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Abstract

In order to deal with the divergence of uncertain variables
from a prior one, this paper is devoted to introduce the
concept of cross-entropy for uncertain variables and study
the minimum cross-entropy principle.
Keywords: Uncertain variable, cross-entropy, minimum
cross-entropy principle.

1 Introduction

Entropy is used to provide a quantitative measurement
of the degree of uncertainty. Inspired by Shannon, the
entropy of random variables (Shannon [21]), fuzzy en-
tropy was first initialized by Zadeh [24] to quantify the
fuzziness, who defined the entropy of a fuzzy event as
a weighted Shannon entropy. Up to now, fuzzy entropy
has been studied by many researchers such as De Luca
and Termini [4], Kaufmann [7], Yager [22], Kosko [8],
Pal and Pal [18], Pal and Bezdek [19]. However, the
above definitions of entropy describe the uncertainty re-
sulting from the difficulty in deciding whether or not an
element belongs to a set, i.e., they characterize the un-
certainty resulting from linguistic vagueness rather than
information deficiency, and vanishes when the fuzzy vari-
able is an equipossible one. Liu [12] proposed that an en-
tropy should meet the following three requirements. Min-
imum: the entropy of a crisp number is minimum, i.e.,
0. Maximum: the entropy of an equipossible fuzzy vari-
able is maximum. Universality: the entropy is applica-
ble not only to finite and infinite cases but also to discrete
and continuous cases. Based on these requirements, Li
and Liu [9] provided a new definition of fuzzy entropy
to characterize the uncertainty resulting from information
deficiency.

In order to study the uncertainty in human systems,
Liu [13] founded uncertainty theory, which is is a branch
of mathematics based on normality, monotonicity, self-
duality, countable subadditivity, and product measure ax-
ioms. Up to today, uncertainty theory have been widely
applied to uncertain programming(Liu [16]), uncertain
logic (Li and Liu [10]), uncertain entailment (Liu [11]),
uncertain inference (Liu [15]), uncertain process (Liu
[14]), uncertain differential equation and uncertain opti-
mal control and so on.. Based on the uncertain measure,
Liu [15] provided the definition of uncertain entropy to
characterize the uncertainty of uncertain variables result-

ing from information deficiency. In many real cases, only
partial information about uncertain variable such as ex-
pected value and variance is available. However, there
are infinite number of uncertainty distributions consistent
with the given information. For random variables, Jaynes
[6] suggested to choose the distribution which has the
maximum entropy, which is the maximum entropy prin-
ciple. Chen and Dai[2] investigate the maximum entropy
principle of uncertainty distribution for uncertain vari-
ables. In order to compute the entropy more conveniently,
Dai and Chen [3] proves some formulas of entropy of
function of uncertain variables with regular uncertain dis-
tributions.

Based on the De Luca and Termini’s fuzzy entropy,
Bhandari and Pal [1] defined a cross-entropy for fuzzy set
via membership function. In order to deal with the di-
vergence of uncertain variables from a prior one, this pa-
per will introduce the concept of cross-entropy of uncer-
tainty distributions for uncertain variables and study the
minimum cross-entropy principle. The rest of the paper is
organized as follows. Some preliminary concepts of un-
certainty theory are recalled in Section 2. The concept of
entropy for uncertain variables is introduced in section 3,
and some useful examples are calculated. Maximum en-
tropy principle theorem for uncertain variables is proved
in Section 4. The definition of cross-entropy is proposed
in section 5. The minimum cross-entropy principle is in-
vestigated in section 6. At last, a brief summary is given
in Section 7.

2 Preliminary

Let Γ be a nonempty set, and L a σ-algebra over Γ. Each
element Λ ∈ L is assigned a numberM{Λ}.

Definition 1 (Liu[13]) The set function M is called an
uncertain measure if it satisfies the following four axioms:

Axiom 1. (Normality)M{Γ} = 1;

Axiom 2. (Monotonicity) M{Λ1} ≤ M{Λ2} whenever
Λ1 ⊂ Λ2;

Axiom 3. (Self-Duality) M{Λ} +M{Λc} = 1 for any
event Λ;

Axiom 4. (Countable Subadditivity) For every countable
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sequence of events {Λi}, we have

M

{ ∞⋃
i=1

Λi

}
≤

∞∑
i=1

M{Λi}.

.

Some properties of uncertain measure have been studied
by You [23] and Gao [5]. An uncertain variable is a mea-
surable function from an uncertainty space (Γ,L,M) to
the set of real numbers. The uncertainty distribution func-
tion Φ : < → [0, 1] of an uncertain variable ξ is defined
as Φ(x) = M {ξ ≤ x} . It has been proved by Peng and
Iwamura [20] that a function is an uncertainty distribution
function if and only if it is an increasing function except
Φ(x) = 0 and Φ(x) = 1. The expected value operator of
uncertain variable was defined by Liu as

E[ξ] =
∫ +∞

0

M{ξ ≥ r}dr −
∫ 0

−∞
M{ξ ≤ r}dr

provided that at least one of the two integrals is finite. Fur-
thermore, the variance is defined as E[(ξ − e)2]. Some
useful examples of uncertainty distribution functions are
recalled following.

Example 1 An uncertain variable ξ is called linear if it
has a linear uncertainty distribution

Φ(x) =

 0, if x < a
(x− a)/(b− a), if a ≤ x ≤ b

1, if x > b

denoted by L(a, b) where a and b are real numbers with
a < b. The expected value of ξ is (b− a)/2 and the vari-
ance (b− a)2/12.

Example 2 An uncertain variable ξ is called zigzag if it
has a zigzag uncertainty distribution.

Φ(x) =


0, if x < a

(x− a)/2(b− a), if a ≤ x < b
(x + c− 2b)/2(c− b), if b ≤ x ≤ c

1, if x > c

denoted by Z(a, b, c) where a, b and c are real num-
bers with a < b < c. The expected value of ξ is
(a + 2b + c)/4.

Definition 2 (Liu [15]) The uncertain variables
ξ1, ξ2, · · · , ξm are said to be independent if

M

{
m⋂

i=1

ξi ∈ Bi

}
= min

1≤i≤m
M{ξi ∈ Bi} (1)

for any Borel sets B1, B2, · · · , Bm of real numbers.

Example 3 Let ξ be an uncertain variable with uncer-
tainty distribution function

Φ(x) =

(
1 + exp

(
π(e− x)√

3σ

))
, −∞ < x < +∞, σ > 0.

Then the expected value of ξ E[ξ] = e and variance
V [ξ] = σ2.

Remark 1 Let ξ and η be independent normal uncertain
variables with expected values e1 and e2, variances σ2

and σ2, respectively. Then the uncertain variable a1ξ +
a2η is also normal with expected value a1e1 + a2e2 and
(|a1|σ1 + |a2|σ2)2 for any real numbers a1 and a2.

For the up-to-date uncertainty theory, the readers may
consult Liu [17]

Definition 3 (Liu [15] )Let ξ be an uncertain variable
with uncertainty distribution Φ(x). Then its entropy is de-
fined by

H[ξ] =
∫ +∞

−∞
S(Φ(x))dx

where S(t) = −t ln t− (1− t) ln(1− t).

Note that S(t) = −t ln t − (1 − t) ln(1 − t) is strictly
concave on [0, 1] and symmetrical about t = 0.5. Then
H[ξ] ≥ 0 for all the uncertain variables.

Theorem 1 (Chen and Dai[2]) Let ξ be a continuous un-
certain variable with finite expected value e and variance
σ2. Then

H[ξ] ≤ πσ√
3

and the equality holds if ξ is a normal uncertain variable
with expected value e and variance σ2, i.e., N (e, σ).

3 Cross-Entropy for Uncertain Variables

In this section, we will introduce the concept of cross-
entropy for uncertain variables by uncertain measure. For
convenience, we denote

T (s, t) = s ln
(s

t

)
+ (1− s) ln

(
1− s

1− t

)
,

0 ≤ t ≤ 1, 0 ≤ s ≤ 1

with convention 0 · ln 0 = 0. It is obvious that T (s, t) =
T (1 − s, 1 − t) for any 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1. Note
that

∂T

∂s
= ln

s

t
− ln

1− s

1− t
,

∂T

∂t
=

t− s

t(1− t)
,

∂2T

∂s
=

1
s(1− s)

,
∂T

∂t∂s
= − 1

t(1− t)
,

∂2T

∂2s
=

s

t2
+

1− s

(1− t)2
.

Then T (s, t) is a strictly convex function with respect to
(s, t) and reaches its minimum value 0 when s = t.

Definition 4 Let ξ and η be two continuous uncertain
variables. Then the cross-entropy of ξ from η is defined
as

D[ξ; η] =
∫ +∞

−∞
T (M{ξ ≤ x},M{η ≤ x})dx.

where T (s, t) = s ln
(

s
t

)
+ (1− s) ln

(
1−s
1−t

)
.
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It is obvious that D[ξ; η] is permutationally symmetric,
i.e., the value does not change if the outcomes are labeled
differently. Let Φξ and Φη be the distribution functions of
continuous uncertain variables ξ and η, respectively. The
cross-entropy of ξ from η can be written as

D[ξ; η] =
∫ +∞

−∞

(
Φξ(x) ln

(
Φξ(x)
Φη(x)

)
+ (1− Φξ(x)) ln

(
1− Φξ(x)
1− Φη(x)

))
dx.

The cross-entropy depends only on the number of values
and their uncertainties and does not depend on the actual
values that the uncertain variables that ξ and η take.

Lemma 1 For any uncertain variables ξ and η, we have
D[ξ; η] ≥ 0 and the equality holds if and only if ξ and η
have the same uncertainty distribution.

Proof: Let Φξ(x) and Φη(x) be the uncertainty distribu-
tion functions of ξ and η, respectively. Since T (s, t) is
strictly convex on [0, 1] × [0, 1] and reaches its minimum
value when s = t. Therefore

T (Φξ(x); Φη(x)) ≥ 0

for almost all the points x ∈ <. Then

D[ξ; η] =
∫ +∞

−∞
T (Φξ(x); Φη(x))dx ≥ 0.

For each s ∈ [0, 1], there is only a unique point t = s
making T (s, t) = 0. Thus, D[ξ, η] = 0 if and only if
T (Φξ(x),Φη(x)) = 0 for almost all the x ∈ <, that is
M{ξ ≤ x} =M{η ≤ x}.

4 Minimum Cross-Entropy Principle

In the real problems, the distribution function of an uncer-
tain variable is unavailable except partial information, for
example, prior distribution function, which may be based
on intuition or experience with the problem. If the mo-
ment constraints and the prior distribution function are
given, since the distribution function must be consistent
with the given information and our experiences, there-
fore we will use the minimum cross-entropy principle to
choose the one that is closest to the given prior distri-
bution function out of all the distributions satisfying the
given moment constraints.

Theorem 2 Let ξ be a continuous uncertain variable with
finite second moment m2. If the prior distribution function
has the form

Ψ(x) = (1 + exp(ax))−1
, a < 0.

Then the minimum cross-entropy distribution function is
the normal uncertain distribution with second moment
m2.

5 Conclusion

This paper introduces the concept of cross-entropy of un-
certainty distribution for uncertain variables to deal with
the divergence of uncertain variables from a prior one, and
studies the minimum cross-entropy principle.
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