
Association for Information Systems Association for Information Systems 

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL) 

ICEB 2009 Proceedings International Conference on Electronic Business 
(ICEB) 

Winter 12-4-2009 

Knowledge Discovery from Financial Text Knowledge Discovery from Financial Text 

Samuel W.K. Chan 

Follow this and additional works at: https://aisel.aisnet.org/iceb2009 

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic 
Library (AISeL). It has been accepted for inclusion in ICEB 2009 Proceedings by an authorized administrator of AIS 
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301390703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2009
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2009?utm_source=aisel.aisnet.org%2Ficeb2009%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


The 9th International Conference on Electronic Business, Macau, November 30 - December 4, 2009 

KNOWLEDGE DISCOVERY FROM FINANCIAL TEXT 
 

Samuel W.K. Chan 
Department of Decision Sciences & Managerial Economics  

The Chinese University of Hong Kong 
swkchan@cuhk.edu.hk 

 
Abstract 

The abundance of on-line electronic financial news 
articles has opened up new possibilities for 
intelligent systems that could extract and organize 
relevant knowledge automatically in a usable format. 
While most typical information extraction systems 
require a hand-built dictionary of templates and, 
subsequently, are subject to ceaseless modification to 
accommodate new patterns that are observed in the 
text, in this research, we propose a novel text-based 
decision support system (DSS) that will (i) extract 
event sequences from shallow text patterns and (ii) 
predict the likelihood of the occurrence of events 
using a classifier-based inference engine. We 
investigated more than 2,000 financial reports with 
28,000 sentences. Experiments show the DSS 
outperforms other similar statistical models. 
 

Introduction 
There has long been a strong interest in applying 
computational intelligence to analysis financial data. 
Traditionally, attempts have been concerned with 
forecasting the future based on past price data. One 
area of limited success in financial prediction comes 
from textual data. Textual data contain more 
information than numeric data because the former 
not only allows us to predict the financial trends, but 
at the same time, provides us with justification why it 
is to be done. Meanwhile, the current availability of 
huge volumes of financial electronic text has created 
a pressing need for better knowledge discovery and 
the construction of applications for managing the 
knowledge that is extracted, most existing literature 
on financial text mining or knowledge discovery 
from texts (KDT) relies on identifying a predefined 
set of keywords. In this approach, a text is usually 
scanned for a specific type of event template, such as 
corporate acquisitions. The main goal of the 
approach is to fill up the values for sets of 
handcrafted and predefined template slots. As a 
consequence, the construction of event extraction 
templates is a fairly laborious activity. It is hard to 
design templates that anticipate all the possible 
combinations of events or objects of interest that can 
be described. Given the brittleness of the approach 
and the demand for high-level representations, i.e., 
not just keywords, to take advantage of linguistic 
knowledge, there has been considerable interest in 
the development of an automatic means of learning 

shallow event patterns from text. In this article, we 
propose a novel inference engine for financial text 
sequences prediction which brings together the 
benefits of shallow text processing and 
classifier-based inferences to produce effective 
knowledge discovery. In particular, our approach 
aims at extracting key underlying event sequences 
from financial texts and then hypothesizing and 
assessing the incoming, even new and unseen, event 
sequences in her prediction. Unlike other similar 
approaches, an inferential mechanism is developed in 
the engine that can extract event sequences from a 
collection of relevant texts, and then collate the 
sequences in such a manner that both explicit and 
implicit information can be tailored to the needs of 
users. The task we are addressing and the problem of 
predicting financial event sequence can be stated as 
follows: Assume we have been given a corpus of 
financial documents which demonstrate chains of 
event sequences, we will explain how to extract all 
the event sequences from the texts, to discover the 
cause-consequence pairs underlying the events, and 
to predict the interesting and unseen relationships 
between them. This article is organized as follows. 
Section 2 outlines our system overview, along with 
issues regarding text preprocessing, shallow parsing, 
textual information generalization and event 
sequences extraction. Section 3 describes a 
classifier-based inference engine for the event 
sequence prediction. An inferential mechanism is 
introduced into the engine to produce a set of 
prediction rules. Numerous features that characterize 
the sequences and their latent inter-event relations 
are captured in the engine. The system prototype has 
been implemented and we have conducted a series of 
experiments to evaluate and compare the engine with 
the hidden Markov model. Section 4, followed by a 
conclusion, provides an overview of our 
experimental design. We also quantify the outcome 
along with a detailed analysis of the results in our 
evaluation.  
 

System Overview 
In this section, we will first present an overview of 
our system and the relevant methodology used 
throughout this study. Our text-based DSS includes 
four major components that involve text 
preprocessing, textual information generalization, 
event sequence extraction and a classifier-based 
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inference engine. The system architecture of the DSS 
is shown in Figure 1. For an incoming text, after the 
text preprocessing, every sentences in the text are 
analyzed. Textual information is then extracted via a 
shallow parser and semantic roles assignment in the 
textual information generalization module. Every 
piece of textual information may indicate a possible 
event and a series of consecutive events signal an 
event sequence which is decisive for the sequence 
prediction.  

 

Tokenization 

POS Tagging 

Morpho-Syntactic 
Analysis 

Shallow Parsing 

Semantic Roles 
Assignment 

Textual  
Information 

DataBase (TID) 

Event Sequence  
Extraction 

Classifier-based 
Inference Engine 

Text Preprocessing Textual Information Generalization 

Fig. 1: System architecture of the text-based DSS 
 

Text Preprocessing 
The English language usually contains some 
redundancy and not every piece of English text 
delivers useful meaning. Sentences tend to include 
information which is not equally important. One 
possible way to eliminate the redundancy is to use a 
preprocessing technique to transform the input text 
into a pre-defined format. Our preprocessing consists 
of the sequential application of three major 
components in a pipeline as depicted in Figure 1. The 
components include tokenization, part-of-speech 
tagging and morpho-syntactical analysis. The output 
of the preprocessing is textual information which 
contains the most important information in the 
sentence and ignores the irrelevant. As shown in 
Figure 1, the first stage of the preprocessing is 
carried out by a tokenizer, which segments the input 
text into sentences and phrases. While punctuation 
signs, such as periods, may hint on the end of 
sentences as shown in the sentence (P1) below, they 
can be the end of an abbreviation, such as the word 
U.K., or can be used in the specification of dates, 
times, initials of names, or email addresses.  
 
“The  pound  fell  against  the  dollar  and  the  euro. Reports 
showed the U.K. economy slumped the most in two decades 
and  home  sales  dropped  to  the  lowest  level  since  at  least 
1978.” ‐‐ The New York Times.          (P1) 
 

Similarly, spaces are the delimiter of English 
words and they are not necessarily true to identify the 
word boundaries as in the case for many named 
entities such as The New York Times. After the 
tokenization, all the sentences of the text documents 
are then tagged with a part-of-speech tagger. 

Part-of-speech tagging is the task of assigning to 
each token its corresponding part-of-speech, i.e., its 
syntactic word category such as noun, adjective, verb 
or adverb. Different tagsets as well as different 
paradigms have been applied to the task. In this 
research, we adopt the Brill’s tagger which is a 
transformation-based approach in the sense that a tag 
is assigned to each word and changed using a set of 
predefined rules (Brill, 1994). The basic rationale of 
the tagger is that it first computes the error score of 
each candidate rule and then best rules with higher 
score are selected. The winning candidates will be 
added into the ruleset until no further rule has a score 
above a given threshold. 

The final step in the text preprocessing is the 
morpho-syntactical analysis which is used to reduce 
the number of irrelevant and rare terms in the 
sentences. The analysis is a language-dependent unit 
which performs stemming and lemmatization. 
Stemming is the process for reducing derived words 
to their base form and removes all prefixes and 
suffixes for each token. Our dictionary-based 
stemmer reduces the words predicts, predicted, 
predicting, prediction to the root word predict. 
Similarly, lemmatization is the process of reducing 
the morphological variants of the words to their 
corresponding base form. All these two tasks provide 
the important morphological features of each word. 
In addition, only words with informative POS tags 
are included, simply because these words contain 
relevant and important information to support the 
future prediction. 

 

Textual Information Generalization 
After the lexical processing in the preprocessing 
module, the textual information is further extracted 
in the textual information generalization module. In 
the module, a set of finite-state rules is applied to the 
sentences and produces a sequence of 
non-overlapping phrases as output. During the 
generalization, all the words in the sentences are 
being categorized into function or content words. 
While function words are words that have little 
lexical meaning and they usually serve to express 
grammatical relationships with other words within a 
sentence, content words which mainly include nouns, 
verbs and adjectives will deliver the full meaning of 
sentences. Technically speaking, the generalization is 
achieved by a shallow head-driven parser. The 
shallow parsing is a heuristic approach which 
consists of matching certain regular expressions and 
rules over part-of-speech tags of the input sentences. 
The parser begins with the identification of every 
potential phrasal heads of the input sentences, which 
is guided by phrasal patterns registered in the regular 
expressions. It mainly distinguishes the possible 
chunks of the sentences. Chunks are non-overlapping 
and non-recursive. Non-recursive means that chunks 
are not embedded within other chunks. The chunks 
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extracted exhibit islands of words which build up the 
syntactic units that include noun phrases, verb 
phrases, prepositional phrases, location/position 
phrases, date/time phrases, quantifiers and the others. 
In particular, the noun phrases are further categorized 
into proper nouns, such as the names of country, 
stock, currency, organization, individual, and place, 
are further tagged by a name entity lexicon. The 
parser is found to have 92% and 85% F-measure for 
training and testing data respectively (Chan, 2009). 
In addition, the generalization will also assign the 
extracted chunks with the type of semantic 
restrictions they typically refer to.  

The extracted chunks, together with their 
headwords, syntactic and semantic information, are 
stored in a textual information database (TID) as 
shown in Figure 1. The information extracted from 
the two modules produces a tabulated representation 
for every sentence in the financial text. To clarify the 
above discussion, as an example, suppose for the 
above input sentence (P1), the system will generate a 
tabulated representation of the sentence as shown in 
Table 1. In the TID, every sentence is broken down 
into one or more instance-attribute pairs as shown in 
the rightmost column of the table. The TID, without 
any language redundancy, provides a quick reference 
of the sentence information in form of 
instance-attribute pairs, without referring back to the 
piece of text. 
 

Phrase Headword(s) Syntactic 
category 

Semantic  
class 

Instance-Attribute-Pair 

the pound Pound PNP currency - 
fell against fell VP down (UK-pound, fell) 
the dollar and 
the euro 

dollar, euro PNP currency (modifier, dollar) 

U.K. economy U.K. economy PNP economy - 
slumped the 
most 

slump VP down (UK-economy, slump) 

In two decades Two decades TP time 
stamp 

(modifier, LPT) 

home sales home sales NP property- 
market 

- 

dropped to the 
lowest level 

drop VP down (property, down) 

since at least 
1978 

since 1978 TP time 
stamp 

(modifier, LPT) 
  

Table 1: Structure of the textual information database (TID) 
 

Event Sequence Extraction 
Certainly, causality, temporality and spatiality are the 
intertwining links among all the possible events in a 
text when behavioral episodes are unfolded in the 
sentences. It is ascertained that readers attempt to tie 
each event or fact encountered to the prior text. To 
model the event sequence underlying in a text, we 
first assume U = {u1, u2,…um} be a set of m distinct 
instances comprising the alphabet and A = {a1, 
a2,…an} be a set of n distinct attributes which 
describe the possible states of the instances. An event 
is a non-empty instance-attribute pair Si = (ui , ai) and 
an event sequence S is an ordered list of events and 
denoted as S=〈S1 → S2 …→ Sr〉. In addition, a 
sequence S is a subsequence of T, if all elements of S 
can be found in T in the same order (Zaki, 2001; 

Dong & Pei, 2007), no matter whether S and T are 
equal in length or whether one or more elements are 
being inserted into T. For example, S = 〈A→ B→ C〉 
is a subsequence of T = 〈Z → A → Y → B → X → X 
→ C→ D〉. An event subsequence differs from an 
event substring in that the events in an event 
substring must be contiguous, whereas the events in 
an event subsequence need not be. This explains S is 
an event subsequence, but not an event substring, of 
T. Frequent event subsequences are particularly 
useful in two basic aspects in analyzing the financial 
news. First, event subsequences capture the common 
intertwining links among the events delineated in the 
financial texts. For example, the frequent 
subsequence S tells us that at least two events A, B 
will usually occur prior to the event C. Second, the 
subsequence can also be used for predicting the 
financial trends or behaviors in the market (Eichinger 
et al., 2006). 

As shown in Figure 1, our event sequence 
extraction is a process of identifying the relevant 
event sequence in the dataset and discarding the 
irrelevant ones. In this research, we shift our event 
sequence extraction to the problem of approximate 
matching of event subsequences which specify in the 
user enquiry S with all the event sequences T stored 
in the textual information database. Given two event 
sequences S and T, a longest common subsequence Q 
= LCS(S, T) is a longest possible subsequence with 
events in Q also being the events in S and T and they 
are in the same order (Crochemore et al., 2007; 
Gusfield, 1997). We compute the LCS at the basis of 
the computation of an optimal alignment between the 
two sequences. The process utilizes a technique 
called dynamic programming in which the 
production of an alignment between two sequences is 
based on the computation of the edit distance 
between them. The edit distance, also called the 
Levenshtein distance, between two sequences is 
defined to be the minimum number of edit operations 
to transform the sequence from S to T. The edit 
operations include change, insertion and deletion. It 
is an efficient method of identifying the 
subsequences with closest match, even with some 
unknown gaps. It is out of the scope of this paper to 
further explain the algorithm in details, however, 
interested readers could refer to the above literatures 
for references. To put it in a nutshell, for a given user 
input event sequence S, we attempt to extract all the 
possible relevant sequences in the database. Each 
extracted event sequence is in form of a series of 
instance-attribute pairs. Certainly, the attribute of 
each event in the sequences aren’t independent, but 
rather the attribute of each event depends on the 
preceding, or subsequent, event in the sequence. For 
example, the attribute down in the instance property 
relies on the attribute of its preceding instance 
UK-economy in that event sequence shown in the 
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sentence (P1). It is interesting to know: Do all 
extracted event sequences originated from the input S 
follow some particular patterns? Are they on the rolls 
of a particular family? If confirmative, the frequent 
event sequences of S reveal the strong association 
among the events and suggest a clue in the prediction. 
Next, we will clarify how the event sequence 
prediction is being modeled as an extrapolation of 
underlying inter-related chain of attributes from 
which the actual events shown in the sequence are 
generated. 

Machine learning methods often play a key role 
in sequence prediction because it is extremely 
difficult and costly to encode the prescribed 
prediction models manually. The general form of 
probabilistic model, called a hidden Markov model 
(hereafter, abbreviated HMM), has been among the 
most conventional and accurate methods for 
situations where certain sequences can be generated 
from different major states. While HMM is useful 
when one can think of the underlying attribute chain 
generates the surface events probabilistically, we 
explore a decision tree classifier in identifying the 
most likely sequence of attribute chain that could 
have emitted the given event sequence (Quinlan, 
1993; Li, 2005). One of the advantages of using the 
decision tree classifier is that sequence prediction 
generally requires an interpretable model. While 
some other classifiers are far more enough to 
produce an accurate prediction, it is absolutely 
desirable for the classifiers to be explanatory. That is, 
any prediction model should and could provide a 
qualitative understanding of the relationship between 
the joint values of the input variables and the 
resulting predicted values. As opposed to other 
classifiers, such as probabilistic or neural network 
approaches, the decision tree classifiers provide 
meaning and justification to every verdict they 
returned in their prediction. The hierarchical 
structure of a decision tree also renders a relatively 
fast construction and produce interpretable model. 
 

Classifier-based Inference Engine 
Our inference engine is designed to learn a set of 
prediction rules from the event sequences, so that 
they can be used to classify or predict the likelihood 
of the occurrence new observations. A set of 
classifiers and rules are learnt from the training data 
in form of n-tuple. For each tuple, we include 
properties of the current event as well as information 
about its preceding and subsequent events in the 
training data. The assumption here is that the events 
in the sequence are not independent, but they are 
mutually related. One can model this dependence 
implicitly by including information about the 
preceding and subsequent events. This tactic is 
inspired by the methods in natural language 
processing for tasks such as part-of-speech (POS) 

tagging, where tags of both preceding and 
subsequent words are used as features to predict the 
current POS tag. In this inference engine, for any 
attribute ai of the event Si in the event sequence, we 
consider the following feature set. 
 The attribute ai of the current target event Si. 
 The attributes of two preceding events, Si-1 and 

Si-2  
 The attributes of two subsequent events, Si+1 and 

Si+2 
 The relative position of the event Si found in the 

event sequence. 
 Two major information-theoretic functions, 

mutual information and likelihood ratio, in 
quantifying the collocation of the attributes. 

To train the classifier to learn the current target 
attribute, we provide the attributes of its neighbors in 
the event sequence S in the learning. The relative 
position of the event Si in the sequence S is 
calculated by dividing the absolute position in the 
sequence by its length. Two kinds of 
information-theoretic functions, namely, mutual 
information (MI) and likelihood ratio (LR), are 
applied in quantifying the collocation of events. They 
quantify the collocation disparity between the events 
around the target event. MI of two random variables 
is defined as a quantity that measures the mutual 
dependence of the two variables. It is roughly a 
measure of how much one event tells us about the 
other. It compares the probability of observing events 
X and Y together to the probability of observing them 
by chance. The mutual information between 
particular events X, Y is defined in Eqn.(1). 
 

( ) ( )
( ) ( )YPXP

XYPYXMI
×

= log,
 

 
Eqn.(1)

 
On the other hand, the log LR is a formalization 

of independence which provides another good 
measure for the collocation between the two events. 
While there is evidence that sparseness is a problem 
for MI, the likelihood function seems to be a good 
complement to it. In applying the LR, the two 
alternative hypotheses are examined. 
 

H0: P(Y|X) = p = P(¬Y |X)  
H1: P(Y |X) = p1 ≠ p2 = P(¬Y |X) 

 
Eqn.(2)

 
If c1, c2, and c12 are the frequencies of events X, Y 

and the event X followed by event Y and N is the 
total number of events in our training, the log of the 
LR is calculated as follows:  
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Eqn.(3)

 
Both mutual information and likelihood ratio 

reflect the event co-occurrence information in a 
continuous function instead of discrete values shown 
in the feature set. Training of the inference engine 
proceeds as follows. Each attribute in the event 
sequences produces a training example for the 
decision tree construction. Given a sequence, the 
feature set is computed with respect to each target 
attribute, thereby producing a training n-tuple of the 
target attribute describing the event. All the tuples 
are presented to the decision tree learning. As the 
result, a decision tree classifier is learnt from the 
training examples. The classifier becomes the major 
component in our inference engine. In the prediction 
phase, this process is repeated as in the training, 
producing a prediction n-tuple for each unknown 
attribute in the incoming event sequence. The 
prediction n-tuple is then subject to the verdict of the 
classifier. At the same time, as in other decision tree 
classifier, each prediction is associated with a 
certainty factor, ranging from 0.5 to 1. The factor 
indicates the confidence on which the prediction is 
made. One obvious hurdle in applying the inference 
engine in the event prediction is the problem of 
attribute noise. Since the attributes of the adjacent 
events are unknown particularly for the subsequent 
events Si+1 and Si+2 as mentioned in the feature set, 
the majority of the features cannot be evaluated. In 
other words, the classifier receives a noisy set of 
features as input due to the attribute dependence on 
the unknown attributes of their adjacent events. This 
situation is remedied in two stages in our inference 
engine. In the first stage, the default one is to use as 
the baseline attributes, i.e., the most frequent 
attribute for the event found in the training examples. 
Although this baseline attribute is clearly far from 
perfect, it provides a rough estimation, associated 
with an uncertainty, to all unknown attributes. In our 
second stage, instead of predicting all event attributes 
from the beginning of the sequence till the end 
consecutively, our prediction starts from the 
attributes with highest uncertainty in the first stage, 
with the hope that its adjacent events which have 
higher confidence will shed some light on the current 
prediction. All the features with attribute dependence 
in the tree classifiers are all activated during the 
prediction. All the event attributes in the sequence 
will be evaluated from the highly unresolved to the 
most promising ones in one complete cycle. Under 

this second stage, because of the attribute 
dependence, the adjacent attributes will surely be 
altered if the current attribute are being modified. In 
the same reason, the current attribute will also be 
affected by the newly altered adjacent attributes. This 
intertwined cause-and-effect chains in the prediction 
are settled by allowing the whole prediction 
mechanism to repeat iteratively for several cycles 
until the event sequence becomes steady. An event 
sequence is defined as steady if there is no further 
modification of attributes during the prediction. 
Similarly, the certainty factor of attributes predicted 
by the classifier in the i-th cycle will define the 
precedence order of event attributes in the (i+1)-th 
prediction cycle. Table 2 below shows the 
pseudocode of the inferential mechanism which 
describes the main rationale behind the event 
prediction in more detail. 

 
 

COMPUTE the certainty factor for all attributes cf(ak)  
in the event sequence. 

WHILE the prediction is not steady 
NORMALIZE all the certainty factor cf(aj) for j = 1…k 
PUSH the sorted aj into a stack s with the smallest cf(aj) at the top
WHILE s is not empty 

POP aj from s 
READ the attributes of the event Sj-2, Sj-1, Sj+1 and Sj+2 
GENERATE the prediction features for the attribute of event Sj

ACTIVATE the decision tree classifier for the prediction 
FOR each fired rule in the classifier 

COMPUTE the Laplace estimate L for each attribute class n 
Ln ← Ln × max[cf(al)] for all adjacent events  
vn ← vn + Ln, where vn is the vote of the attribute class n 

ENDFOR 
RETRIEVE the attribute class with the largest average vote, i.e.,

cf(aj) ← 
⎭
⎬
⎫

⎩
⎨
⎧

fired rules ofnumber  total
max nv  

NORMALIZE all the certainty factor cf(aj) for j = 1…k 
ENDWHILE 

ENDWHILE 
 T

able 2: Inferential mechanism for event prediction 
 
As shown in Table 2, in order to take into the 

account of the effects from its adjacent events, the 
vote vn of the attribute class n relies on the certainty 
of its neighbors. In other words, the vote will always 
be diminished by its neighbors, even though a large 
certainty factor may be deducted in the classifier. 
This is somewhat unreasonable and the situation will 
also be deteriorated as the certainty factors are 
propagated along the computational chain before the 
final verdict becomes steady. To maintain the 
impacts of its adjacent events without withering 
away the deduction from the classifier, a normalized 
certainty factor (NCF) is defined to alleviate the 
possible negative impacts during the normalization 
as shown in the mechanism. Without the 
normalization, the certainty factors will get smaller 
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and smaller after each prediction cycle. The NCF at 
position j of an event sequence is defined as follows. 

( ) LBLB
CFCF

CFCF
NCF j

j +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×

−
−

= 1
minmax

min

 

 
Eqn.(4)

 
where  
 CFj be the certainty factor of the attribute at 

position j. 
 CFmin be the minimum certainty factor found in 

the sequence. 
 CFmax be the maximum certainty factor found in 

the sequence. 
 LB be the lowest bound of the NCF. 

 
Experiments and Evaluation 

We have conducted an experiment to measure the 
performance of our approach in predicting the 
financial event sequences and make a head-to-head 
comparison with a statistical model. More than 
28,000 financial sentences from 2,000 financial 
reports have been analyzed. They are all extracted 
from two financial websites, 
www.bloomberg.com & www.quamnet.com 
which is a popular financial portal. Quamnet is 
supported by a team of professional financial 
analysts. It is well-known for its independent 
financial research and analysis on Hong Kong’s 
stock market. They are all used for gathering the 
statistics in analyzing sentence patterns in financial 
events. All the sentences are then subject to our 
shallow parsing strategy and over 70% of the 
sentences can be further analyzed and being parsed 
into the event sequences as described in Section II. 
Each sequence contains at least 4 events. 

Statistical models of sequence prediction, 
particularly the Markov chain models, have been 
extensively studied due to their elegant theoretical 
framework. However, while each state of Markov 
chain models corresponds to an observable event 
which may be too restrictive to be applicable to many 
problems of interest, it is more general to extend the 
concept of Markov chain models to include the case 
where the observation is a probabilistic function of 
the states (Rabiner, 1989; Skounakis et al., 2003). 
The resulting model is called a hidden Markov model 
(HMM). The word hidden in the name indicates that 
for a specific sequence of events, it is not clear what 
state the Markov model is in. HMMs are useful for 
situations where certain sequences can be generated 
from different important states. In our evaluation, in 
order to identify the attributes that best explain the 
event sequence, we apply the Viterbi algorithm 
which efficiently computes the most likely event 
sequence. The algorithm is a dynamic programming 
algorithm for choosing the best state sequence that 
maximizes the likelihood of the state sequence for 
the given observation sequence. It is to find the most 

likely sequence of hidden states that result in a 
sequence of observed events, especially in the 
context of hidden Markov models (Forney, 1973). 
Table 3 below shows our evaluation of the Viterbi 
algorithm using different set of parameters. The 
bigram model looks at pairs of events and uses the 
conditional probability that an event Si will follow 
another event Si-1. The trigram model uses the 
conditional probability of one event given the two 
preceding events. Our forward induction is the 
prediction that starts from the first event of a 
sequence, and then infers consecutively till the end. 
The backward induction is similar to the forward 
counterpart but starts at the end of the sequence and 
sweeps backward through the events in the sequence. 
Additionally, in any real world predictions, we 
cannot guarantee that the complete information about 
the event sequences are all reflected in our training 
cases, we address the event prediction problems with 
the open world assumption. That is, it is allowed to 
have some unknown events found in the testing cases, 
but absent in the training cases. Hence, we define 
in-Event (IE) be the events that can be found in our 
training data while out-of-Event (OOE) is an event 
that are unknown to the training data. 
 
No. Different combinations using 

Viterbi Algorithm (HMM) 
Total 

 
IE OOE 

1 Bigram-forward induction 77.25% 82.67% 21.82%
2 Trigram-forward induction 76.64% 81.90% 22.78%
3 Bigram-backward induction 77.95% 83.40% 22.22%
4 Trigram-backward induction 76.14% 81.10% 25.39%

5 Bigram-forward +  
Bigram-backward 78.87% 84.40% 22.21%

6 Trigram-forward +  
Trigram-backward 77.05% 82.11% 25.21%

7 

Bigram-forward +  
Bigram-backward +  
Trigram-forward +  
Trigram-backward 

79.83% 85.26% 24.21%

  
Table 3: Results of the HMM in event prediction, where Total, IE 
and OOE represent the overall accuracy in all events, in-events 
and out-of-events respectively. 

 
While the increase of n-gram does not show any 

significant improvement over the accuracy as 
compared with the bigram counterparts, three 
different combinations in studying their synergy 
effects are further investigated as described in trials 
5-7. For example, in trial 7, we incorporate the 
forward and backward probabilities for both bigrams 
and trigrams during the predictions. However, the 
results show that it is not necessary to produce any 
significant positive synergy effect, even though there 
involve heavy computational resources. To justify 
our approach and evaluate the performance of our 
text-based DSS, we compare our system using 
several prototypes which include, 
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 Model-1: a baseline model in which attributes are 
estimated using the most frequent attributes for 
the events found in the training cases;  

 Model-2: the most outstanding combination of 
HMM, i.e., trial-7, as shown in Table 3;  

 Model-3: first approximates by Model-1, and then 
refines using our text-based DSS; 

 Model-4: first by Model-2 and then refined by our 
DSS. 

 
Figure 2 summarizes the evaluation results of the 

above four models. As shown in the figure, the 
overall accuracy of Model-3 and Model-4 are higher 
than that of the one-component models. While all the 
models, except Model-1, demonstrate a strong 
predictive power for the in-events (IE), our DSS 
model exhibits a total accuracy (Total) higher than 
the HMM. Specifically, the DSS model appears to 
have a significant improvement on the predictive 
power for the OOE with the average over 50% in 
Model-3 and Model-4. The differences between the 
Model-2 and our DSS are statistically significant. 
Another important point of comparison is that the 
DSS is trained with the features described in Section 
III. HMM, on the other hand, computes the 
probability of any sequence of events simply by 
finding the likelihood of events and multiplying the 
transition probabilities together. On the other hand, 
the learning and predicting mechanism in our DSS 
relies on the interdependences between the target 
attribute and the features. These features reflect the 
properties of the preceding and subsequent events as 
well as their collocation information. All these 
features are all considered as a whole in every single 
instant during the training of the inference engine. As 
a result, it is not surprising that our DSS outperforms 
the HMM. 
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F
ig. 2: Comparison of the performances among four different 
models 
 

Next, we experiment with the sensitivity of the 
inference engine to several options of labeling the 
training data. In Model-4, all features, including the 

target feature, of the training instances are computed 
in terms of actual attributes of the events in the 
training event sequences. In our sensitivity analysis, 
we gradually replace the actual attributes in the 
training cases by the most probable attributes for the 
events found in all training examples, whereas the 
targets still correspond to the correct target attribute. 
In other words, the quality of the training data is 
deliberately deteriorated to an extent that they are 
only approximated by a maximum likelihood 
estimation based on the probability density function. 
It is not surprising the performance of the engine 
begins to get worse as compared to the one trained 
from the actual datasets. 
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Fig. 3: Change of Total accuracy with the increase of percentage 
of MLE for training instances 
 

However, as shown in Figure 3, the degeneration 
is slow-crawling with the total overall accuracy drops 
gradually from 89.09 to 71.34%. It is interesting to 
note that the performance of the engine using 100% 
of maximum likelihood estimation (MLE) for the 
actual dataset is still acceptable, at least it is much 
better than the performance of our baseline model in 
Model-1. In other words, a “simple-minded” 
inference engine using 100% MLE performs 
reasonably well in predicting the event sequences. 
This tolerance characteristic explains why we can 
alleviate any possible lack of inter-dependence 
features by adopting the maximum likelihood 
estimation in our OOE prediction. 
 

Conclusions 
The current one-size-fits-all design in knowledge 
discovery from text (KDT) ignores the fundamental 
variety of domains which may involve a fairly 
laborious annotation. Thus, most approaches are 
forced to depend on impoverished text models like 
bags of words or n-grams. As a result, the predictions 
that they are making ought to be based on the 
meanings of those words in context. That lack of 
semantics causes misinterpretation of meaning that 
results in failing to extract the relevant knowledge 
from text. On the other hand, in most of the current 
KDT systems, the information that is sought must be 
explicitly stated, but not implied, in the text. This 
lack of inferential capability can pose significant 
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problems when knowledge is extracted from 
documents that expect the reader to draw simple 
deductions. In this research, we have developed an 
inferential mechanism in a text-based DSS that can 
extract knowledge from a collection of relevant texts. 
The DSS does not rely on any bag of words, but on a 
shallow language model. As a consequence, the 
incorrectly conflated information is excised and the 
proper coreference of event sequence can be 
accomplished. In addition, instead of learning from a 
limited set of hand-crafted rules or templates, our 
DSS collates the prior event sequences in a manner 
that both explicit and implicit knowledge could 
participate into the inferences. This mechanism 
provides a robust and efficient means to handle the 
predictions in financial text which demonstrates a 
high propensity that the extracted event sequences 
are being finite at various level of analysis. Certainly, 
further investigation has to be conducted to extend 
the work to a fully unrestricted functionality text 
domain. However, we have demonstrated one of the 
alternatives in the knowledge discovery from real 
text. 
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