
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2005 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-5-2005

The FZ Strategy to Compress the Bitmap Index for Data The FZ Strategy to Compress the Bitmap Index for Data

Warehouses Warehouses

Ye-In Chang

Chien-Show Lin

Hue-Ling Chen

Follow this and additional works at: https://aisel.aisnet.org/iceb2005

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2005 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2005
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2005?utm_source=aisel.aisnet.org%2Ficeb2005%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

The FZ Strategy to Compress the Bitmap Index for Data Warehouses∗

Ye-In Chang, Chien-Show Lin, and Hue-Ling Chen
Dept. of Computer Science and Engineering

National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C
E-mail: changyi@cse.nsysu.edu.tw

Tel: 886-7-5254350 Fax: 886-7-5254301

Abstract: Data warehouses contain data consolidated
from several operational databases and provide the historical,
and summarized data which is more appropriate for analysis
than detail, individual records. Fast response time is
essential for on-line decision support. A bitmap index could
reach this goal in read-mostly environments. For the data
with high cardinality in data warehouses, a bitmap index
consists of a lot of bitmap vectors, and the size of the bitmap
index could be much larger than the capacity of the disk.
The WAH strategy has been presented to solve the storage
overhead. However, when the bit density and clustering
factor of 1's increase, the bit strings of the WAH strategy
become less compressible. Therefore, in this paper, we
propose the FZ strategy which compresses each bitmap
vector to reduce the size of the storage space and provide
efficient bitwise operations without decompressing these
bitmap vectors. From our performance simulation, the FZ
strategy could reduce the storage space more than the WAH
strategy.

Keywords: bitmap index, compress, data warehouse,
OLAP, storage.

I. Introduction

The Data Warehouse (DW) is a subject-oriented, integrated,
time-variant, and non-volatile collection of data in support
of management's decision-making process. In other words, a
DW is large, special-purpose database that contains data
integrated form a number of independent sources, supporting
clients who wish to analyze the data for trends and
anomalies. The process of analysis is usually performed with
queries that aggregate, filter, and group the data in a variety
of ways. OLAP is designed to provide aggregate information
that can be used to analyze the contents of databases and
data warehouses. Because the queries are often complex and
the warehouse database is often very large, processing the
queries quickly is a critical issue in the warehousing
environment.

The read-mostly environment of data warehousing
makes it possible to use more complex indexes to speed up
queries than in situations where concurrent updates are
present [19]. Bitmap indexing has been touted as a
promising strategy for processing complex adhoc queries in
read-mostly environments, like those of decision support

The WAH strategy [21] has been presented to solve the
storage overhead. The main advantage of the WAH strategy
is that compressed indexes are much smaller than the
uncompressed ones and the average processing time is about
the same [22]. However, when the bit density and clustering
factor of 1's increase, the bit strings of the WAH strategy
become less compressible. Therefore, we propose the
Filtering-Out-Zeros (FZ) strategy to compress each bitmap
vector to reduce the size of the storage space. The basic idea
of the FZ strategy is to remove some continuous 0's in the
bitmap vector, since there often exist large amount of 0's in
the bitmap vector. For the bitmap vector with 128 bits (as
shown in Figure 1-(a)), after compression, our FZ strategy
stores only 40 bits (as shown in Figure 1-(b)), as compared
to 96 bits in WAN strategy (as shown in Figure 1-(c)), where
the length of the basic unit for compressing in FZ strategy is
eight bits and that in WAH strategy is a word (= 32 bits).

Proceedings of the Fifth International Conference on Electronic Business,
Hong Kong, December 5-9, 2005, pp. 125 - 131.

systems. Most of the major commercial database systems
now support some form of a bitmap index. A significant
advantage of bitmap indices is that complex logical selection
operations can be performed very quickly, by performing
bitwise AND, OR, and NOT operations.

Data warehouses are essential for modern business to
support the decision making. For various applications in data
warehouses, where most of the attributes have high
cardinality, the classical bitmap index produces one bitmap
for each distinct value of the attribute being indexed [4] [5]
[6] [8] [11] [13] [14] [15] [16] [17] [18] [19]. The size of the
indices could be much larger than the size of the dataset. The
main advantage for using a compressed bitmap index is to
reduce the space requirement. However, the bitmaps from
the bitmap indices are often very sparse; that is, they contain
mostly zero bits. Moreover, most of the generic compression
algorithms do not support fast bitwise logical operations, the
compressed bitmap indices are usually slower in processing
queries than their uncompressed counterparts. To increase
the efficiency of query processing, a number of specialized
compression algorithms have been developed
[1][7][12][17][18][21][22]. The Byte-aligned Bitmap Code
(BBC) is an example of such a strategy [1]. This strategy
permits efficient operations without decompression, thereby
reducing both the disk space requirement and the memory
requirement for performing operations. Another specialized
compression strategy called the Word-Aligned Hybrid run-
length code (WAH) [21] is an efficient strategy that
significantly outperforms BBC.

mailto:changyi@cse.nsysu.edu.tw

126 YE-IN CHANG, CHIEN-SHOW LIN, HUE-LING CHEN

Figure 1: A comparison of compressed bitmap vector: (a) the bitmap

vector with 128 bits; (b) the bitmap vector compressed by the WAH strategy;
(c) the bitmap vector compressed by the FZ strategy.

Although it is easy to compress bitmap vectors, the

query processing time is increasing on those compressed
bitmap vectors. This is because the operations on the
compressed bitmaps are much slower than the same
operations on the uncompressed ones [22]. Therefore, we
also propose the related bitwise AND and OR operations on
those bit strings compressed by the FZ strategy. The time
needed by one such operation on two operands is related to
the size of the compressed bitmap vectors [21]. Therefore,
the FZ strategy needs the smaller storage space than the
WAH strategy, but also could take less time to perform the
bitwise operation than the WAH strategy. In conclusion, our
proposed range-based bitmap index strategies and the FZ
strategy are suitable for processing attributes with thousands
of distinct values.

The rest of the paper is organized as follows. In Section
2, we give a survey of the strategies of bitmap indexing for
data warehouses. In Section 3, we present the FZ strategy to
compress the bitmap vector by filtering out many zeros to
reduce the size of the storage space. In Section 4, we study
the performance of the FZ strategy. In Section 5, we give the
conclusion.

II. Background

Bitmap indexes were first developed for database use in the
Model 204 product from Computer Corporation of America
[9]. The strategy has been implemented in several
commercial DBMSs (IBM, Informix, Oracle, Sybase) [3]. A
significant advantage of bitmap indices over conventional
hash and tree index is that complex logical selection
operations can be performed very quickly, by performing
bitwise AND, OR, XOR, and NOT operations supported by
the hardware. And bitmap indexes can be much compact
than the traditional B+ tree, especially for attributes with low
cardinality [3][12]. On the other hand, tree structures, like
the B-tree and R-tree, have a great drawback in the data
warehouse. It is a well-known fact that tree structures
degenerate when the number of dimensions is increased.

Previous strategies for constructing bitmap indexes could
be classified into two classes based on the goals of the

improvement: (1) time, (2) space. Basically, some of
strategies are related to improve the query processing time,
while some of strategies are related to improve the huge
storage space. For the strategies which aim to improve the
query processing time could be further classified into two
groups according to query types: exact query, including
Simple Bitmap Index [10], Bit-Sliced Index [10], Encoded
Bitmap Index [23] and range query, including Range-Based
Bitmap Index [23], Range-Encoded Bitmap Index and
Compressing Bitmap Index[12][21].

The basic idea behind bitmap indexing is to use a string
of bits (0 or 1) to indicate whether an attribute in a tuple is
equal to a specific value or not [10][23]. The position of a bit
in the string denotes the position of a tuple in the table. The
bit is set, if the content of an attribute is associated with a
specific value. For example, the Simple Bitmap Index (SBI)
on an attribute GENDER, with domain {Male, Female},
results in two bitmap vectors, say BM and BF. For BM, the bit
is set to 1, if the corresponding tuple has the attribute
GENDER = Male; otherwise, the bit is set to 0. For BF, the
bit is set to 1, if the associated tuple has the attribute
GENDER = Female; otherwise, the bit is set to 0, as shown
in Figure 2. The simple bitmap index on the attribute
GENDER, BGENDER, is the collection of bitmap vectors {BM ,
BF}.

F

M

F

…GENDER…

F

M

F

…GENDER…T:

1

0

1

1

0

1

0

1

0

0

1

0

BFemale BMale

Figure 2: An example of the simple bitmap index

In the range-based index, a bitmap vector is used to
represent a range, instead of a distinct value. For strategies
supporting the range query, they could be further classified
into two types: static and dynamic. For the static type, we
mean that the range of each partition has the same width,
regardless the type of data distribution. Two of well-known
strategies for supporting static range bitmap indexes are the
range encoding [2][20] and the interval encoding [3]. On the
other hand, when the size of the range of each partition is
not always the same, we call this approach dynamic range
index. The Dynamic Bucket Expansion and Contraction
strategy (DBEC) [23] dynamically construct bitmap vectors
according to the types of data.

Moreover, some strategies concern to reduce the storage
space needed by large number of bitmap indexes. The Byte-
aligned Bitmap Code (BBC) [1] is based on the idea of run-
length encoding that represents consecutive identical bits by
their bit values and their lengths. Given a bit sequence, the
BBC strategy first divides it into bytes, and then groups the
bytes. The Word-Aligned Hybrid code (WAH) [21] is much
simpler and it stores compressed data in words rather than in
bytes.

WAH is similar to BBC which is a hybrid between the

THE FZ STRATEGY TO COMPRESS THE BITMAP INDEX FOR DATA WAREHOUSES 127

run-length encoding and the literal strategy. There are two
types of words in WAH: literal words and fill words. WAH
uses the most significant bit of a word to distinguish
between a literal word (0) and a fill word (1). This choice
allows one to easily distinguish a literal word from a fill
word without explicitly extracting the bit. The lower bits of a
literal word contain the bit values from the bitmap. The
second most significant bit of a fill word is the fill bit and
the lower bits store the fill length. WAH imposes the word-
alignment requirement on the fills, it requires that all fill
lengths be integer multiples of the number of bits in a literal
word. The word-alignment ensures that logical operation
functions only need to access words not bytes or bits.

Figure 3 shows a WAH bit vector representing 128 bits.
In this example, each computer word contains 32 bits. Each
literal word stores 31 bits from the bitmap and each fill word
represents a fill with a multiple of 31 bits. If the machine has
64-bit words, each literal word would store 63 bits from the
bitmap and each fill would have a multiple of 63 bits. The
second line in Figure 3 shows how the bitmap is divided into
31-bit groups and the third line shows the hexadecimal
representation of the groups. The last line shows the values
of the WAH words. The first three words are normal words,
two literal words and one fill word. The fill word 80000002
indicates a 0-fill of two-word long (containing 62
consecutive zero bits). Note that the fill word stores the fill
length as two rather than 62. In other word, we represent the
fill length by multiples of the literal word size. The fourth
word is the active word that store the last few bits that can
not be stored in a normal word, and another word (not
shown) is needed to stores the number of useful bits in the
active word. Each WAH word (last row) represents a
multiple of 31 bits from the bit sequence, except the last
word that represents the four leftover bits.

0000000F001FFFFF8000000240000380WAH (hex)

0000000F001FFFFF000000000000000040000380Group in hex

4 *110 *0, 21 *162 * 01, 20*0, 3*1, 7*031-bit groups

1, 20*0, 3*1, 79*0, 25*1128 bits

0000000F001FFFFF8000000240000380WAH (hex)

0000000F001FFFFF000000000000000040000380Group in hex

4 *110 *0, 21 *162 * 01, 20*0, 3*1, 7*031-bit groups

1, 20*0, 3*1, 79*0, 25*1128 bits

Figure 3: A WAH bitmap vector

III. The Filtering-Out-Zeros (FZ) Strategy

A bitmap index consists of a set of bitmap vectors and the
size of the bitmap index could be much larger than that of
the disk. This is especially true for scientific databases
where most of the attributes have high cardinality. The WAH
strategy [21] has been presented to solve the storage
overhead. The main advantage of the WAH strategy is that
compressed indexes are much smaller than the
uncompressed ones and the average processing time is about
the same [22]. However, when the bit density and clustering
factor of 1's increase, the bit strings of the WAH strategy
become less compressible. Take Table 1 as an example, we
observe an interesting property that there are magnificent
continuous zeros in the bitmap index. If we can filter out the

consecutive 0's and only record the rest of bits, the storage
space of the bitmap index could be reduced.

Table 1: An example of the range-based bitmap index

To reduce the storage space of the bitmap index, we

present the Filtering-out-Zeros (FZ) strategy. We take bitmap
vector 4 in Table 1 as an example to illustrate the FZ strategy.
First, we divide the total 16 bits into 2 bit strings, i.e.,
[00000000 01101001], and the length of each bit string is 8.
Next, the first bit string includes only consecutive 0's, and
the second one includes 1's. Therefore, we record the first bit
string by 0, and the second one by 1, i.e., the first two bits in
[01 01101001]. We still record the whole bits of the second
bit string, [01101001], i.e., the last eight bits in [01
01101001]. Finally, the original bitmap vector 4 [00000000
01101001] has been stored as [01 01101001] after the
process of the FZ strategy. In this example, the FZ strategy
reduces the storage cost from 16 bits to 10 bits.

Let's take another example shown in Table 2 to describe
the FZ procedure in Figure 4. The variables used in the FZ
strategy is shown in Table 3. In Table 2, the bitmap vector of
raw data contains 48 bits, and every 8 bits among these 48
bits construct a bit string. Therefore, there are
w=n/BL=48/8=6 bit strings, where n is the number of the
bits in each bitmap vector and BL is the length of the bit
string. We use an array NZflag to record whether the bit
string includes only consecutive 0's or not. The first, third,
and 4th bit strings include only consecutive 0's in this
example, and the first, third, and 4th bits of array NZflag are
set to 0. The rest of bits of array NZflag are set to 1. The
array NZflag is [010011] as shown in Table 2. According to
NZflag, we know which bit string includes some 1's. Then,
we use another array NZString to record the whole bits of the
bit strings that include 1's. In Table 2, array NZString records
3 bit strings that are composed of 0's and 1's.

Table 2: An example of the FZ strategy

128 YE-IN CHANG, CHIEN-SHOW LIN, HUE-LING CHEN

Figure 4: The FZ procedure

Table 3: Variables used in the FZ, FZ_Retrieve, FZ_AND, and FZ_OR

procedures

Figure 5: The FZ_Retrieve procedure

Table 4: An example of the FZ_Retrieve strategy

Figure 5 states how to retrieve data from the compressed
bitmap index. For example, shown in Table 4, there are 4 1's
in the bitmap vector of raw data. After the process of the FZ
strategy, the resulting arrays, NZflag and NZString, are
shown in Table 4. Array NZString records those 4 1's. We
use the array NZflag to calculate the position of 1's. The
formula is 8*(i-1)+k, where i is the position of the ith bit
string that contains 1's, and k is the kth 1's in this bit string.
Therefore, the positions of the 4 bits are 8 (=0*8+8), 21
(=2*8+5), 41 (=5*8+1), and 43 (=5*8+3), respectively.
According to the calculation, we directly retrieve the 8th,
21th, 41th, and 43th records, respectively.

A significant advantage of bitmap indices is that
complex bitwise operations can be performed very quickly,
such as bitwise AND, OR, and NOT operations. Therefore,
we explain the bitwise operations, including FZ_Retrieve,
FZ_AND, and FZ_OR, on bitmap vectors which are stored
after the process of the FZ strategy.

Figure 6 illustrates how to perform an FZ_AND
operation on those two compressed bitmap vectors. The
variables used in FZ_AND operation are shown in Table 3,
and the FZ_AND procedure is shown in

Figure 7. The bitmap vector in Table 2 is recorded by
NZflag1 and NZString1, and the bit vector in Table 4 is
recorded by NZflag2 and NZString2. First, we get the
finalNZflag=[000001] by NZflag1=[010011] AND
NZflag2=[101001], as shown in the left part of Figure 6-(a).
Next, according to the position of 1's in finalNZflag, we
retrieve the corresponding bit strings temp1 and temp2 in
NZflag1 and NZflag2, respectively, and add temp3 into
finalNZString, where temp3 = temp1 AND temp2. Since the
6th bit of finalNZflag in Figure 6-(a) is 1, we retrieve the bit
string related to the 6th bit in NZflag1 from NZString1,
[10101000], to temp1, and that in NZflag2 from NZString2,
[10100000], to temp2, as shown in Figure 6-(b). After
getting temp1 and temp2, we perform an AND operation on
them, i.e., temp3 = [10101000] AND [10100000] =
[10100000], as shown in Figure 6-(c), and add the bit string
[10100000] into finalNZString, as shown in Figure 6-(d).
After the process of the FZ_AND operation, we have
finalNZString equal to [10100000], as shown in Figure 6-(d).

This strategy provides efficient bitwise operations
without decompression, which reduces both the requirement
of the disk space and the memory space for performing
bitwise operations. In this example, we perform 4 (=6+8)
bitwise AND operations on them, where finalNZflag
includes 6 bits, and finalNZString includes 8 bits. If we do
not use the compressed bitmap vectors, we need to retrieve

THE FZ STRATEGY TO COMPRESS THE BITMAP INDEX FOR DATA WAREHOUSES 129

48*2=96 bits and perform 48 bitwise AND operations.

10101000
 10100000

(a)

 10100000finalNZString:

10000000 11110000 10101000

00000001 00001000 10100000

NZString1:
NZString2:

(d)

00000001 00001000 10100000
10000000 11110000 10101000

(b)

10101000
 10100000 and

(c)

10100000

temp1:
temp2:
temp3:

NZflag1: 010011
NZflag2: 101001

finalNZflag:

and

000001

010011
101001 and

000001

and

Figure 6: A bitwise FZ_AND operation on two compressed bitmap vectors
by the FZ strategy: (a) the result of finalNZflag; (b) the bit string related to
the bit in NZString1 and NZString2 from NZflag1 and NZflag2; (c) temp3 =
temp1 AND temp2; (d) the result of finalNZString.

Figure 7: The FZ_AND procedure

Figure 8 illustrates how to perform a bitwise FZ_OR
operation on those two bitmap vectors. We take the same
two bitmap vectors, as shown in Figure 6, to perform the
FZ_OR operation. The variables used in the FZ_OR
operation are shown in Table 3, and the FZ_OR procedure is
shown in Figure 9. First, we get finalNZflag=[111011] by
NZflag1=[010011] OR NZflag2=[101001], as shown in the
left part of Figure 8-(a). Next, according to the position of
1's in finalNZflag, the first, second, third, 5th, and 6th bits,
we retrieve the corresponding bit strings. There are three
cases according to NZflag1 and NZflag2. In Case 1, the first
bit of NZflag1 is 0 and the first bit of NZflag2 is 1. We
retrieve the bit string [00000001] related to the first bit in
NZflag2 from NZString2, as shown in Figure 8-(b), and add
the bit string into finalNZString, as shown in the first 8-bit
string of Figure 8-(f). In Case 2, the second bit of NZflag1 is
1 and the second bit of NZflag2 is 0. In this case, we retrieve
the bit string [10000000] related to the second bit in NZflag1
from NZString1, as shown in Figure 8-(b), and add the bit
string into finalNZString, as shown in the second 8-bit string
of Figure 8-(f). In Case 3, the sixth bit of NZflag1 is 1 and
the sixth bit of NZflag2 is also 1, we retrieve the bit string

temp1 (=[10101000]) related to the bit in NZflag1 from
NZString1, and the bit string temp2 (=[10100000]) related to
the bit in NZflag2 from NZString2, as shown in Figure 8-(d).
We finally add temp3 into finalNZString, where temp3 =
temp1 OR temp2, as shown in Figure 8-(e). After eight
iterations, the result finalNZString is shown in Figure Figure
8-(f).

In this example, we retrieve 6*8=48 bits, and perform 14
(=6+8) bitwise OR operations, where finalNZflag includes 6
bits, and finalNZString includes 8 bits in Case 3. If we do
not use the compressed bitmap vectors, we need to retrieve
48*2=96 bits, and perform 48 bitwise OR operations.

00000001
 10000000

(a)

00001000
finalNZString:

10000000 11110000 10101000

00000001 00001000 10100000

NZString1:
NZString2:

(f)

00000001 00001000 10100000
10000000 11110000 10101000

(b)

10101000
 10100000

(e)

10101000

temp1:
temp2:
temp3:

NZflag1: 010011
NZflag2: 101001

finalNZflag:

or

111011

010011
101001
111011

00000001 00001000 10100000
10000000 11110000 10101000

(c)

010011
101001
111011

00000001 00001000 10100000
10000000 11110000 10101000

(d)

010011
101001
111011

or

or

or or

11110000 10101000
10100000 or

00000001 10000000 00001000 11110000 10101000

Figure 8: A bitwise FZ_OR operation on two compressed bitmap vectors by
the FZ strategy: (a) the result of finalNZflag; (b) the bit string in Case 1 is
retrieved; (c) the bit string in Case 2 is retrieved; (d) the bit strings in Case 3
are retrieved; (e) temp3 = temp1 OR temp2; (f) the result of finalNZString.

Figure 9: The FZ_OR procedure

130 YE-IN CHANG, CHIEN-SHOW LIN, HUE-LING CHEN

IV. Performance Study

The parameters used in the performance model for the FZ
strategy is shown in Table 5. Basically, we generated num
bits, 1's or 0's, as the bitmap vector and this bit string is
controlled by two parameters, the bit density and the
clustering factor [21]. The performance measure in
evaluating those strategies is the length, Len, of the bit sting
after it is compressed. We plotted the average length of each
bit string from experiments, and conducted 1000
experiments for each average value. The experiments were
run on a Pentium 4 1.6 GHz, 256 MB of main memory, and
running jdk 1.4.2 and Windows XP.

For the simulation results, the number of bit string, num,
is bounded by 20000. In the figures to be presented as
follows, the curves corresponding to the WAH and FZ
strategies by changing different parameters are labeled as
WAH and FZ, respectively. In Figure 10, Figure 11, and
Figure 12, we compare the length of the bit string after it is
compressed.

Table 5: Parameters used in the WAH and FZ strategies

Figure 10 shows the length of bit strings for different
num=10000, 12000, 14000, 16000, 18000, 20000. Each data
point in this figure represents the average length of bitmap
vectors with the same bit density (= 0.01) and the same
clustering factor (=1). The resulting lengths constructed
from both the WAH and FZ strategies increase when num
increases. However, the length of the bit string compressed
by the WAH strategy is 2 times larger than that compressed
by the FZ strategy.
 Figure 11 shows the length of bit strings for different
values of density d=1/500, 1/200, 1/100, 1/50, 1/20, where
num=10000 and cf=1. As the bit density increases form
1/500 to 1/20, the bit strings become less compressible and it
takes more space to represent them after the compression.
Moreover, the FZ strategy is more suitable for the case with
the high density.

Figure 12 shows the length of bit strings for different
clustering factors cf=0.2, 0.4, 0.6, 0.8, 1, where num=10000
and d = 0.01. The clustering factor, cf, is the fraction of the
upper bound of the range of 1's. For example, when cf =0.2,
the bits of 1's only exist from the first to 2000th bits in the
bit string with 10000 bits. In other words, the bits of 1's are
highly concentrated. As cf increases from 0.2 to 1, the bit
string of the WAH strategy becomes less compressible and
that of the FZ strategy still could be compressed well.

0

2000

4000

6000

8000

10000

10000 12000 14000 16000 18000 20000

num

Len
FZ

WAH

Figure 10: A comparison of the Len for the WAH and FZ strategies by using

different numbers of bits in a string (num)

0

2000

4000

6000

8000

10000

12000

1/500 0.005 0.01 0.02 0.05

d

Len
FZ

WAH

Figure 11: A comparison of the Len for the WAH and FZ strategies by using

different values of density (d)

0

1000

2000

3000

4000

5000

0.2 0.4 0.6 0.8 1

cf

Len FZ

WAH

Figure 12: A comparison of the Len for the WAH and FZ strategies by
using different clustering factors (cf)

V. Conclusion

To reduce the storage of the bitmap index, in this paper, we
have proposed the FZ strategy which compress the bitmap
vector by filtering out many zeros. We have studied the
performance of our FZ strategy, and have compared it with
the WAH strategy by simulation. From the simulation results,
we have shown that the FZ strategy can reduce the storage
cost more than the WAH strategy.

References

[1] G. Antoshenkov, “Byte-Aligned Bitmap Compression,” Proc. of
 the Conf. on Data Compression, 1995, 476.

[2] C. Y. Chan and Y. E. Ioannidis, “Bitmap Index Design and E
valuation,” Proc. of ACM SIGMOD Int. Conf. on Management

THE FZ STRATEGY TO COMPRESS THE BITMAP INDEX FOR DATA WAREHOUSES 131

 of data, 1998, 355-366.
[3] C. Y. Chan and Y. E. Ioannidis, “An Efficient Bitmap Encodin

g Scheme for Selection Queries,” Proc. of ACM SIGMOD Int.
Conf. on Management of Data, 1999, 215-226.

[4] A. Cuzzocrea, W. Wang, and U. Matrangolo, “Answering Appr
oximate Range Aggregate Queries on OLAP Data Cubes with P
robabilistic Guarantees,” Proc. of the 6th Int. Conf. on Data Wa
rehousing and Knowledge Discovery, 2004, 97-108.

[5] N. Koudas, “Space Efficient Bitmap Indexing,” Proc. of the 9th
 Int. Conf. on Information and Knowledge Management, 2000,
194-201.

[6] A. Gupta , Karen C. Davis , and J. Grommon-Litton, “Perform
ance Comparison of Property Map and Bitmap Indexing,” Proc.
 of the 5th ACM Int. workshop on Data Warehousing and OLA
P, 2002, 65-71.

[7] J. Li and J. Srivastava, “Efficient Aggregation Algorithm for C
ompressed Data Warehouses,” IEEE Trans. on Knowledge and
Data Eng., 2002, 14(3), 515-529.

[8] Y. Lim and M. Kim, “A Bitmap Index for Multidimensional D
ata Cubes,” Proc. of the 15th Int. Conf. on Database and Expe
rt Systems Applications, 2004, 349-358.

[9] P. O'Neil, “Model 204 Architecture and Performance,” Springe
r-Verlag Lecture Notes in Computer Science 359, the 2nd Int.
Workshop on High Performance Transactions Systems, 1987, 40-
59.

[10] P. O'Neil and D. Quass, “Improved Query Performance with V
ariant Indexes,” Proc. of ACM SIGMOD Int. Conf. on Managem
ent of Data, 1997, 38-49.

[11] T. Palpanas, “Knowledge Discovery in Data Warehouses,” SIG
MOD Record, 2000, 29(3), 88-100.

[12] A. Y. Sihem and T. Johnson, “Optimizing Queries on Compres
sed Bitmaps,” Proc. of the 26th Int. Conf. on Very Large Data
 Bases, 2000, 329-338.

[13] N. Stefanovic, J. Han, and K. Koperski, “Object-Based Selectiv
e Materialization for Efficient Implementation of Spatial Data C
ubes,” IEEE Trans. on Knowledge and Data Eng., 2000, 12(6),
938-958.

[14] K. Stockinger, D. Dullmann, W. Hoschek, and E. Schikuta, “I
mproving the Performance of High-Energy Physics Analysis Th
rough Bitmap Indices,” Proc. of the 11th Int. Conf. on Databa
se and Expert Systems Applications, 2000, 835-845.

[15] K. Stockinger, “Design and Implementation of Bitmap Indices f
or Scientific Data,” Proc. of the Int. Database Eng. And Appli
cations Symposium, 2001, 47-57.

[16] K. Stockinger, “Bitmap Indices for Speeding Up High-Dimensio
nal Data Analysis,” Proc. of the 13th Int. Conf. on Database
and Expert Systems Applications, 2002, 881-890.

[17] K. Stockinger, Kesheng Wu, and Arie Shoshani, “Strategies for
 Processing Ad hoc Queries on Large Data Warehouses,” Proc.
 of the 5th ACM Int. Workshop on Data Warehousing and OL
AP, 2002, 72-79.

[18] K. Stockinger, Kesheng Wu, and Arie Shoshani, “Evaluation St
rategies for Bitmap Indices with Binning,” Proc. of the 15th I
nt. Conf. on Database and Expert Systems Applications, 2004,
120-129.

[19] P. Westerman, Data Warehousing, Morgan Kaufmann, 2001.
[20] H. K. T. Wong, H-F. Liz, F. Olken, D. Rotem, and L. Wong,

 “Bit Tranposed Files,” Proc. of Int. Conf. on Very Large Dat
a Bases, 1985, 448-457.

[21] K. Wu, E. J. Otoo, and A. Shoshani, “Compressing Bitmap In
dexes for Faster Search Operations,” Proc. of the 14th Int. Co
nf. on Scientific and Statistical Database Management, 2002, 6
25-658.

[22] K. Wu, E. J. Otoo, and A. Shoshani, “Compressed Bitmap Indi
ces for Efficient Query Processing,” Technical Report LBNL-47
807, Lawrence Berkeley National Laboratory, Berkeley, CA, 20
01.

[23] M. C. Wu and A. P. Buchmann, “Encoded Bitmap Indexing fo
r Data Warehouses,” Proc. of the 14th Int. Conf. on Data En
g., 1998, 220-230.

[24] K.-L. Wu and P. S. Yu, “Range-Based Bitmap Indexing for Hi
gh-Cardinality Attributes with Skew,” Proc. of the 22th Int. C
onf. on Computer Software and Applications, 1998, 61-67.

∗ This research was supported in part by the National Science Council of
Republic of China under Grant No. NSC-94-2213-E-110-003.

	The FZ Strategy to Compress the Bitmap Index for Data Warehouses
	Introduction
	Background
	The Filtering-Out-Zeros (FZ) Strategy
	Performance Study
	Conclusion

