
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2009 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-4-2009

Knowledge Discovery from Financial Text Knowledge Discovery from Financial Text

Samuel W.K. Chan

Follow this and additional works at: https://aisel.aisnet.org/iceb2009

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2009 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301390703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2009
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2009?utm_source=aisel.aisnet.org%2Ficeb2009%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

The 9th International Conference on Electronic Business, Macau, November 30 - December 4, 2009

KNOWLEDGE DISCOVERY FROM FINANCIAL TEXT

Samuel W.K. Chan
Department of Decision Sciences & Managerial Economics

The Chinese University of Hong Kong
swkchan@cuhk.edu.hk

Abstract

The abundance of on-line electronic financial news
articles has opened up new possibilities for
intelligent systems that could extract and organize
relevant knowledge automatically in a usable format.
While most typical information extraction systems
require a hand-built dictionary of templates and,
subsequently, are subject to ceaseless modification to
accommodate new patterns that are observed in the
text, in this research, we propose a novel text-based
decision support system (DSS) that will (i) extract
event sequences from shallow text patterns and (ii)
predict the likelihood of the occurrence of events
using a classifier-based inference engine. We
investigated more than 2,000 financial reports with
28,000 sentences. Experiments show the DSS
outperforms other similar statistical models.

Introduction
There has long been a strong interest in applying
computational intelligence to analysis financial data.
Traditionally, attempts have been concerned with
forecasting the future based on past price data. One
area of limited success in financial prediction comes
from textual data. Textual data contain more
information than numeric data because the former
not only allows us to predict the financial trends, but
at the same time, provides us with justification why it
is to be done. Meanwhile, the current availability of
huge volumes of financial electronic text has created
a pressing need for better knowledge discovery and
the construction of applications for managing the
knowledge that is extracted, most existing literature
on financial text mining or knowledge discovery
from texts (KDT) relies on identifying a predefined
set of keywords. In this approach, a text is usually
scanned for a specific type of event template, such as
corporate acquisitions. The main goal of the
approach is to fill up the values for sets of
handcrafted and predefined template slots. As a
consequence, the construction of event extraction
templates is a fairly laborious activity. It is hard to
design templates that anticipate all the possible
combinations of events or objects of interest that can
be described. Given the brittleness of the approach
and the demand for high-level representations, i.e.,
not just keywords, to take advantage of linguistic
knowledge, there has been considerable interest in
the development of an automatic means of learning

shallow event patterns from text. In this article, we
propose a novel inference engine for financial text
sequences prediction which brings together the
benefits of shallow text processing and
classifier-based inferences to produce effective
knowledge discovery. In particular, our approach
aims at extracting key underlying event sequences
from financial texts and then hypothesizing and
assessing the incoming, even new and unseen, event
sequences in her prediction. Unlike other similar
approaches, an inferential mechanism is developed in
the engine that can extract event sequences from a
collection of relevant texts, and then collate the
sequences in such a manner that both explicit and
implicit information can be tailored to the needs of
users. The task we are addressing and the problem of
predicting financial event sequence can be stated as
follows: Assume we have been given a corpus of
financial documents which demonstrate chains of
event sequences, we will explain how to extract all
the event sequences from the texts, to discover the
cause-consequence pairs underlying the events, and
to predict the interesting and unseen relationships
between them. This article is organized as follows.
Section 2 outlines our system overview, along with
issues regarding text preprocessing, shallow parsing,
textual information generalization and event
sequences extraction. Section 3 describes a
classifier-based inference engine for the event
sequence prediction. An inferential mechanism is
introduced into the engine to produce a set of
prediction rules. Numerous features that characterize
the sequences and their latent inter-event relations
are captured in the engine. The system prototype has
been implemented and we have conducted a series of
experiments to evaluate and compare the engine with
the hidden Markov model. Section 4, followed by a
conclusion, provides an overview of our
experimental design. We also quantify the outcome
along with a detailed analysis of the results in our
evaluation.

System Overview
In this section, we will first present an overview of
our system and the relevant methodology used
throughout this study. Our text-based DSS includes
four major components that involve text
preprocessing, textual information generalization,
event sequence extraction and a classifier-based

Knowledge Discovery from Financial Text 143

The 9th International Conference on Electronic Business, Macau, November 30 - December 4, 2009

inference engine. The system architecture of the DSS
is shown in Figure 1. For an incoming text, after the
text preprocessing, every sentences in the text are
analyzed. Textual information is then extracted via a
shallow parser and semantic roles assignment in the
textual information generalization module. Every
piece of textual information may indicate a possible
event and a series of consecutive events signal an
event sequence which is decisive for the sequence
prediction.

Tokenization

POS Tagging

Morpho-Syntactic
Analysis

Shallow Parsing

Semantic Roles
Assignment

Textual
Information

DataBase (TID)

Event Sequence
Extraction

Classifier-based
Inference Engine

Text Preprocessing Textual Information Generalization

Fig. 1: System architecture of the text-based DSS

Text Preprocessing
The English language usually contains some
redundancy and not every piece of English text
delivers useful meaning. Sentences tend to include
information which is not equally important. One
possible way to eliminate the redundancy is to use a
preprocessing technique to transform the input text
into a pre-defined format. Our preprocessing consists
of the sequential application of three major
components in a pipeline as depicted in Figure 1. The
components include tokenization, part-of-speech
tagging and morpho-syntactical analysis. The output
of the preprocessing is textual information which
contains the most important information in the
sentence and ignores the irrelevant. As shown in
Figure 1, the first stage of the preprocessing is
carried out by a tokenizer, which segments the input
text into sentences and phrases. While punctuation
signs, such as periods, may hint on the end of
sentences as shown in the sentence (P1) below, they
can be the end of an abbreviation, such as the word
U.K., or can be used in the specification of dates,
times, initials of names, or email addresses.

“The pound fell against the dollar and the euro. Reports
showed the U.K. economy slumped the most in two decades
and home sales dropped to the lowest level since at least
1978.” ‐‐ The New York Times. (P1)

Similarly, spaces are the delimiter of English
words and they are not necessarily true to identify the
word boundaries as in the case for many named
entities such as The New York Times. After the
tokenization, all the sentences of the text documents
are then tagged with a part-of-speech tagger.

Part-of-speech tagging is the task of assigning to
each token its corresponding part-of-speech, i.e., its
syntactic word category such as noun, adjective, verb
or adverb. Different tagsets as well as different
paradigms have been applied to the task. In this
research, we adopt the Brill’s tagger which is a
transformation-based approach in the sense that a tag
is assigned to each word and changed using a set of
predefined rules (Brill, 1994). The basic rationale of
the tagger is that it first computes the error score of
each candidate rule and then best rules with higher
score are selected. The winning candidates will be
added into the ruleset until no further rule has a score
above a given threshold.

The final step in the text preprocessing is the
morpho-syntactical analysis which is used to reduce
the number of irrelevant and rare terms in the
sentences. The analysis is a language-dependent unit
which performs stemming and lemmatization.
Stemming is the process for reducing derived words
to their base form and removes all prefixes and
suffixes for each token. Our dictionary-based
stemmer reduces the words predicts, predicted,
predicting, prediction to the root word predict.
Similarly, lemmatization is the process of reducing
the morphological variants of the words to their
corresponding base form. All these two tasks provide
the important morphological features of each word.
In addition, only words with informative POS tags
are included, simply because these words contain
relevant and important information to support the
future prediction.

Textual Information Generalization
After the lexical processing in the preprocessing
module, the textual information is further extracted
in the textual information generalization module. In
the module, a set of finite-state rules is applied to the
sentences and produces a sequence of
non-overlapping phrases as output. During the
generalization, all the words in the sentences are
being categorized into function or content words.
While function words are words that have little
lexical meaning and they usually serve to express
grammatical relationships with other words within a
sentence, content words which mainly include nouns,
verbs and adjectives will deliver the full meaning of
sentences. Technically speaking, the generalization is
achieved by a shallow head-driven parser. The
shallow parsing is a heuristic approach which
consists of matching certain regular expressions and
rules over part-of-speech tags of the input sentences.
The parser begins with the identification of every
potential phrasal heads of the input sentences, which
is guided by phrasal patterns registered in the regular
expressions. It mainly distinguishes the possible
chunks of the sentences. Chunks are non-overlapping
and non-recursive. Non-recursive means that chunks
are not embedded within other chunks. The chunks

144 Samuel W.K. Chan

The 9th International Conference on Electronic Business, Macau, November 30 - December 4, 2009

extracted exhibit islands of words which build up the
syntactic units that include noun phrases, verb
phrases, prepositional phrases, location/position
phrases, date/time phrases, quantifiers and the others.
In particular, the noun phrases are further categorized
into proper nouns, such as the names of country,
stock, currency, organization, individual, and place,
are further tagged by a name entity lexicon. The
parser is found to have 92% and 85% F-measure for
training and testing data respectively (Chan, 2009).
In addition, the generalization will also assign the
extracted chunks with the type of semantic
restrictions they typically refer to.

The extracted chunks, together with their
headwords, syntactic and semantic information, are
stored in a textual information database (TID) as
shown in Figure 1. The information extracted from
the two modules produces a tabulated representation
for every sentence in the financial text. To clarify the
above discussion, as an example, suppose for the
above input sentence (P1), the system will generate a
tabulated representation of the sentence as shown in
Table 1. In the TID, every sentence is broken down
into one or more instance-attribute pairs as shown in
the rightmost column of the table. The TID, without
any language redundancy, provides a quick reference
of the sentence information in form of
instance-attribute pairs, without referring back to the
piece of text.

Phrase Headword(s) Syntactic
category

Semantic
class

Instance-Attribute-Pair

the pound Pound PNP currency -
fell against fell VP down (UK-pound, fell)
the dollar and
the euro

dollar, euro PNP currency (modifier, dollar)

U.K. economy U.K. economy PNP economy -
slumped the
most

slump VP down (UK-economy, slump)

In two decades Two decades TP time
stamp

(modifier, LPT)

home sales home sales NP property-
market

-

dropped to the
lowest level

drop VP down (property, down)

since at least
1978

since 1978 TP time
stamp

(modifier, LPT)

Table 1: Structure of the textual information database (TID)

Event Sequence Extraction
Certainly, causality, temporality and spatiality are the
intertwining links among all the possible events in a
text when behavioral episodes are unfolded in the
sentences. It is ascertained that readers attempt to tie
each event or fact encountered to the prior text. To
model the event sequence underlying in a text, we
first assume U = {u1, u2,…um} be a set of m distinct
instances comprising the alphabet and A = {a1,
a2,…an} be a set of n distinct attributes which
describe the possible states of the instances. An event
is a non-empty instance-attribute pair Si = (ui , ai) and
an event sequence S is an ordered list of events and
denoted as S=〈S1 → S2 …→ Sr〉. In addition, a
sequence S is a subsequence of T, if all elements of S
can be found in T in the same order (Zaki, 2001;

Dong & Pei, 2007), no matter whether S and T are
equal in length or whether one or more elements are
being inserted into T. For example, S = 〈A→ B→ C〉
is a subsequence of T = 〈Z → A → Y → B → X → X
→ C→ D〉. An event subsequence differs from an
event substring in that the events in an event
substring must be contiguous, whereas the events in
an event subsequence need not be. This explains S is
an event subsequence, but not an event substring, of
T. Frequent event subsequences are particularly
useful in two basic aspects in analyzing the financial
news. First, event subsequences capture the common
intertwining links among the events delineated in the
financial texts. For example, the frequent
subsequence S tells us that at least two events A, B
will usually occur prior to the event C. Second, the
subsequence can also be used for predicting the
financial trends or behaviors in the market (Eichinger
et al., 2006).

As shown in Figure 1, our event sequence
extraction is a process of identifying the relevant
event sequence in the dataset and discarding the
irrelevant ones. In this research, we shift our event
sequence extraction to the problem of approximate
matching of event subsequences which specify in the
user enquiry S with all the event sequences T stored
in the textual information database. Given two event
sequences S and T, a longest common subsequence Q
= LCS(S, T) is a longest possible subsequence with
events in Q also being the events in S and T and they
are in the same order (Crochemore et al., 2007;
Gusfield, 1997). We compute the LCS at the basis of
the computation of an optimal alignment between the
two sequences. The process utilizes a technique
called dynamic programming in which the
production of an alignment between two sequences is
based on the computation of the edit distance
between them. The edit distance, also called the
Levenshtein distance, between two sequences is
defined to be the minimum number of edit operations
to transform the sequence from S to T. The edit
operations include change, insertion and deletion. It
is an efficient method of identifying the
subsequences with closest match, even with some
unknown gaps. It is out of the scope of this paper to
further explain the algorithm in details, however,
interested readers could refer to the above literatures
for references. To put it in a nutshell, for a given user
input event sequence S, we attempt to extract all the
possible relevant sequences in the database. Each
extracted event sequence is in form of a series of
instance-attribute pairs. Certainly, the attribute of
each event in the sequences aren’t independent, but
rather the attribute of each event depends on the
preceding, or subsequent, event in the sequence. For
example, the attribute down in the instance property
relies on the attribute of its preceding instance
UK-economy in that event sequence shown in the

Knowledge Discovery from Financial Text 145

The 9th International Conference on Electronic Business, Macau, November 30 - December 4, 2009

sentence (P1). It is interesting to know: Do all
extracted event sequences originated from the input S
follow some particular patterns? Are they on the rolls
of a particular family? If confirmative, the frequent
event sequences of S reveal the strong association
among the events and suggest a clue in the prediction.
Next, we will clarify how the event sequence
prediction is being modeled as an extrapolation of
underlying inter-related chain of attributes from
which the actual events shown in the sequence are
generated.

Machine learning methods often play a key role
in sequence prediction because it is extremely
difficult and costly to encode the prescribed
prediction models manually. The general form of
probabilistic model, called a hidden Markov model
(hereafter, abbreviated HMM), has been among the
most conventional and accurate methods for
situations where certain sequences can be generated
from different major states. While HMM is useful
when one can think of the underlying attribute chain
generates the surface events probabilistically, we
explore a decision tree classifier in identifying the
most likely sequence of attribute chain that could
have emitted the given event sequence (Quinlan,
1993; Li, 2005). One of the advantages of using the
decision tree classifier is that sequence prediction
generally requires an interpretable model. While
some other classifiers are far more enough to
produce an accurate prediction, it is absolutely
desirable for the classifiers to be explanatory. That is,
any prediction model should and could provide a
qualitative understanding of the relationship between
the joint values of the input variables and the
resulting predicted values. As opposed to other
classifiers, such as probabilistic or neural network
approaches, the decision tree classifiers provide
meaning and justification to every verdict they
returned in their prediction. The hierarchical
structure of a decision tree also renders a relatively
fast construction and produce interpretable model.

Classifier-based Inference Engine
Our inference engine is designed to learn a set of
prediction rules from the event sequences, so that
they can be used to classify or predict the likelihood
of the occurrence new observations. A set of
classifiers and rules are learnt from the training data
in form of n-tuple. For each tuple, we include
properties of the current event as well as information
about its preceding and subsequent events in the
training data. The assumption here is that the events
in the sequence are not independent, but they are
mutually related. One can model this dependence
implicitly by including information about the
preceding and subsequent events. This tactic is
inspired by the methods in natural language
processing for tasks such as part-of-speech (POS)

tagging, where tags of both preceding and
subsequent words are used as features to predict the
current POS tag. In this inference engine, for any
attribute ai of the event Si in the event sequence, we
consider the following feature set.
 The attribute ai of the current target event Si.
 The attributes of two preceding events, Si-1 and

Si-2
 The attributes of two subsequent events, Si+1 and

Si+2
 The relative position of the event Si found in the

event sequence.
 Two major information-theoretic functions,

mutual information and likelihood ratio, in
quantifying the collocation of the attributes.

To train the classifier to learn the current target
attribute, we provide the attributes of its neighbors in
the event sequence S in the learning. The relative
position of the event Si in the sequence S is
calculated by dividing the absolute position in the
sequence by its length. Two kinds of
information-theoretic functions, namely, mutual
information (MI) and likelihood ratio (LR), are
applied in quantifying the collocation of events. They
quantify the collocation disparity between the events
around the target event. MI of two random variables
is defined as a quantity that measures the mutual
dependence of the two variables. It is roughly a
measure of how much one event tells us about the
other. It compares the probability of observing events
X and Y together to the probability of observing them
by chance. The mutual information between
particular events X, Y is defined in Eqn.(1).

() ()
() ()YPXP

XYPYXMI
×

= log,

Eqn.(1)

On the other hand, the log LR is a formalization

of independence which provides another good
measure for the collocation between the two events.
While there is evidence that sparseness is a problem
for MI, the likelihood function seems to be a good
complement to it. In applying the LR, the two
alternative hypotheses are examined.

H0: P(Y|X) = p = P(¬Y |X)
H1: P(Y |X) = p1 ≠ p2 = P(¬Y |X)

Eqn.(2)

If c1, c2, and c12 are the frequencies of events X, Y

and the event X followed by event Y and N is the
total number of events in our training, the log of the
LR is calculated as follows:

146 Samuel W.K. Chan

The 9th International Conference on Electronic Business, Macau, November 30 - December 4, 2009

()
()
()
()21122

1112

1122

112

,,log
,,log

,,log
,,loglog

pcNccL
pccL

pcNccL
pccLLR

−−−
−

−−+
=

1

122
2

1

12
1

2

and)1(),,(where

cN
ccp

c
cp

N
cp

xxxnkL knk

−
−

===

−= −

Eqn.(3)

Both mutual information and likelihood ratio

reflect the event co-occurrence information in a
continuous function instead of discrete values shown
in the feature set. Training of the inference engine
proceeds as follows. Each attribute in the event
sequences produces a training example for the
decision tree construction. Given a sequence, the
feature set is computed with respect to each target
attribute, thereby producing a training n-tuple of the
target attribute describing the event. All the tuples
are presented to the decision tree learning. As the
result, a decision tree classifier is learnt from the
training examples. The classifier becomes the major
component in our inference engine. In the prediction
phase, this process is repeated as in the training,
producing a prediction n-tuple for each unknown
attribute in the incoming event sequence. The
prediction n-tuple is then subject to the verdict of the
classifier. At the same time, as in other decision tree
classifier, each prediction is associated with a
certainty factor, ranging from 0.5 to 1. The factor
indicates the confidence on which the prediction is
made. One obvious hurdle in applying the inference
engine in the event prediction is the problem of
attribute noise. Since the attributes of the adjacent
events are unknown particularly for the subsequent
events Si+1 and Si+2 as mentioned in the feature set,
the majority of the features cannot be evaluated. In
other words, the classifier receives a noisy set of
features as input due to the attribute dependence on
the unknown attributes of their adjacent events. This
situation is remedied in two stages in our inference
engine. In the first stage, the default one is to use as
the baseline attributes, i.e., the most frequent
attribute for the event found in the training examples.
Although this baseline attribute is clearly far from
perfect, it provides a rough estimation, associated
with an uncertainty, to all unknown attributes. In our
second stage, instead of predicting all event attributes
from the beginning of the sequence till the end
consecutively, our prediction starts from the
attributes with highest uncertainty in the first stage,
with the hope that its adjacent events which have
higher confidence will shed some light on the current
prediction. All the features with attribute dependence
in the tree classifiers are all activated during the
prediction. All the event attributes in the sequence
will be evaluated from the highly unresolved to the
most promising ones in one complete cycle. Under

this second stage, because of the attribute
dependence, the adjacent attributes will surely be
altered if the current attribute are being modified. In
the same reason, the current attribute will also be
affected by the newly altered adjacent attributes. This
intertwined cause-and-effect chains in the prediction
are settled by allowing the whole prediction
mechanism to repeat iteratively for several cycles
until the event sequence becomes steady. An event
sequence is defined as steady if there is no further
modification of attributes during the prediction.
Similarly, the certainty factor of attributes predicted
by the classifier in the i-th cycle will define the
precedence order of event attributes in the (i+1)-th
prediction cycle. Table 2 below shows the
pseudocode of the inferential mechanism which
describes the main rationale behind the event
prediction in more detail.

COMPUTE the certainty factor for all attributes cf(ak)
in the event sequence.

WHILE the prediction is not steady
NORMALIZE all the certainty factor cf(aj) for j = 1…k
PUSH the sorted aj into a stack s with the smallest cf(aj) at the top
WHILE s is not empty

POP aj from s
READ the attributes of the event Sj-2, Sj-1, Sj+1 and Sj+2
GENERATE the prediction features for the attribute of event Sj

ACTIVATE the decision tree classifier for the prediction
FOR each fired rule in the classifier

COMPUTE the Laplace estimate L for each attribute class n
Ln ← Ln × max[cf(al)] for all adjacent events
vn ← vn + Ln, where vn is the vote of the attribute class n

ENDFOR
RETRIEVE the attribute class with the largest average vote, i.e.,

cf(aj) ←
⎭
⎬
⎫

⎩
⎨
⎧

fired rules ofnumber total
max nv

NORMALIZE all the certainty factor cf(aj) for j = 1…k
ENDWHILE

ENDWHILE
 T

able 2: Inferential mechanism for event prediction

As shown in Table 2, in order to take into the

account of the effects from its adjacent events, the
vote vn of the attribute class n relies on the certainty
of its neighbors. In other words, the vote will always
be diminished by its neighbors, even though a large
certainty factor may be deducted in the classifier.
This is somewhat unreasonable and the situation will
also be deteriorated as the certainty factors are
propagated along the computational chain before the
final verdict becomes steady. To maintain the
impacts of its adjacent events without withering
away the deduction from the classifier, a normalized
certainty factor (NCF) is defined to alleviate the
possible negative impacts during the normalization
as shown in the mechanism. Without the
normalization, the certainty factors will get smaller

Knowledge Discovery from Financial Text 147

The 9th International Conference on Electronic Business, Macau, November 30 - December 4, 2009

and smaller after each prediction cycle. The NCF at
position j of an event sequence is defined as follows.

() LBLB
CFCF

CFCF
NCF j

j +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×

−
−

= 1
minmax

min

Eqn.(4)

where
 CFj be the certainty factor of the attribute at

position j.
 CFmin be the minimum certainty factor found in

the sequence.
 CFmax be the maximum certainty factor found in

the sequence.
 LB be the lowest bound of the NCF.

Experiments and Evaluation

We have conducted an experiment to measure the
performance of our approach in predicting the
financial event sequences and make a head-to-head
comparison with a statistical model. More than
28,000 financial sentences from 2,000 financial
reports have been analyzed. They are all extracted
from two financial websites,
www.bloomberg.com & www.quamnet.com
which is a popular financial portal. Quamnet is
supported by a team of professional financial
analysts. It is well-known for its independent
financial research and analysis on Hong Kong’s
stock market. They are all used for gathering the
statistics in analyzing sentence patterns in financial
events. All the sentences are then subject to our
shallow parsing strategy and over 70% of the
sentences can be further analyzed and being parsed
into the event sequences as described in Section II.
Each sequence contains at least 4 events.

Statistical models of sequence prediction,
particularly the Markov chain models, have been
extensively studied due to their elegant theoretical
framework. However, while each state of Markov
chain models corresponds to an observable event
which may be too restrictive to be applicable to many
problems of interest, it is more general to extend the
concept of Markov chain models to include the case
where the observation is a probabilistic function of
the states (Rabiner, 1989; Skounakis et al., 2003).
The resulting model is called a hidden Markov model
(HMM). The word hidden in the name indicates that
for a specific sequence of events, it is not clear what
state the Markov model is in. HMMs are useful for
situations where certain sequences can be generated
from different important states. In our evaluation, in
order to identify the attributes that best explain the
event sequence, we apply the Viterbi algorithm
which efficiently computes the most likely event
sequence. The algorithm is a dynamic programming
algorithm for choosing the best state sequence that
maximizes the likelihood of the state sequence for
the given observation sequence. It is to find the most

likely sequence of hidden states that result in a
sequence of observed events, especially in the
context of hidden Markov models (Forney, 1973).
Table 3 below shows our evaluation of the Viterbi
algorithm using different set of parameters. The
bigram model looks at pairs of events and uses the
conditional probability that an event Si will follow
another event Si-1. The trigram model uses the
conditional probability of one event given the two
preceding events. Our forward induction is the
prediction that starts from the first event of a
sequence, and then infers consecutively till the end.
The backward induction is similar to the forward
counterpart but starts at the end of the sequence and
sweeps backward through the events in the sequence.
Additionally, in any real world predictions, we
cannot guarantee that the complete information about
the event sequences are all reflected in our training
cases, we address the event prediction problems with
the open world assumption. That is, it is allowed to
have some unknown events found in the testing cases,
but absent in the training cases. Hence, we define
in-Event (IE) be the events that can be found in our
training data while out-of-Event (OOE) is an event
that are unknown to the training data.

No. Different combinations using

Viterbi Algorithm (HMM)
Total

IE OOE

1 Bigram-forward induction 77.25% 82.67% 21.82%
2 Trigram-forward induction 76.64% 81.90% 22.78%
3 Bigram-backward induction 77.95% 83.40% 22.22%
4 Trigram-backward induction 76.14% 81.10% 25.39%

5 Bigram-forward +
Bigram-backward 78.87% 84.40% 22.21%

6 Trigram-forward +
Trigram-backward 77.05% 82.11% 25.21%

7

Bigram-forward +
Bigram-backward +
Trigram-forward +
Trigram-backward

79.83% 85.26% 24.21%

Table 3: Results of the HMM in event prediction, where Total, IE
and OOE represent the overall accuracy in all events, in-events
and out-of-events respectively.

While the increase of n-gram does not show any

significant improvement over the accuracy as
compared with the bigram counterparts, three
different combinations in studying their synergy
effects are further investigated as described in trials
5-7. For example, in trial 7, we incorporate the
forward and backward probabilities for both bigrams
and trigrams during the predictions. However, the
results show that it is not necessary to produce any
significant positive synergy effect, even though there
involve heavy computational resources. To justify
our approach and evaluate the performance of our
text-based DSS, we compare our system using
several prototypes which include,

148 Samuel W.K. Chan

The 9th International Conference on Electronic Business, Macau, November 30 - December 4, 2009

 Model-1: a baseline model in which attributes are
estimated using the most frequent attributes for
the events found in the training cases;

 Model-2: the most outstanding combination of
HMM, i.e., trial-7, as shown in Table 3;

 Model-3: first approximates by Model-1, and then
refines using our text-based DSS;

 Model-4: first by Model-2 and then refined by our
DSS.

Figure 2 summarizes the evaluation results of the

above four models. As shown in the figure, the
overall accuracy of Model-3 and Model-4 are higher
than that of the one-component models. While all the
models, except Model-1, demonstrate a strong
predictive power for the in-events (IE), our DSS
model exhibits a total accuracy (Total) higher than
the HMM. Specifically, the DSS model appears to
have a significant improvement on the predictive
power for the OOE with the average over 50% in
Model-3 and Model-4. The differences between the
Model-2 and our DSS are statistically significant.
Another important point of comparison is that the
DSS is trained with the features described in Section
III. HMM, on the other hand, computes the
probability of any sequence of events simply by
finding the likelihood of events and multiplying the
transition probabilities together. On the other hand,
the learning and predicting mechanism in our DSS
relies on the interdependences between the target
attribute and the features. These features reflect the
properties of the preceding and subsequent events as
well as their collocation information. All these
features are all considered as a whole in every single
instant during the training of the inference engine. As
a result, it is not surprising that our DSS outperforms
the HMM.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

IE OOE Total-OA

Model-1: Baseline Model-2: HMM only
Model-3: Model-1+ DSS Model-4: HMM + DSS

F
ig. 2: Comparison of the performances among four different
models

Next, we experiment with the sensitivity of the
inference engine to several options of labeling the
training data. In Model-4, all features, including the

target feature, of the training instances are computed
in terms of actual attributes of the events in the
training event sequences. In our sensitivity analysis,
we gradually replace the actual attributes in the
training cases by the most probable attributes for the
events found in all training examples, whereas the
targets still correspond to the correct target attribute.
In other words, the quality of the training data is
deliberately deteriorated to an extent that they are
only approximated by a maximum likelihood
estimation based on the probability density function.
It is not surprising the performance of the engine
begins to get worse as compared to the one trained
from the actual datasets.

65%

70%

75%

80%

85%

90%

95%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of MLE for the training instances

Total-OA

Fig. 3: Change of Total accuracy with the increase of percentage
of MLE for training instances

However, as shown in Figure 3, the degeneration
is slow-crawling with the total overall accuracy drops
gradually from 89.09 to 71.34%. It is interesting to
note that the performance of the engine using 100%
of maximum likelihood estimation (MLE) for the
actual dataset is still acceptable, at least it is much
better than the performance of our baseline model in
Model-1. In other words, a “simple-minded”
inference engine using 100% MLE performs
reasonably well in predicting the event sequences.
This tolerance characteristic explains why we can
alleviate any possible lack of inter-dependence
features by adopting the maximum likelihood
estimation in our OOE prediction.

Conclusions
The current one-size-fits-all design in knowledge
discovery from text (KDT) ignores the fundamental
variety of domains which may involve a fairly
laborious annotation. Thus, most approaches are
forced to depend on impoverished text models like
bags of words or n-grams. As a result, the predictions
that they are making ought to be based on the
meanings of those words in context. That lack of
semantics causes misinterpretation of meaning that
results in failing to extract the relevant knowledge
from text. On the other hand, in most of the current
KDT systems, the information that is sought must be
explicitly stated, but not implied, in the text. This
lack of inferential capability can pose significant

Knowledge Discovery from Financial Text 149

The 9th International Conference on Electronic Business, Macau, November 30 - December 4, 2009

problems when knowledge is extracted from
documents that expect the reader to draw simple
deductions. In this research, we have developed an
inferential mechanism in a text-based DSS that can
extract knowledge from a collection of relevant texts.
The DSS does not rely on any bag of words, but on a
shallow language model. As a consequence, the
incorrectly conflated information is excised and the
proper coreference of event sequence can be
accomplished. In addition, instead of learning from a
limited set of hand-crafted rules or templates, our
DSS collates the prior event sequences in a manner
that both explicit and implicit knowledge could
participate into the inferences. This mechanism
provides a robust and efficient means to handle the
predictions in financial text which demonstrates a
high propensity that the extracted event sequences
are being finite at various level of analysis. Certainly,
further investigation has to be conducted to extend
the work to a fully unrestricted functionality text
domain. However, we have demonstrated one of the
alternatives in the knowledge discovery from real
text.

Acknowledgements
The work described in this paper was partially
supported by the grants from the Research Grants
Council of the Hong Kong Special Administrative
Region, China (Project Nos. CUHK470605 and
CUHK440607)

References
[1] Brill, E. (1994). Some advances in rule base

d part of speech tagging. Proceedings of The
 Twelfth National Conference on Artificial Int
elligence (AAAI-94), Seattle, Washington.

[2] Chan, S.W.K. (2009). Shallow semantic labeli
ng using two-phase feature-enhanced string m

atching. Expert Systems with Applications, 36,
 9729-9736.

[3] Crochemore, M., Hancart, C., & Lecroq, T.
(2007). Algorithms on Strings. Cambridge Uni
versity Press.

[4] Dong, G., & Pei, J. (2007). Sequence Data
Mining. Springer.

[5] Eichinger, F., Nauck, D. D., & Klawonn, F.
(2006). Sequence Mining for Customer Behav
iour Predictions in Telecommunications. Proce
edings of ECML/PKDD 2006 Workshop on P
ractical Data Mining: Applications, Experienc
es and Challenges, Berlin.

[6] Forney, G. D. (1973). The Viterbi algorithm.
 Proceedings of the IEEE, 61, 3, 268–278.

[7] Gusfield, D. (1997). Algorithms on Strings, T
rees, and Sequences. Cambridge University Pr
ess.

[8] Li, X.-B. (2005). A scalable decision tree sy
stem and its application in pattern recognition
 and intrusion detection. Decision Support Sys
tems, 41, 112-130.

[9] Quinlan, J.R. (1993). C4.5: Programs for Ma
chine Learning. Morgan Kaufmann.

[10] Rabiner, L. R. (1989). A tutorial on hidden
 Markov models and selected applications in
 speech recognition. Proceedings of the IEE
E, 77, 257-286.

[11] Skounakis, M., Craven, M., & Ray, S. (200
3). Hierarchical Hidden Markov Models for
Information Extraction. Proceedings of the 1
8th International Joint Conference on Artifici
al Intelligence.

[12] Zaki, M.J. (2001). SPADE: An efficient alg
orithm for mining frequent sequences. Machi
ne Learning, 42, 31-60.

	Knowledge Discovery from Financial Text
	Microsoft Word - 142-149.doc

