag 
includes 6 bits, and finalNZString includes 8 bits. If we do 
not use the compressed bitmap vectors, we need to retrieve 
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48*2=96 bits and perform 48 bitwise AND operations. 
 

10101000
 10100000

(a)

 10100000finalNZString:

10000000 11110000 10101000

00000001 00001000 10100000

NZString1:
NZString2:

(d)

00000001 00001000 10100000
10000000 11110000 10101000

(b)

10101000
 10100000 and

(c)

10100000

temp1:
temp2:
temp3:

NZflag1:  010011
NZflag2:  101001

finalNZflag:

and

000001

010011
101001 and

000001

and

 
Figure 6: A bitwise FZ_AND operation on two compressed bitmap vectors 
by the FZ strategy: (a) the result of finalNZflag; (b) the bit string related to 
the bit in NZString1 and NZString2 from NZflag1 and NZflag2; (c) temp3 = 
temp1 AND temp2; (d) the result of finalNZString. 

  
Figure 7: The FZ_AND procedure 

Figure 8 illustrates how to perform a bitwise FZ_OR 
operation on those two bitmap vectors. We take the same 
two bitmap vectors, as shown in Figure 6, to perform the 
FZ_OR operation. The variables used in the FZ_OR 
operation are shown in Table 3, and the FZ_OR procedure is 
shown in Figure 9. First, we get finalNZflag=[111011] by 
NZflag1=[010011] OR NZflag2=[101001], as shown in the 
left part of Figure 8-(a). Next, according to the position of 
1's in finalNZflag, the first, second, third, 5th, and 6th bits, 
we retrieve the corresponding bit strings. There are three 
cases according to NZflag1 and NZflag2. In Case 1, the first 
bit of NZflag1 is 0 and the first bit of NZflag2 is 1. We 
retrieve the bit string [00000001] related to the first bit in 
NZflag2 from NZString2, as shown in Figure 8-(b), and add 
the bit string into finalNZString, as shown in the first 8-bit 
string of Figure 8-(f). In Case 2, the second bit of NZflag1 is 
1 and the second bit of NZflag2 is 0. In this case, we retrieve 
the bit string [10000000] related to the second bit in NZflag1 
from NZString1, as shown in Figure 8-(b), and add the bit 
string into finalNZString, as shown in the second 8-bit string 
of Figure 8-(f). In Case 3, the sixth bit of NZflag1 is 1 and 
the sixth bit of NZflag2 is also 1, we retrieve the bit string 

temp1 (=[10101000]) related to the bit in NZflag1 from 
NZString1, and the bit string temp2 (=[10100000]) related to 
the bit in NZflag2 from NZString2, as shown in Figure 8-(d). 
We finally add temp3 into finalNZString, where temp3 = 
temp1 OR temp2, as shown in Figure 8-(e). After eight 
iterations, the result finalNZString is shown in Figure Figure 
8-(f). 

In this example, we retrieve 6*8=48 bits, and perform 14 
(=6+8) bitwise OR operations, where finalNZflag includes 6 
bits, and finalNZString includes 8 bits in Case 3. If we do 
not use the compressed bitmap vectors, we need to retrieve 
48*2=96 bits, and perform 48 bitwise OR operations. 
 

00000001
 10000000

(a)

00001000
finalNZString:

10000000 11110000 10101000

00000001 00001000 10100000

NZString1:
NZString2:

(f)

00000001 00001000 10100000
10000000 11110000 10101000

(b)

10101000
 10100000

(e)

10101000

temp1:
temp2:
temp3:

NZflag1:  010011
NZflag2:  101001

finalNZflag:

or

111011

010011
101001
111011

00000001 00001000 10100000
10000000 11110000 10101000

(c)

010011
101001
111011

00000001 00001000 10100000
10000000 11110000 10101000

(d)

010011
101001
111011

or

or

or or

11110000 10101000
10100000 or

00000001 10000000 00001000 11110000 10101000

 
Figure 8: A bitwise FZ_OR operation on two compressed bitmap vectors by 
the FZ strategy: (a) the result of finalNZflag; (b) the bit string in Case 1 is 
retrieved; (c) the bit string in Case 2 is retrieved; (d) the bit strings in Case 3 
are retrieved; (e) temp3 = temp1 OR temp2; (f) the result of finalNZString. 
 

 
Figure 9: The FZ_OR procedure 
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IV.  Performance Study 
 
The parameters used in the performance model for the FZ 
strategy is shown in Table 5. Basically, we generated num 
bits, 1's or 0's, as the bitmap vector and this bit string is 
controlled by two parameters, the bit density and the 
clustering factor [21]. The performance measure in 
evaluating those strategies is the length, Len, of the bit sting 
after it is compressed. We plotted the average length of each 
bit string from experiments, and conducted 1000 
experiments for each average value. The experiments were 
run on a Pentium 4 1.6 GHz, 256 MB of main memory, and 
running jdk 1.4.2 and Windows XP. 

For the simulation results, the number of bit string, num, 
is bounded by 20000. In the figures to be presented as 
follows, the curves corresponding to the WAH and FZ 
strategies by changing different parameters are labeled as 
WAH and FZ, respectively. In Figure 10, Figure 11, and 
Figure 12, we compare the length of the bit string after it is 
compressed. 

Table 5: Parameters used in the WAH and FZ strategies 

 
 

Figure 10 shows the length of bit strings for different 
num=10000, 12000, 14000, 16000, 18000, 20000. Each data 
point in this figure represents the average length of bitmap 
vectors with the same bit density (= 0.01) and the same 
clustering factor (=1). The resulting lengths constructed 
from both the WAH and FZ strategies increase when num 
increases. However, the length of the bit string compressed 
by the WAH strategy is 2 times larger than that compressed 
by the FZ strategy. 
   Figure 11 shows the length of bit strings for different 
values of density d=1/500, 1/200, 1/100, 1/50, 1/20, where 
num=10000 and cf=1. As the bit density increases form 
1/500 to 1/20, the bit strings become less compressible and it 
takes more space to represent them after the compression. 
Moreover, the FZ strategy is more suitable for the case with 
the high density. 

Figure 12 shows the length of bit strings for different 
clustering factors cf=0.2, 0.4, 0.6, 0.8, 1, where num=10000 
and d = 0.01. The clustering factor, cf, is the fraction of the 
upper bound of the range of 1's. For example, when cf =0.2, 
the bits of 1's only exist from the first to 2000th bits in the 
bit string with 10000 bits. In other words, the bits of 1's are 
highly concentrated. As cf increases from 0.2 to 1, the bit 
string of the WAH strategy becomes less compressible and 
that of the FZ strategy still could be compressed well. 
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Figure 10: A comparison of the Len for the WAH and FZ strategies by using 

different numbers of bits in a string (num) 
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Figure 11: A comparison of the Len for the WAH and FZ strategies by using 

different values of density (d) 
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Figure 12: A comparison of the Len for the WAH and FZ strategies by 
using different clustering factors (cf) 

 
V.   Conclusion 
 
To reduce the storage of the bitmap index, in this paper, we 
have proposed the FZ strategy which compress the bitmap 
vector by filtering out many zeros. We have studied the 
performance of our FZ strategy, and have compared it with 
the WAH strategy by simulation. From the simulation results, 
we have shown that the FZ strategy can reduce the storage 
cost more than the WAH strategy. 
 
References 
 

[1] G. Antoshenkov, “Byte-Aligned Bitmap Compression,” Proc. of
 the Conf. on Data Compression, 1995, 476. 

[2] C. Y. Chan and Y. E. Ioannidis, “Bitmap Index Design and E
valuation,” Proc. of ACM SIGMOD Int. Conf. on Management



THE FZ STRATEGY TO COMPRESS THE BITMAP INDEX FOR DATA WAREHOUSES                                                                               131 

 of data, 1998, 355-366. 
[3] C. Y. Chan and Y. E. Ioannidis, “An Efficient Bitmap Encodin

g Scheme for Selection Queries,” Proc. of ACM SIGMOD Int. 
Conf. on Management of Data, 1999, 215-226. 

[4] A. Cuzzocrea, W. Wang, and U. Matrangolo, “Answering Appr
oximate Range Aggregate Queries on OLAP Data Cubes with P
robabilistic Guarantees,” Proc. of the 6th Int. Conf. on Data Wa
rehousing and Knowledge Discovery, 2004, 97-108. 

[5] N. Koudas, “Space Efficient Bitmap Indexing,” Proc. of the 9th
 Int. Conf. on Information and Knowledge Management, 2000, 
194-201. 

[6] A. Gupta , Karen C. Davis , and J. Grommon-Litton, “Perform
ance Comparison of Property Map and Bitmap Indexing,” Proc.
 of the 5th ACM Int. workshop on Data Warehousing and OLA
P, 2002, 65-71. 

[7] J. Li and J. Srivastava, “Efficient Aggregation Algorithm for C
ompressed Data Warehouses,” IEEE Trans. on Knowledge and 
Data Eng., 2002, 14(3), 515-529. 

[8] Y. Lim and M. Kim, “A Bitmap Index for Multidimensional D
ata Cubes,” Proc. of the 15th Int. Conf. on Database and Expe
rt Systems Applications, 2004, 349-358. 

[9] P. O'Neil, “Model 204 Architecture and Performance,” Springe
r-Verlag Lecture Notes in Computer Science 359, the 2nd Int. 
Workshop on High Performance Transactions Systems, 1987, 40-
59. 

[10] P. O'Neil and D. Quass, “Improved Query Performance with V
ariant Indexes,” Proc. of ACM SIGMOD Int. Conf. on Managem
ent of Data, 1997, 38-49. 

[11] T. Palpanas, “Knowledge Discovery in Data Warehouses,” SIG
MOD Record, 2000, 29(3), 88-100. 

[12] A. Y. Sihem and T. Johnson, “Optimizing Queries on Compres
sed Bitmaps,” Proc. of the 26th Int. Conf. on Very Large Data
 Bases, 2000, 329-338. 

[13] N. Stefanovic, J. Han, and K. Koperski, “Object-Based Selectiv
e Materialization for Efficient Implementation of Spatial Data C
ubes,” IEEE Trans. on Knowledge and Data Eng., 2000, 12(6), 
938-958. 

[14] K. Stockinger, D. Dullmann, W. Hoschek, and E. Schikuta, “I
mproving the Performance of High-Energy Physics Analysis Th
rough Bitmap Indices,” Proc. of the 11th Int. Conf. on Databa
se and Expert Systems Applications, 2000, 835-845. 

[15] K. Stockinger, “Design and Implementation of Bitmap Indices f
or Scientific Data,” Proc. of the Int. Database Eng. And Appli
cations Symposium, 2001, 47-57. 

[16] K. Stockinger, “Bitmap Indices for Speeding Up High-Dimensio
nal Data Analysis,” Proc. of the 13th Int. Conf. on Database 
and Expert Systems Applications, 2002, 881-890. 

[17] K. Stockinger, Kesheng Wu, and Arie Shoshani, “Strategies for
 Processing Ad hoc Queries on Large Data Warehouses,” Proc.
 of the 5th ACM Int. Workshop on Data Warehousing and OL
AP, 2002, 72-79. 

[18] K. Stockinger, Kesheng Wu, and Arie Shoshani, “Evaluation St
rategies for Bitmap Indices with Binning,” Proc. of the 15th I
nt. Conf. on Database and Expert Systems Applications, 2004, 
120-129. 

[19] P. Westerman, Data Warehousing, Morgan Kaufmann, 2001. 
[20] H. K. T. Wong, H-F. Liz, F. Olken, D. Rotem, and L. Wong,

 “Bit Tranposed Files,” Proc. of Int. Conf. on Very Large Dat
a Bases, 1985, 448-457. 

[21] K. Wu, E. J. Otoo, and A. Shoshani, “Compressing Bitmap In
dexes for Faster Search Operations,” Proc. of the 14th Int. Co
nf. on Scientific and Statistical Database Management, 2002, 6
25-658. 

[22] K. Wu, E. J. Otoo, and A. Shoshani, “Compressed Bitmap Indi
ces for Efficient Query Processing,” Technical Report LBNL-47
807, Lawrence Berkeley National Laboratory, Berkeley, CA, 20
01. 

[23] M. C. Wu and A. P. Buchmann, “Encoded Bitmap Indexing fo
r Data Warehouses,” Proc. of the 14th Int. Conf. on Data En
g., 1998, 220-230. 

[24] K.-L. Wu and P. S. Yu, “Range-Based Bitmap Indexing for Hi
gh-Cardinality Attributes with Skew,” Proc. of the 22th Int. C
onf. on Computer Software and Applications, 1998, 61-67.

 

                                            
∗ This research was supported in part by the National Science Council of 
Republic of China under Grant No. NSC-94-2213-E-110-003. 


	The FZ Strategy to Compress the Bitmap Index for Data Warehouses
	Introduction
	Background
	The Filtering-Out-Zeros (FZ) Strategy
	Performance Study
	Conclusion

