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Abstract The ability to proactively monitor business pro-

cesses is a main competitive differentiator for firms. Process

execution logs generated by process aware information

systems help to make process specific predictions for

enabling a proactive situational awareness. The goal of the

proposed approach is to predict the next process event from

the completed activities of the running process instance,

based on the execution log data from previously completed

process instances. By predicting process events, companies

can initiate timely interventions to address undesired devi-

ations from the desired workflow. The paper proposes a

multi-stage deep learning approach that formulates the next

event prediction problem as a classification problem. Fol-

lowing a feature pre-processing stage with n-grams and

feature hashing, a deep learning model consisting of an

unsupervised pre-training component with stacked autoen-

coders and a supervised fine-tuning component is applied.

Experiments on a variety of business process log datasets

show that the multi-stage deep learning approach provides

promising results. The study also compared the results to

existing deep recurrent neural networks and conventional

classification approaches. Furthermore, the paper addresses

the identification of suitable hyperparameters for the pro-

posed approach, and the handling of the imbalanced nature of

business process event datasets.

Keywords Process prediction � Deep learning � Feature
hashing � N-grams � Stacked autoencoders

1 Introduction

High-performance business processes are one of the last

points of differentiation (Davenport and Harris 2007).

Embedding predictive analytics into enterprise processes

can boost business value (LaValle et al. 2011). Process

aware enterprise information systems (EIS) such as work-

flow management systems (WMS), enterprise resource

planning (ERP), customer relationship management

(CRM), or incident management (IM) generate log events

during process execution (van der Aalst et al. 2011). Such

logs are a source for predictive analytics, which aids

decision making by providing insights into future process

behavior. An effective design and implementation of pre-

dictive approaches ensure that business activities will run

in a desired manner by avoiding predicted failures and

deviations from the intended process behavior. Detecting

process anomalies in real-time, analyzing behavioral pat-

terns of customers to make tailored offers, risk manage-

ment by predicting compliance violations, or effective

resource allocation, are some of the use cases of data dri-

ven predictive process analytics (Evermann et al. 2017).

Current EIS focus on enhancing a company’s ability to

achieve high-performing business processes. However,
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their effectiveness is limited by their lack of advanced

predictive analytics. The built-in business intelligence

solutions mainly address descriptive, such as demographic

and performance problems. However, simply making

operations more efficient is not enough for firms to remain

competitive. They face challenges to transform the vast

amount of generated data into smart decisions to deliver

better products and services (Duan and Da Xu 2012).

Hence, future EIS need to shift from diagnostic examina-

tion of historical data to proactive decision making using

predictive analytics. Predictive capabilities need to be

embedded into the business processes. As process orches-

tration tools, EIS provide the necessary basis for this.

Integrating advanced analytics with EIS is an important

emerging trend in IS research (Sun et al. 2015).

Business process prediction predicts a target variable of

interest after extracting features frombusiness process log data.

Predicting continuous target values, such as remaining process

execution time, are regression problems. Predicting discrete

target values, such as the next events in the running case, the

outcome of a process instance, or the violation of service level

agreements, are classification problems. In this study, we focus

on predicting the next business process event, considering the

past events of the running process instance, based on execution

log data from previously completed process instances. This is

an important problem in process analytics as such analytical

information allows analysts to intervene proactively to prevent

undesired behavior.We address this problemwith amulti-stage

deep learning approach. The main contribution of our research

is threefold:

1. This study applies, for the first time in the business

process management domain, a deep learning approach

consisting of an unsupervised pre-training stage with

stacked autoencoders, and a supervised fine-tuning

stage for the multi-class classification problem. By

initializing the parameters in all neural networks layers

using greedy layerwise pre-training with autoencoders,

followed by a minimization of a global training

criterion using labels, we improve on current process

prediction methods.

2. This study improves on prior research by incorporating

an extensive data pre-processing stage. We use an n-gram

representation and feature hashing approach to build

numerical feature vectors from event log data. To our

knowledge, no prior studies have applied feature hashing

in this domain. Encoding process data so as to take into

consideration their sequential nature, and reducing the

dimensionality of this encoding to speed up the inference

process of the deep neural networks, are crucial tasks that

were examined carefully in our study.

3. We address the hyperparameter optimization of our

deep learning approach, and the imbalanced nature of

the process data to further improve prediction

precision.

We follow the ‘‘exaptation’’ (extend known solutions to

new problems) type of design science research (DSR)

knowledge contribution by adopting successful solutions

(stacked autoencoders based deep learning, feature hash-

ing) to build innovative predictive analytics models for

process data in EIS (Gregor and Hevner 2013).

The remainder of the paper is organized as follows:

Sect. 2 introduces related work on business process pre-

diction. Section 3 provides a broad description of the

components of the proposed approach. It discusses the data

pre-processing stages, n-gram encoding and feature hash-

ing, and the structure of the deep learning model. Section 4

outlines the experimental settings, the structure of datasets

and our empirical results. Section 5 concludes the paper

with a discussion and summary.

2 Related Work

A growing body of literature has examined machine-

learning approaches in business process management. We

categorize them according to the type of the target variable

(discrete vs. continuous) they predict, and discuss the

problem types within these categories.

The first category comprises approaches that deal with

regression problems. Predicting the remaining processing

time of incomplete cases is the most frequently addressed

problem in this category. van Dongen et al. (2008) applied

non-parametric regression approaches to compute the

remaining cycle time on the data recorded in event logs.

Polato et al. (2016) implemented both simple and support

vector regression methods to forecast the remaining time of

running process instances. Rogge-Solti and Weske (2013)

proposed a stochastic Petri net with generally distributed

transitions to predict remaining process execution time

based on elapsed time since the last observed event. To

overcome the shortcomings of conventional regression

approaches in predicting remaining time to completion,

van der Aalst et al. (2011) presented an annotated transition

system that represents an abstraction of the process with

time annotations. Folino et al. (2012) introduced a hybrid

predictive clustering tree (PCT) and multiple performance

annotated finite state machine (FSM) models for remaining

time prediction. Senderovich et al. (2017) applied linear

regression, random forests and XGBoost approaches for

remaining time prediction after obtaining the features

related from specific process instances and global process

models.

The second category deals with classification problems,

including process outcome predictions, service level

123

144 N. Mehdiyev et al.: A Novel Business Process Prediction Model, Bus Inf Syst Eng 62(2):143–157 (2020)



agreement violations, nominal attribute prediction, next

event prediction etc. (Kang et al. 2012a, b; Leontjeva et al.

2015; Metzger et al. 2015; Di Francescomarino et al.

2016). The following studies address the next process event

prediction that we investigate in this paper. A multi-stage

model, which starts by clustering event sequences using the

k-mean algorithm combined with sequential alignment,

builds individual Markov models on the obtained clusters

(Le et al. 2014). Experiments were conducted on records of

processes obtained from a telecommunication company.

An approach by Le et al. (2017) uses sequential k-nearest

neighbor classification and an extension of Markov models

to predict the next process steps by considering temporal

features. Using the same process log data as Le et al.

(2014), they showed the superiority of this model over

Markov and Hidden Markov Models (HMM). Unuvar et al.

(2016) proposed a decision tree model to predict the next

activity in running instances of processes with parallel

execution paths. Five different models for representing the

path attribute of the execution trace were presented and

experiments were conducted on simulated data. Combining

the two approaches yields a hybrid model, which learns a

decision tree at each node of the process model, based on

the execution traces to compute the transition probabilities,

and creates a Markov chain model (Lakshmanan et al.

2015). A simulated dataset was used to verify the predic-

tion accuracy. Somewhat similar to a Markov model, a

probabilistic finite automaton (PFA) based on Bayesian

regularization by Breuker et al. (2016) uses the expectation

maximization (EM) approach to estimate the relevant

process parameters. The evaluation was done using both

simulated and real data (the publicly available BPI Chal-

lenge 2012 and BPI Challenge 2013 data). Márquez-Cha-

morro et al. (2017) proposed an evolutionary rule based

approach to predict the events of interest after encoding the

features using a window technique. The approach was

evaluated using the BPI Challenge 2013 and health ser-

vices datasets.

Recent work is moving from explicit process models to

deep learning approaches. Evermann et al. (2017) applied

recurrent neural networks (RNN) with long short-term

memory (LSTM) after transforming the input features

using word embeddings. They also investigated accuracy

improvement due to adding available case and event

specific explanatory variables. BPI Challenge 2012 and

2013 datasets were used to validate the prediction results.

Also applying the LSTM approach, but only considering

the occurrence sequence of the activities and their times-

tamps, Tax et al. (2017) transformed the input activities to

feature vectors using one-hot encoding. Both studies

examined the prediction of process activity duration using

the same approach. Our own earlier, initial study is also

based on a deep learning approach (Mehdiyev et al. 2017).

However, this paper significantly expands on the earlier

paper by improving the hyperparameter optimization,

assessing and improving prediction performance on

imbalanced datasets (which are typically problematic for

classifiers), and additional evaluation and comparison.

One of the main differences between the studies by

Evermann et al. (2017) and Tax et al. (2017) and our

approach lies in the transformation of the sequential pro-

cess data to the neural network input features (for the

predetermined prefix size). Most existing approaches use

the simple index encoding method to build a feature vector

from sequence data, but this does not consider the inter-

dependencies among the sequential event data (Leontjeva

et al. 2015; Márquez-Chamorro et al. 2017; Senderovich

et al. 2017). To tackle this problem, we use an n-gram

based encoding schema. Depending on the size of the event

space, the n-gram based approach can lead to a very high

dimensional feature space. Therefore, we apply a feature

hashing technique to obtain a reasonable input vector size.

Another important feature of our study, which significantly

improves on our approach in Mehdiyev et al. (2017), is the

optimization of the deep learning hyperparameters, which

has not been previously used in business process event

prediction. Since the hyperparameter configuration signif-

icantly affects the classification results, testing models with

only a few hyperparameter combination variations (manual

search) is likely to lead to suboptimal results. Finally, no

study except Márquez-Chamorro et al. (2017) addresses the

classification problem for an imbalanced dataset. Identifi-

cation of rare events can have important business impli-

cations. We address this problem by synthesizing new

instances for the minority class using neural networks and

thereby balancing the training data set.

3 Proposed Approach

We formulate the prediction of the next process event as a

classification problem. Figure 1 shows an overview of our

approach. After a data pre-processing stage, we apply deep

learning algorithms on a feature matrix extracted from the

control flow, data flow, resource, and organizational per-

spectives. Our approach starts with process events (control

flow) obtained from event log data with a sliding window

technique and encoded in letters into the n-gram feature

representation (see the Fig. 1). Next, feature hashing maps

the n-grams to hash keys. The hashed feature matrix is then

extended by adding data and resource features. Once the

extended feature matrix is available, the deep learning

method is applied to predict the next process events. It

consist of two components, an unsupervised layerwise pre-

training component that produces higher level feature

representations, and a supervised fine-tuning of the whole
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network for the multiclass classification, which adds an

output layer on top of the stack.

3.1 Terminology

An event log consists of process traces. Each trace repre-

sents the execution of one process instance (case). A trace

is sequence of events. Events contain attributes describing

their characteristics (XES Standard 2016). Typical attri-

butes are the name of the executing activity, the timestamp

of the event, the lifecycle transition (e.g., ‘‘start’’ or

‘‘complete’’) and organizational resources or roles. Events

are ordered by the timestamp of their occurrence. Other

attributes may contain case specific information. The next

event prediction problem is understood here as predicting

the executing activity and lifecycle transition of the next

event in the running trace, considering the sequence of past

events for a predefined prefix length from that particular

trace.

3.2 Data Pre-processing

Prior studies, with a few exceptions, pay little attention to

data pre-processing. However, data preparation, compris-

ing various stages such as data cleaning, encoding,

dimensionality reduction, or feature extraction, signifi-

cantly affects the predictive ability of classifiers.

3.2.1 N-gram Encoding

The first step of our approach is sequence encoding, con-

verting character strings (specifically the executing activity

for each event) into numerical input features. Leontjeva

et al. (2015) provide a comparative analysis of various

sequence encoding schemas for process outcome predic-

tion. Choosing an appropriate encoding method is critical,

as it significantly affects the accuracy of the machine

learning approaches. Event sequence data contains intrinsic

relationships and interdependencies among the events. We

choose n-gram encoding as a suitable approach for mod-

elling such dependencies due to its ability to represent

relationships between neighboring elements by building all

contiguous subsequences (Caragea et al. 2012). We use

n-grams of different sizes, allowing us to extract both local

and global features from the event sequences.

Definition 1 Given a sequence of events E ¼
e1; e2; . . .; eNþðn�1Þ
� �

over the event universe u, where the

N and n are positive integers, an n-gram of E is any n-long

subsequence of consecutive events. There are N such n-

grams in E. The total number of possible unique n-grams

for the event universe is ðjujÞn where the juj is the total

number of unique events in the process log data.

Assume that we have the sequence of events

E ¼ A; F;G;C;L;B;A;D;A;Mf g. The bigram (2-gram)

features are all combinations such as

AF; FG; GC; . . .; AMf g; the trigram (3-gram) features

are AFG; FGC; GCL; . . .; DAMf g etc. We consider the

combination of n-grams of pre-defined sizes. The size of

our input feature space, e.g., in the case of 5-grams [in-

cluding unigrams (1-grams), bigrams (2-grams), trigrams

(3-grams), quadgrams (4-grams)] and an alphabet size of

15 unique events would be:

Ntotal features ¼ 15þ 152 þ 153 þ 154 þ 155 ¼ 813; 615

Due to its completeness (the alphabet is a priori known,

in our case comprising the set of unique executing activi-

ties of the process events), domain independence, effi-

ciency (one pass processing) and simplicity, the n-grams

approach has been applied to various problems ranging

from protein classification to information retrieval

Fig. 1 The stages of the proposed approach
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(Tomović et al. 2006). N-gram event data requires no

additional preprocessing such as sequence alignment. The

letter n-grams method is also very effective due to its

ability to not only encode the letters but also order them

automatically. However, as seen in the above example, the

size of generated input feature set for classification prob-

lems tends to be very large: The number of features

increases exponentially with the n-gram length. Using all

generated features directly would lead to extremely high

computational costs and the sparsity of the input would

lead to reduced accuracy. To address this challenge, we

adopt a dimensionality reduction technique, feature hash-

ing, to reduce the size of n-gram feature vectors.

3.2.2 Feature Hashing

Feature hashing is an effective dimensionality reduction

method that maps a high dimensional input space into a

low dimensional space (Weinberger et al. 2009). Feature

hashing has found successful applications in natural lan-

guage processing (NLP), such as news categorization,

spam filtering, sentiment analysis in social networks and

different areas of bioinformatics (Forman and Kirshen-

baum 2008; Ganchev and Dredze 2008; Caragea et al.

2012; Da Silva et al. 2014). The main idea of feature

hashing is to use hash functions to map n-grams of events

to feature vectors, which can be used to train the classifier.

Definition 2 Given a set of hashable features N, which

are the n-grams obtained from the process event sequen-

ces, h is the first hash function, h : N ! 1; . . .. . .; mf g and
n is the second hash function, n : N ! �1f g. The com-

bined feature hashing function U h;nð Þ maps the high

dimensional input vector of size d into a low-dimensional

feature vector m where m\ d. The i th element of the

U h;nð Þ xð Þ is given as: U h;nð Þ
i xð Þ ¼

P
j:h jð Þ¼i n jð Þxj where

j ¼ 0; . . .; d and i ¼ 0; . . .; m.

Feature hashing not only reduces the training compu-

tational costs due to the reduced feature dimensionality but

also conserves memory. However, dimensionality reduc-

tion via feature hashing can lead to information loss due to

hash collisions, i.e. the mapping of many n-grams to the

same hash keys. Larger hash tables, i.e. larger bit sizes of

the hash function, can prevent this problem (Weinberger

et al. 2009). Bit size determines the numbers of the bits

when creating the hash table. The optimal bit size depends

on the size of the n-gram vocabulary. A descriptive anal-

ysis of the n-grams obtained from the process sequences

shows that they follow Zipf’s law (Evermann et al. 2017).

This implies that a small proportion of the input features

occur with higher frequencies. Hence, hash collisions are

likely to take place for infrequent variables and will incur

low information loss (Caragea et al. 2012). The phe-

nomenon can also be observed in protein sequence classi-

fication problems (Caragea et al. 2012). As a reasonable

trade-off between dimensionality reduction and informa-

tion loss, we use the 32 bit murmurHash function (Lang-

ford et al. 2007) as hash function h,. The binary hash

function n is included to ensure that the hash kernel is

unbiased (Weinberger et al. 2009).

3.3 Deep Learning Model

Artificial neural networks (ANN) offer a number of

advantages over alternative machine learning approaches

for supervised learning tasks, including less need for for-

mal statistical modelling, the ability to detect complex non-

linear relationships between predictors and outcomes, the

ability to model the interrelationships among the predictor

variables, and the availability of a range of training algo-

rithms (Tu 1996). The superior performance of ANN has

been documented in many comparative empirical studies

and competitions (Caruana and Niculescu-Mizil 2006;

Caruana et al. 2008; Schmidhuber 2015).

The traditional approach to train ANNs, particularly

deep neural networks with multiple hidden layers, directly

optimizes the loss function through stochastic gradient

descent, beginning from randomly initialized weights.

However, this results in long training durations and

reduced prediction performance (Vincent et al. 2010).

Beginning in the mid-2000s more effective training meth-

ods (Hinton et al. 2006; Vincent et al. 2008), such as deep

belief network (DBN), and various autoencoder architec-

tures have been developed. The training process for these

network architectures consists of two stages: (1) unsuper-

vised greedy, layerwise pre-training and (2) supervised

fine-tuning. The main idea of the unsupervised pre-training

is to address the need for learning complicated functions

that represent high-level abstractions. Network weights are

obtained through self-supervised learning that learns the

non-linear transformation of the original input. The weights

obtained from this stage are then used for training the

whole network. The supervised fine-tuning component

maps the output data to the pre-trained deep neural network

and tries to minimize classification errors with gradient-

based optimization by adjusting the previously learned

weights.

An extensive experimental study showed that neural

networks with unsupervised pre-training provide better

classification results than networks without: The unsuper-

vised pre-training yields a good initial marginal distribu-

tion, captures intrinsic dependencies between variables,

outperforms classical regularization techniques, and acts as

a variance reduction technique (Erhan et al. 2010). We

apply stacked autoencoders to extract high-level feature
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representation layerwise in an unsupervised manner. After

pre-training with stacked autoencoders, we perform the

fine-tuning and relevant classifications using a logistic

regression layer after adding an output layer to the obtained

stack (see the Fig. 2).

3.3.1 Unsupervised Pre-training with Stacked

Autoencoders

Autoencoders are the non-linear generalization of the

principal component analysis (PCA) that can model non-

linear interdependencies among features (Hinton and

Salakhutdinov 2006). An autoencoder consists of three

layers, namely input, hidden and output layers. The hidden

layer is referred to as encoding layer while the output layer

acts as a decoding layer.

Encoder: The encoder maps the high-dimensional input

vector x 2 0; 1½ �d to the hidden layer using a non-linear

activation function fh. Due to its tendency to increase

sparsity and reduced tendency of vanishing gradients

(Izadyyazdanabadi et al. 2017; Shi and Chu 2017), we

adopted the rectified linear unit (ReLU) as an activation

function for encoding:

h ¼ fh xð Þ ¼ r Wxþ bð Þ ð1Þ

h ¼ W ; bf g is the parameter set of the encoder where W is

a d0 9 d weight matrix and b is the bias. h 2 0; 1½ �d is the

output of the hidden layer representation and r is the ReLU

activation function.

Decoder: The decoder maps the hidden layer representa-

tion back to the reconstructed vector z 2 0; 1½ �d through the
mapping function gh0 .

z ¼ gh0 hð Þ ¼ r W 0hþ b0ð Þ ð2Þ

Themain goal of the training is the optimization of parameter

sets h ¼ W ; bf g in the encoder and h0 ¼ W 0; b0f g in the

decoder to minimize the reconstruction loss. The squared

error was used as the reconstruction loss function L:

L x; zð Þ ¼ k x� z k2 ¼k x� rðW 0 r Wxþ bÞð Þ þ b0ð Þ k2

ð3Þ

This optimization problem was solved using the mini batch

stochastic gradient descent method.

Stacked autoencoders is a greedy layer-wise approach

which conducts multi-phase feature extraction by using the

features extracted by one autoencoder, represented by its

hidden layer, as input of another, following autoencoder

(left side of Fig. 2) The stacked autoencoders are trained

independently to obtain the initial weights for the next

stage, supervised fine-tuning. In our study, we deploy an

undercomplete autoencoder (a network architecture with

decreasing width of hidden layers) to address the process

prediction problem.

Fig. 2 Stacked autoencoders based deep learning. Unsupervised pre-training on the left, supervised fine-tuning on the right
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3.3.2 Supervised Fine-Tuning

After unsupervised reconstruction based learning of the

network weights, logistic regression is applied to fine-tune

the weights after mapping the output to class labels (right

side of Fig. 2). For this, the decoding parts of the stacked

autoencoders are removed and the logistic regression layer

is added on top of the trained encoding layers. Since we

deal with a multi-class classification problem, the added

layer uses Softmax (multinomial logistic regression) units

to estimate the probabilities of the classes:

P y ¼ jjxð Þ ¼ ehj
Pk

i¼1 e
hi

ð4Þ

The probability of the target class y being class j, given

the input x, is calculated from the input vector x and a set

of weighting vectors wj, where hj ¼ wT
j x denotes the inner

product of wj and x. The combined network is trained using

usual multi-layer perceptrons to minimize the prediction

error. We use stochastic gradient descent (SGD) to mini-

mize the cost function. A lock-free methodology was

adopted to parallelize the SGD where the multiple cores

contribute to gradient updates (LeCun et al. 2012; Good-

fellow et al. 2013).

4 Evaluation

To gauge the effectiveness of the proposed deep learning,

we conducted a range of experiments with different data-

sets, experimental settings and evaluation purposes. We

investigated the following research questions:

• RQ1: Does the proposed multi-stage deep learning

approach provide superior results for different evalua-

tion measures compared to existing classification

approaches?

• RQ2: Does the proposed multi-stage deep learning

approach outperform the LSTM based approaches by

Evermann et al. (2017) and Tax et al. (2017) and the

probabilistic finite automaton (PFA) based on Bayesian

regularization by Breuker et al. (2016)?

The third contribution of this study is to use data bal-

ancing to improve classification accuracy (cf. Sect. 1).

Business processes may contain rare activities that are not

on the typical execution path. This leads to imbalanced

event logs, where some events are highly prevalent and

others are only sparsely represented, which are a challenge

for classifier training. However, rare activities are highly

relevant in a business context as they may signal process

exceptions, process escalation or compensation tasks.

Hence, it is important for classifiers to correctly classify or

predict rare events and we therefore ask the following

research question:

• RQ3: Can process prediction with a multi-stage deep

learning approach benefit from data balancing to

improve the prediction performance for rare process

events? Because traditional resampling techniques lead

to overfitting, and the lack of information for cost-

sensitive learning, we use radial basis function (RBF)

neural networks to balance the data. The ability of this

approach to enhance the classification performance has

already been documented (Robnik-Šikonja 2014).

Our experiments were performed on an Intel i7-5500U

2.0 GHz processor with 16 GB RAM. For data pre-pro-

cessing, we used the dplyr package for R (Wickham and

Francois 2015). We developed a Java-based application to

build the n-grams from the process event data. Feature

hashing was done on the Microsoft Azure ML platform

using the Vowpal Wabbit library (Langford et al. 2007;

Barga et al. 2015). Both the pre-trained, stacked autoen-

coders and the supervised deep learning part were created

on the H20 open source deep learning platform (Candel

et al. 2016). We used Weka (Hall et al. 2009) for experi-

ments with traditional classifiers.

4.1 Datasets

The experiments used real-life datasets, the BPI Challenge

2012 (van Dongen 2012), BPI Challenge 2013 (Steeman

2013), and Helpdesk (Verenich 2016) data. Table 1

describes the datasets. The number of unique event types is

the number of output classes in our multi-class classifica-

tion problem.

The BPI Challenge 2012 dataset comprises 262,000

events for 13,087 cases, obtained from a Dutch financial

institute. The activities related to a loan application process

are categorized into three sub-processes: activities related

to the application (A), activities belonging to applications

(W) and activities related to the offer (O). Events for the A

and O sub-processes contain only the completion lifecycle

transition, while the W process includes the scheduled,

Table 1 Characteristics of dataset

Datasets # of unique event types # of events

BPI_2012_W_Completed 6 72,413

BPI_2012_A 10 60,849

BPI_2012_O 7 31,244

BPI_2013_Incidents 13 65,533

BPI_2013_Problems 7 9011

Helpdesk 9 13,710
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started and completed lifecycle transitions. As Evermann

et al. (2017), Breuker et al. (2016), and Tax et al. (2017)

use only the completion events, we remove the started and

scheduled events from this sub-process. Similar to the

previous papers, we evaluate our approach on three data-

sets from BPI Challenge 2012: BPI_2012_A, BPI_2012_O

and BPI_2012_W_Completed.

The BPI Challenge 2013 dataset contains log data from

an incident and problem management system of Volvo IT

in Belgium. It has three subsets: The incident management

subset encompasses 7554 cases with 65,533 events of 13

unique types. The open problems subset contains 819 cases

with 2351 events of 5 unique types, and the closed prob-

lems subset comprises 1487 cases with 6660 events of 7

unique types. We merged the open and closed problems

subsets to create a dataset identical to that in other studies,

yielding 9011 events.

The helpdesk dataset comprises event data from a

ticketing management system designed for the help desk of

an Italian software company. The event log contains 3804

cases with 13,710 events.

The BPI Challenge 2012 data provides both organiza-

tional information such as the identification number of the

resources initiating events, and case specific information

such as the amount of the requested loan. The BPI Chal-

lenge 2013 datasets contain information about the priority

of the problems and incidents, originating functional divi-

sions and organizational lines, related products, process

owners’ countries and names. After generating the feature

vectors from the sequence of the activities through n-grams

and feature hashing approaches, we appended the addi-

tional information from the logs to the feature vector.

4.2 Evaluation Metrics

To evaluate the effectiveness of our deep learning approach

and to compare it to other classification algorithms, we

computed average accuracy, averaged precision, average

recall, average F-measure, and Matthews correlation

coefficient (MCC) and the area under the ROC curve

(AOC) (see the Table 2), which were adapted to a multi-

class classification problem.

In these formulas, tpi (true positives for class i) is the

number of events of class i that have been classified or

predicted as being of class i. fpi (false positives) is the

number of events not of class i that have been classified

(predicted) as being of class i. tni (true negative) is the

number of events not of class i that have been classified

(predicted) as not of class i and finally fni (false negatives)

is the number of events of class i that have been classified

(predicted) as not of class i. tpri is the true positive rate and

fpri the false positive rate for class i. Accuracy is defined as

the proportion of correctly predicted instances of all

instances. Precision determines how many activities were

correctly classified for a particular class, given all predic-

tions of that class. Recall is the true positive rate for a

particular class. The F-measure is the harmonic weighted

mean of precision and recall. MCC is referred as the cor-

relation between the target values and predicted classifi-

cations. AUC is the area under the ROC (receiver operating

characteristic) curve. We computed these measures for

each individual class and obtained the overall value by

summing up their scores, weighted by the true class size.

80% of each dataset was used for training and 20% for

testing. We used the training data for both unsupervised

pre-training and supervised fine-tuning of our deep learning

model. We used tenfold cross validation for training, in

which the dataset was partitioned into the 10 disjoint

subsets. Both training and validation were carried out 10

times. During each iteration, one subset was used for val-

idating whereas the others were used for training the

classifier. This procedure is important for finding the best

hyperparameter configuration (Vincent et al. 2010). The

test results were used to compare the approaches.

4.3 Hyperparameter Optimization

Deep neural networks may have more than fifty hyperpa-

rameter (Bergstra et al. 2011). Hyperparameter optimiza-

tion significantly affects the learning process and

prediction outcomes by identifying the best parameter

configuration from the given hyperparameter space at a

reasonable computational cost. In the traditional approach,

manual search, experts define some hyperparameter values

for different parameters based on their experience and

intuitions (such as the number of hidden layers, the number

of neurons, the learning rate etc.) and try to find the best

combination of hyperparameter values by conducting

multiple training sessions. Due to the time consuming

Table 2 Evaluation metrics for multi-class classification

Metrics Formula

Accuracy 1
n

Pl
i¼1 si

tpiþtn
tpiþfniþtniþfpi

Precision 1
n

Pl
i¼1 si

tpi
tpiþfpi

Recall 1
n

Pl
i¼1 si

tpi
tpiþfni

F-measure 1
n

Pl
i¼1 si

precisioni�recalli
precisioniþrecalli

MCC 1
n

Pl
i¼1 si

tpi�tni�fpi�fniffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tpiþfpið Þ tpiþfnið Þ tniþfpið Þ tniþfnið Þ

p

AUC 1
n

Pl
i¼1 si r

1
0 tprid fprið Þ

l is the number of classes, si is the true size of class i (the number of

events of class i) and n ¼
Pl

i¼1 si is the total size of the dataset
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nature of this approach, only a few hyperparameter value

combinations can be tested (Bergstra et al. 2011). Fur-

thermore, due to the shortcomings of human reasoning in

multi-dimensional spaces, it is challenging to achieve

globally optimal outcomes (Witt and Seifert 2017).

The brute force, exhaustive approach (grid search),

trains the model for every possible combination of hyper-

parameter values by following some stopping criterion.

Grid search identifies better hyperparameter configuration

than manual search in the same computational time

(Bergstra and Bengio 2012). Most deep learning studies

use a combination of manual and grid search, where

experts define the possible values for each variable and grid

search then finds the best combination of these (Larochelle

et al. 2007). Such an exhaustive search suffers from the

‘‘curse of the dimensionality’’ since the number of com-

binations increases exponentially with the number of

hyperparameters (Bergstra et al. 2011). To address this,

Bergstra and Bengio (2012) proposed a random search

approach. The idea is to pick combinations of hyperpa-

rameter values randomly and to train the models in the

given constraint (e.g., compute time). Empirical results

show that random search outperforms the brute-force grid

search (Bergstra and Bengio 2012).

Hence, we adopt the random search hyperparameter

optimization approach. We defined the parameter ranges

for number of hidden layers [3:10], number of neurons in

the hidden layers [10:500] considering the undercomplete

network structure, sparse data handling [True, False], ini-

tial weight distribution [uniform, normal] for the pre-

training component, number of training epochs [10:1000],

adaptive learning rate (adaptive learning rate time decay

factor = 0.99 and adaptive learning rate smoothing fac-

tor = 1e-8), (initial) learning rate [0.0001:1], annealing

rate [10:106] when adaptive learning is disabled, for both

pre-training component and the whole network. We stop-

ped the search when 200 models for a given dataset are

trained. Training is stopped early if relative improvement is

below a defined threshold. We used log-loss as the early

stopping metric with a threshold of 0.001. Table 3 shows

the optimal hyperparameter configuration for the

BPI_2012_A dataset. We performed hyperparameter opti-

mization for all our experiments but do not show optimal

values due to space restrictions.

4.4 Results

The following subsections provide discuss our experi-

mental results to address our research questions. All

reported results are from the test data subset.

4.4.1 Comparative Analysis (RQ 1 and RQ 2)

We first compared our approach to conventional (i.e.

generic or not-process aware) classification algorithms

including support vector machines (SVM), random forests,

naı̈ve Bayes, k-nearest-neighbours (kNN) and C4.5 deci-

sion trees, which are among the most powerful and most

widely-used algorithms (Wu et al. 2008). Table 4 presents

our results for predicting the next event for prefix length 5,

n-gram size 3 and bit size 10.

The results for different performance measures show

that, with few exceptions, our approach outperforms con-

ventional, generic classification methods. The SVM

method performs better than other methods over all three

datasets and comes closest to our approach. For the BPI

2013 dataset, all methods except naı̈ve Bayes perform

similarly. The performance gaps between our approach and

the alternative methods are quite large for the BPI 2012 and

helpdesk datasets.

In summary, to answer RQ1, we observe that our pro-

posed deep learning approach is superior to conventional,

generic classification methods.

To examine RQ2, we compared our approach to three

recent approaches for next event prediction. The results for

all three BPI 2012 datasets show that our approach

Table 3 Optimal hyperparameter values for BPI Challenge 2012_A dataset

Parameters (pre-training) Values Parameters (whole network) Values

Number of neurons (hidden layers) 425:400:390:300 Number of layers 6 (4 hidden)

Initial weight distribution Normal distribution Epochs 100

Sparse True Adaptive learning True

Learn rate 0.005 Adaptive learning rate smoothing factor 1e-8

Momentum 0.9 Adaptive learning rate time decay factor 0.99

Annealing rate 104 Activation ReLu

Activation (classification) Softmax

Batch size 20

classifier L2-penalty 0

Loss function Cross-entropy
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outperforms all three approaches (see the Table 5). A

bigger difference can be observed for the

BPI_2012_W_Completed dataset, where our approach

achieves an accuracy of 0.831 compared to 0.719 in

Breuker et al. (2016) and 0.760 in Tax et al. (2017). The

performance gap compared to Breuker et al. (2016) is

greatest for recall (sensitivity). The comparison of our

results with Evermann et al. (2017) in terms of precision

also shows the superior performance of our proposed

approach (0.811 vs. 0.658). Only two other studies used the

BPI_2012_A and BPI_2012_O datasets to evaluate their

models. Our approach outperforms both of those models in

terms of all evaluation measures. The approach by Ever-

mann et al. (2017) performs better for the latter two and

achieves results close to ours.

The results for the BPI_2013_Incident dataset are

mixed. The approach in Breuker et al. (2016) shows higher

predictive performance than ours in terms of accuracy

(0.714 vs. 0.663). However, our approach performs sig-

nificantly better in terms of recall (0.664 vs. 0.377). Pre-

cision results obtained in Evermann et al. (2017) are also

better than for our approach. However, the experiments

conducted on the BPI_2013_Problems dataset suggest that

our approach delivers superior results compared to the

alternatives.

Finally, only Tax et al. (2017) carried out experiments

on the helpdesk data. Our approach performs better than

LSTM approach in terms of accuracy (0.782 vs. 0.712).

We also note that, since we use the random hyperpa-

rameter optimization instead of a manual search as in our

previous study (Mehdiyev et al. 2017), the results presented

here are a significant improvements over own earlier work

(Mehdiyev et al. 2017), demonstrating the importance of

this step.

In summary, to answer RQ2, we conclude that our

approach outperforms existing deep-learning process pre-

diction approaches for most datasets and on most quality

metrics.

We examined the effect of the n-gram size on prediction

accuracy. Since most process traces in the BPI_2012 and

Helpdesk datasets contain less than 6 events, we defined

the maximum length of prefix and n-grams as 5. For the

BPI_2013 we were able to build 10-grams. The experiment

results suggest that increasing the size of the n-grams (from

2 to 5 and 10) does not lead to significant changes in the

predictive capability of the model, while using longer

n-grams increases computational costs. For example, the

accuracy on the BPI2012_A and a prefix length of 5 ranges

between 0.829 and 0.831 for n-grams sizes between 2 and

5, showing little improvement.

We also investigated the effect of the bitsize of the

feature hashing on accuracy. As mentioned above, hash

collisions can be reduced by increasing the bitsize of the

hash table. Our results show that increasing the bitsize

beyond a certain threshold does not improve prediction

results. In our case, this threshold was 10. This can be

explained by the fact that the frequency of n-grams

obtained from the process event sequences follow Zipf’s

law, which states that only a small proportion of the input

features occur with higher frequencies (Caragea et al.

Table 4 Results obtained from

conventional classification

approaches and the proposed

deep learning approach (higher

numbers are better)

Accuracy Precision Recall F-score MCC AUC

BPI 2012_A

SVM 0.817 0.856 0.822 0.817 0.748 0.895

RF 0.720 0.714 0.721 0.712 0.566 0.888

Naı̈ve Bayes 0.612 0.633 0.612 0.555 0.485 0.772

C4.5 0.708 0.744 0.709 0.705 0.674 0.931

Deep learning 0.824 0.852 0.824 0.817 0.751 0.923

BPI2013_Incidents

SVM 0.652 0.599 0.653 0.622 0.350 0.730

RF 0.615 0.626 0.616 0.524 0.508 0.895

Naı̈ve Bayes 0.576 0.618 0.577 0.590 0.519 0.879

C4.5 0.659 0.558 0.659 0.582 0.564 0.900

Deep learning 0.663 0.648 0.664 0.647 0.583 0.862

Helpdesk

SVM 0.715 0.605 0.716 0.652 0.389 0.725

RF 0.601 0.619 0.601 0.606 0.278 0.688

Naı̈ve Bayes 0.631 0.634 0.631 0.622 0.323 0.733

C4.5 0.613 0.534 0.614 0.569 0.214 0.602

Deep learning 0.782 0.632 0.781 0.711 0.412 0.762
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2012). This implies that the majority of hash collisions take

place for infrequent, and thus less important, n-grams.

4.4.2 Imbalanced Classification (RQ 3)

In imbalanced datasets, some classes are severely under-

represented compared to others. This reduces the effec-

tiveness of the machine learning techniques, especially for

detecting the minority class examples (Wang and Yao

2012). To overcome this, various approaches at the data

level (randomly or informatively under/over sampling),

algorithm level, cost sensitive learning and boosting

methods have been proposed (Sun et al. 2009). Due to their

simple nature, resampling approaches are used frequently,

but they are unable to increase the information that is

required to train the models. Furthermore, undersampling

may result in information loss. The SMOTE (Synthetic

Minority Over-sampling Technique) method was proposed

to address this issue. It generates new, non-replicated

samples by interpolating neighboring minority class

examples, but it also suffers from synthesizing noisy

examples (Huang et al. 2016). Cost sensitive learning

techniques are effective approaches to tackle the imbal-

anced classification problem but require cost information

from domain experts. Huang et al. (2016) suggests that

applying neural networks to synthesize the samples for

minority class is a superior alternative.

In our study, we generate semi-artificial data of the

minority class using radial basis function (RBF) neural

networks (Robnik-Šikonja 2014). This approach extracts

Gaussian kernels from the RBF trained with dynamic

decay adjustment, and generates data from each kernel in

the required proportions. Details and pseudo-code of the

RBF based data generator can be found in Robnik-Šikonja

(2014). We chose RBF networks for their advantages over

other data generation methods. Although other methods

consider the relationship between input and target vari-

ables, they do not consider dependencies among input

variables. Such dependencies are preserved in the RBF

based model. The RBF method assumes only the form of

the data distribution (Gaussian), but uses extracted distri-

bution parameters to generate data.

The process owners of the BPI Challenge 2013 Incidents

dataset claim that employees try to find workarounds to

stop the clock in order to manipulate the resolution time of

an incident. Giving an incident a status of ‘‘Wait user’’ is

one of these ways. Although employees were explicitly

requested to avoid using the status of ‘‘Wait user’’ except

for emergency cases, the guideline is occasionally broken.

Identifying this misuse is therefore highly business rele-

vant. However, this event occurs very infrequently. To

handle this imbalanced classification problem, we refor-

mulate the problem as a binary classification problem

where the majority class is the set of all other events and

the minority class is the ‘‘Wait user’’ event. We then apply

our approach after balancing the class occurrence fre-

quencies with the RBF method. We compare the results

against the direct application of our approach to the

imbalanced data (without rebalancing). Accuracy is inap-

propriate for comparing classification results for imbal-

anced datasets. Even when a classifier detects all majority

examples correctly and fails to predict the examples from

the minority class, the accuracy will still be high due to the

prevalence of majority class examples (Han et al. 2005).

Instead, we used the area under the ROC curve (AUC),

which is an appropriate measure of the performance for

imbalanced data (Bradley 1997). Figure 3 shows ROC

curves for the imbalanced data and for the RBF rebalanced

data.

The results show that balancing the dataset through RBF

based data generation imrpoves the accuracy of our

approach positively by increasing the AUC from 0.855 to

0.932.

In summary, to answer RQ3, we conclude that RBF

based data rebalancing works well in conjunction with our

Table 5 Comparison against benchmark approaches (higher numbers

are better)

Accuracy Precision Recall

BPI 2012_W

Breuker et al. (2016) 0.719 – 0.578

Evermann et al. (2017) – 0.658 –

Tax et al. (2017) 0.760 – –

Proposed approach 0.831 0.811 0.832

BPI2012_A

Breuker et al. (2016) 0.801 – 0.723

Evermann et al. (2017) 0.832 –

Proposed approach 0.824 0.852 0.824

BPI2012_O

Breuker et al. (2016) 0.811 – 0.647

Evermann et al. (2017) – 0.836

Proposed approach 0.821 0.847 0.822

BPI2013_incidents

Breuker et al. (2016) 0.714 – 0.377

Evermann et al. (2017) – 0.735

Proposed approach 0.663 0.648 0.664

BPI2013_Problems

Breuker et al. (2016) 0.690 – 0.521

Evermann et al. (2017) – 0.628

Proposed approach 0.662 0.641 0.662

Helpdesk

Tax et al. (2017) 0.712 – –

Proposed approach 0.782 0.632 0.781
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proposed multi-level deep learning prediction approach to

improve the prediction of rare, but important, events in a

business process.

5 Discussion and Conclusion

This paper investigated the effectiveness of a stacked

autoencoders based deep learning approach for predicting

future process events of a running process instance. It is the

first application of this approach in the business process

prediction domain. To evaluate the predictive performance

of our method, we compared it against three recent

approaches, two of which used LSTM recurrent neural

networks, and conventional classification algorithms.

Before applying the deep learning model, we used n-gram

encoding and feature hashing to build numerical feature

vectors from categorical process event data using a sliding

window technique. The research objective was to examine

the feasibility and impact of applying the proposed

approach to process prediction. The experimental results

suggest that the proposed method achieves good results on

different evaluation metrics and outperforms the state-of-

the-art approaches in most experiments. We also investi-

gated and discussed the effect of adjusting the hyperpa-

rameter of the data pre-processing stage and the deep

neural networks on the prediction results and applied

hyperparameter optimization to find the optimal

configuration. Finally, we addressed the imbalanced clas-

sification problem by employing neural-network based

resampling methods.

In addition to its superior predictive performance, the

proposed deep learning approach offers other advantages

over conventional techniques. Unsupervised pre-training of

neural networks with stacked autoencoders is useful in the

presence of unlabeled data as it is able to learn a good

feature representation from unlabeled data in a self-super-

vised manner. Moreover, undercomplete (a deep neural

networks architecture with decreasing width (layer sizes)

hidden layers) stacked autoencoders can construct useful

higher-level feature representations in their layers and thus

reduce the feature dimensionality. These higher-level fea-

ture representations are useful for other problems in the

business process management domain that rely on event

trace features, such as case based reasoning problems,

process instance similarity search, process instance clus-

tering, process instance retrieval, etc.

Another contribution of this study is the investigation of

the advantages provided by data-preprocessing. We have

shown the importance of n-grams based encoding of the

sequential business process data. In contrast, the majority

of prior approaches use simple indexing, which ignores

sequential interdependencies among the events and results

in relatively low classification performance. We have also

shown the importance of data reduction techniques such as

feature hashing, which significantly accelerate the

Fig. 3 ROC Curves for application to a imbalanced and b balanced datasets. ROC curves plot the true positive rate (tpr) against the false

positive rate (fpr)
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classification algorithms. This is particularly important for

real-time predictions required for automating process

decisions.

This study deals with predicting the next activities in the

given process trace. Knowing the occurrence probabilities

of the next events allows decision makers to dynamically

optimize process execution by adjusting resource alloca-

tion, rescheduling process activities, changing activities or

taking appropriate actions outside the process instance.

Alternatively, by predicting the occurrence of an undesired

event, the system warns managers and allows them to avoid

it proactively.

The successful application of our proposed approach to

next event prediction opens up interesting and important

avenues for future work. Our method can also be applied to

predicting business process outcomes, such as compliance

with service-level agreements, process success or failure.

Even if there is no need for algorithmic changes, business

process outcome prediction requires intensive feature pro-

cessing work. Using stacked denoising, contractive or other

regularized autoencoders may improve the pre-training

results over the ones used here, and is also a subject of

future research. Finally, applying the proposed multi-stage

deep learning approach to regression problems, such as

time to next event or remaining time to case completion, is

another interesting research question. By combining the

next event prediction with other process driven analytics

such as activity duration estimation, it is possible to

address more complicated decision tasks.

Our approach, like other predictive methods, assumes

that the process (and its event log data) is in a steady state.

This means that the relationship between input and output

does not change over time and a model trained with his-

torical data can be used to predict new data instances. The

results on our experimental datasets show this assumption

to be valid at least for these datasets. However, it is rea-

sonable to believe that changes may occur in the control-

flow (behavioral), resource and data perspectives of the

business processes (Bose et al. 2011). Referred also to as

concept drift, these changes may be recurring, sudden,

gradual and incremental (Bose et al. 2011). It is important

to consider this issue when designing and training a model

for predictive business process monitoring. In the data

preparation phase of our approach, we already adopt the

sliding windows technique for creating the dataset to train

our algorithm. With a slight adjustment to the current

training procedure, e.g., by forgetting old data upon the

arrival new data instances (fixed window approach) and

retraining the proposed model iteratively, we can obtain a

basic model that is able to handle concept drift. In future

work, we intend to address feature drift, concept drift, and

changing prior distributions by combining our deep

learning approach with methods that handle these different

aspects of concept drift.

Finally, expert knowledge and relevant cost information

is an important issue when evaluating the performance of

classifiers. Evaluating whether an accuracy of 80% (as in

BPI 2012 case in this study) is reasonable for adopting the

classification models depends on several factors such as the

characteristics of application domain, the nature of under-

lying process, and the legal and financial consequences of

misclassification. Classification in this context is a decision

making process which combines predictions with util-

ity/cost functions to attain the goal defined by analysts.

Different decision makers have different risk tolerances

and consequently different utility functions. Hence, the

utility functions determine the acceptable performance of

probabilistic machine learning approaches. In future

research, we aim to integrate our predictive analytics

approach with the decision making process in a real world

use-case.

We also aim to provide post hoc explanations to address

the ‘‘black-box’’ nature of deep-learning methods and

make their predictions interpretable to domain experts.

This is important to establish trust in the model results.

Incorporating automated decision making for process

monitoring in EIS (e.g., triggering alerts upon detection of

process execution) requires an understanding of the

underlying model, as does using the predictive analytics

based on PAIS data for decision making in knowledge

intensive processes where the humans are the final decision

makers. Our future research aims make process prediction

models more understandable.
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