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Abstract: 

Data quality procedures are vital in conducting survey research, yet they are under-emphasized in information 
systems (IS) Ph.D. curricula and published journal articles. In this research-in-progress, we offer the “5-C 
Framework” to evaluate the current state of IS survey research, as it pertains to data quality, provide insight 
into where IS Ph.D. curricula may be lacking, and offer a basis for developing new curricula that address those 
gaps. In pursuit of our objectives, we present preliminary findings from our analysis of IS survey research 
between 2008 and 2017. This work should interest those developing IS Ph.D. curricula. Establishing 
guidelines, based on the 5-C framework, can aid educators in teaching Ph.D. students how to enact and 
communicate data quality procedures effectively.  

Keywords: data quality, Ph.D. curricula, survey research 

I. INTRODUCTION 

Jane is a doctoral candidate in her fourth year of the Information Systems Ph.D. program. 
She collected data for her dissertation via an online survey to 500 full-time employees. 
Although Jane successfully completed all her statistics and methods courses, opening 
the results of her survey gives her pause. Jane knows all about the importance of data 
validity and reliability, but she has no idea what to do with the messy data set that 
confronts her. With the pressure to complete her analysis in time to graduate before the 
end of the academic year, Jane is filled with anxiety. She is supposed to be competent, 
and she has been well-trained; how is it possible that she does not know how to proceed? 

The preceding scenario is not uncommon for doctoral students in today’s academic environment. 
While students recognize the need for data quality, the procedures for ensuring such quality are 
often elusive or shrouded in mystery. Lack of experience or knowledge of how to proceed fosters 
anxiety in students and can lead to unnecessary errors during analysis. Unfortunately, our field 
provides little guidance in the way of published discussions regarding how best to enact data quality 
procedures in survey research.   

Surveying is a prevalent methodology in Information Systems (IS) research [Compeau et al., 2012]. 
Despite the methodology’s numerous benefits, including the relatively short time spent in data 
analysis and ease of access to subjects, data gathered from surveys often requires cleanup work 
before further analyses can be performed. Put simply, survey data is often messy. The use of 
human subjects in survey research poses potential threats to data quality [DeSimone and Harms, 
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2017; DeSimone et al., 2015]. Survey data sets are often prone to challenges of validity due to 
missing responses, inattentive subjects, skewed results, etc.  

As a means of highlighting and alleviating the problems associated with data quality in our field, 
this study seeks to answer two key questions. First, what is the current state of data quality 
procedures in survey research? Second, what considerations need to be addressed with 
regard to data quality to ensure the highest validity of results in survey research?  

For the first question, we aim to draw attention to the areas where our field inadequately enacts 
and/or communicates data quality procedures. Doing so will demonstrate where our curricula are 
potentially lacking and accentuate the difficulty students face in learning from current research. the 
second question, we aim to provide guidance regarding best practices in enacting data quality 
procedures and in communicating those procedures in published research. The importance of both 
enacting and communicating data quality procedures is clear. 

To ensure the highest degree of confidence in survey research, researchers conducting survey 
methodologies must enact data quality procedures. Not only is enacting of data quality procedures 
important, so too is the selection of well-founded procedures. Research has been conducted for 
decades regarding how best to ensure the highest quality data sets from surveys [Groves, 1987]. 
Researchers bear the responsibility for incorporating the best-established procedures into their 
methodologies.  

Communicating data quality procedures used in research is also essential. Whereas enacting data 
quality procedures impacts the actual quality of data used in hypothesis testing, communicating 
those procedures impacts perceived data quality, thereby influencing the confidence in a study. 
Data quality procedures that are not communicated may be assumed to have been ignored, thus 
reducing the perceived validity of analysis.  

Communicating data quality procedures also offers guidance for others to follow. Lacking such 
guidance, students must seek their own means of ensuring data quality, which can lead to 
confusion and errors. Additionally, communicating data quality, especially in a relatively 
standardized format, eases the process of assessing studies, especially for journals and 
conferences. A standardized procedure for communicating data quality procedures not only 
increases the perceived validity of the study, it also reduces the effort required in determining 
whether necessary procedures were followed.   

This study should provide insight into where our current IS PhD curricula may be lacking and 
provide a framework for developing new curricula to fill in those gaps. As a first step in addressing 
our research questions, we delineate the data quality procedures that ought to be followed in survey 
research.  

II. DATA QUALITY PROCEDURES – THE “5-C FRAMEWORK” 

One of the greatest challenges in teaching data quality procedures to Ph.D. students is identifying 
the entire domain of data quality in survey research. Thus, before we can provide guidance 
regarding how to ensure that students learn best practices, we must first establish the purview of 
what we mean when we discuss data quality. 

In this section, we categorize and explain the core procedures that researchers should consider to 
ensure the highest quality of data in survey methodologies. For each category, we describe the 
domain of procedures and the importance of their enaction. The naming convention offered was 
developed to provide a simple mnemonic device to aid memory of the categories and associated 
actions. Using this framework, we seek to provide guidance regarding the core aspects of data 
quality and to offer standardized procedures that PhD students will be able to refer to and follow 
when conducting survey research. 
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Categories of Data Quality Procedures 

Table 1 contains the five categories which comprise the framework. For each, a general overview 
of procedures is provided, along with a discussion of the category’s importance.  

Table 1. Categories of Data Quality Procedures 

Category Definition 

Correspondence the degree to which all data in a data set fall within the 
intended sample frame for the study 

Completeness the degree to which all survey questions are fully 
answered by all respondents 

Carelessness the degree to which all respondents were attentive and 
engaged while taking the survey 

Composition 
the dispersion of the data after the survey is completed, 
specifically as relates to the normality of the data and the 
presence of any outliers 

Credibility the degree to which the results of a survey are 
unnecessarily biased 

Correspondence 

The correspondence of a data set pertains to the degree to which all the data it contains fall within 
the intended sample frame for the study. This category of procedures includes properly defining 
the intended sample frame of the study, taking steps to prevent respondents outside the sample 
frame from taking the survey, and removing any responses that do not adhere to the sample frame 
during analysis.  

Including respondents that do not adhere to a study’s sample frame hinders researchers’ ability to 
draw proper conclusions from their data [Groves, 1987]. For example, suppose a team of 
researchers wishes to investigate the impact of burnout on Chief Information Officer (CIO) 
retention. As part of their study, the researchers seek out 100 CIOs to complete a survey containing 
questions about their workload, stress level, job tenure, etc. Any conclusions that they reach from 
this data set would be held in question should any of the 100 respondents hold a position in an 
organization other than CIO.  

The conclusions of a study are only applicable if the data used to make those conclusions are also 
applicable. No meteorologist would identify the temperature in Boston by using a thermometer 
located in San Francisco. Thus, one important aspect of data quality in survey research involves 
ensuring that data used in a study properly correspond to the intended target. When the sample 
frame of a study does not correspond to the intended population, the study is prone to “coverage 
error” [Couper, 2000]. Researchers must act to both ensure this correspondence and communicate 
it to their audience. Failing to do so could considerably diminish the confidence in knowledge 
generation. 

Completeness 

The completeness of a data set pertains to the degree to which all necessary survey questions are 
fully answered by all respondents. Like the correspondence category, this category of procedures 
includes the steps taken to prevent respondents from actively skipping or accidentally overlooking 
any questions on a survey. This category also involves the steps taken after a survey to account 
for any missing data, which might include the removal of responses or the sophisticated 
recalculation of missing responses to allow for accurate analysis.  

Missing data has both theoretical, practical, and statistical implications in knowledge generation 
[Schafer and Graham, 2002; Tsikriktsis, 2005]. Theoretically, missing data could reveal an 
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underlying bias in the sample, if individuals with certain characteristics or preferences uniquely 
failed to complete all or part of the survey [Roth, 1994]. Practically, missing data could indicate 
issues related to the reliability of the survey instrument, if the absent data can be traced to an 
unnecessary difficulty in taking the survey or a faulty line of questioning that rendered some or all 
the survey unclear or difficult to understand. Statistically, missing data alters the way a data set is 
analyzed [Tsikriktsis, 2005]. Missing responses are often removed from the data set, thereby 
reducing the size of the sample. Even under conditions where missing data can be replaced, the 
replaced data is merely an estimate of the original response, thus opening the analysis to questions 
of authenticity. Thus, it is vital that researchers not only act to safeguard against missing data where 
possible, but also communicate the actions taken. Knowledge generated from an incomplete or 
statistically estimated data set is less likely to be trusted and codified for the future. 

Carelessness 

The carelessness of a data set pertains to the degree to which all respondents were attentive and 
engaged while taking the survey. Many surveys, especially those delivered remotely through an 
online medium, are prone to issues related to inattention [Huang et al., 2015]. In these cases, 
respondents either do not sufficiently read questions or provide adequate care in their responses, 
leading to overly (often impossibly) fast response times, straight-lining, patterned responses, etc. 
[Revilla, 2016]. This category of procedures includes steps that can be taken to increase 
respondents’ attention, verify that proper attention was paid during survey taking, and remove 
responses that indicate a lack of attention. 

Inattention in survey taking reduces the validity of the resulting data set. Data gathered from 
inattentive sources is unlikely to accurately represent the true values of those sources [Maniaci and 
Rogge, 2014]. It is vital in survey analysis that data gathered from respondents be their authentic 
responses. Otherwise, any conclusions drawn from those responses are subject to skepticism. For 
example, suppose a researcher utilizes a survey to examine the relationship between information 
overload and perceived ease of use. If enough respondents fail to attentively read the questions 
and simply mark “Strongly Agree” for every question, the data might indicate (falsely) that 
overloading users with information makes a system easier to use! Thus, to ensure the highest 
confidence in knowledge generation through survey research, scholars must consider the extent to 
which carelessness features in a data set. 

Composition 

The composition of a data set pertains to the dispersion of the data after the survey is completed, 
specifically as it relates to the normality of the data and the presence of outliers. This category of 
procedures is almost entirely statistical, as very little can be done during survey composition or 
administration to prevent skewed results or extreme responses. Nonetheless, during data analysis, 
it is important that researchers examine their data to determine if actions must be taken to prevent 
any unnecessary influences on survey results. 

The composition of a data set influences the conclusions which are drawn from that data. When 
assessing composition, researchers must consider both the dispersion of the entire data as well as 
the positioning of individual responses. Regarding the entire data set, many statistical analysis 
techniques are affected by a non-normal distribution. For example, Goodhue, Lewis, and 
Thompson [2012] found that data that is highly skewed and kurtotic reduces power and can 
influence results of structural equation modeling (both CB-SEM and PLS-SEM) and regression. 
Regarding individual responses, researchers should examine the data for outliers, both univariate 
and multivariate [Osborne and Overbay, 2004]. Like many of the other categories of procedures, 
accounting for the composition of data is important because if it is unaccounted for, any confidence 
in the knowledge generated based off that data can be eroded.   

Credibility  

The credibility of a data set pertains to the degree to which the results of a survey are unnecessarily 
biased. Biases introduce theoretical threats to the validity of a study by inserting additional 
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influences on the survey results. Some of the most common biases that researchers often consider 
are non-response bias (biased results stemming from a meaningful difference in respondents and 
non-respondents) [Armstrong and Overton, 1977] and common method bias (in which respondents’ 
answers are influenced by the method selected) [MacKenzie and Podsakoff, 2012]. This category 
of procedures includes the actions taken before and during survey administration to eliminate the 
threat of such biases, as well as the actions taken during data analysis to dispel any concerns that 
such biases may have been present. 

Data that are biased lead to results that are biased. In the case of non-response bias, when present, 
the conclusions drawn from analysis would only pertain to those who share the same 
characteristics as those who responded to the survey. All others would not accurately be 
represented in the study. In the case of common method bias, when present, the conclusions drawn 
from analysis would be flawed, as the responses were unduly influenced by the method selected 
for the study. The goals of survey research must include the aim to extract the purest information 
from the respondents, without any influences unaccounted for in the investigation. Should any 
biases be left unexamined, the confidence in the results could be hindered.  

Implications 

Across the five categories of the framework, numerous implications abound if researchers do not 
enact and communicate data quality procedures. In this section, we highlight some of the broader 
implications of ignoring data quality, and how such ignorance might inhibit knowledge creation in 
IS survey research. 

Implication #1: Data Misalignment 

One negative consequence that could emerge from a failure to enact and communicate data quality 
procedures is the actual or perceived mismatch between the data used to confirm a set of 
hypotheses and the population in which that data should be drawn from. This consequence is 
especially tied to the correspondence and credibility categories of the framework, from different 
perspectives. If researchers fail to properly consider correspondence, they risk the allowance of 
respondents into a sample that are not a part of the population for the study. This is an issue of 
errant inclusion, otherwise referred to as sampling error [Groves, 1987]. If researchers fail to 
properly consider credibility (especially non-response bias), they risk limiting the sample to a biased 
subsection of the population. This is an issue of errant exclusion, otherwise referred to as non-
response error [Groves, 1987]. 

Misalignment between the sample utilized in a survey and the population from which the sample 
should have been drawn has severe consequences for knowledge generation. It is assumed in 
statistical sampling that the conclusions drawn from a sample should be generalizable to the larger 
population. However, if the sample does not fully represent the population, the generalizability of 
the survey is altered, if not negated entirely.  

Researchers must be cognizant of the potential problems associated with errant inclusion and 
exclusion of respondents. Proper consideration of the procedures included within our framework 
should help to alleviate these concerns, both in terms of actual data quality concerns and the 
perceptions of those concerns, should the procedures enacted not be communicated publicly. 

Implication #2: False Conclusions 

Another negative consequence that could emerge from a failure to adhere to this framework is 
inaccurate conclusions from the survey data set. Careless, incomplete, or improperly composed 
data increases the potential to make a false conclusion. For example, earlier we described the 
implications of straight-lining on data analysis. Without considering the carelessness of that data 
set, the researchers might have observed a correlation between two variables that did not exist, or 
perhaps worse, a correlation that should have been reversed.  
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Survey data is often utilized in knowledge generation as a means of confirming one or more 
hypotheses derived from theory [Pinsonneault and Kraemer, 1993]. The conclusions from that data 
provide the evidence needed to support prior claims. If the conclusions were reached under false 
assumptions, knowingly or unknowingly, then the validity of the entire work is diminished.  

Data cleansing is a vital activity in the process of knowledge generation. Just as improper 
interpretations of theory lead to inaccurate hypotheses, so does errant data lead to inaccurate 
conclusions. The procedures described in this framework should aid researchers in avoiding the 
errors which could lead to false conclusions in survey research. 

Implication #3: Statistical Error 

Finally, while failure to enact and communicate data quality procedures has theoretical 
consequences, it also has statistical consequences that must be considered. Many of the statistical 
methods that are utilized in survey research rely on assumptions which may inadvertently be 
violated if data quality procedures are not followed. For example, regression analysis assumes the 
normality of a data set [Jarque and Bera, 1980]. If this assumption is not met, the analysis may not 
be feasible or may lead to a false conclusion.  

Statistical considerations also include potential limitations to the power of a study. An 
overabundance of missing data could inhibit the ability to detect a potential relationship even if it 
were present. In the case of outliers, extreme values could influence a study’s conclusions 
unnecessarily. This implication relates to the second, in terms of leading to potential false 
conclusions, but from a different perspective. While low-quality data could lead to false conclusions 
reached through accurate statistical methods, such low-quality data could also inhibit the ability to 
properly complete those statistical methods. Thus, low-quality data has implications both for the 
end of the methodological procedural chain as well as the steps which lead to that end.  

III. REVIEW OF CURRENT RESEARCH 

To identify areas that are most deficient in our field, with an eye toward how we can best augment 
IS Ph.D. curricula, we are in the process of evaluating how and to what extent the 5-C framework 
is enacted in published research. To that end, this section details our methodology for reviewing 
the current state of IS research as pertains to data quality and offers preliminary results1. 

Procedure 

To properly understand the current state of IS research, we are conducting a thorough review of 
survey research in our field. The first step in this process was identifying all articles that used a 
self-report survey methodology in the Information Systems Basket of 8 Journals (the European 
Journal of Information Systems, Information Systems Journal, Information Systems Research, 
Journal of the Association for Information Systems, Journal of Information Technology, Journal of 
Management Information Systems, Journal of Strategic Information Systems, and Management 
Information Systems Quarterly) [AIS, 2011] over a ten-year period. In all, we began with 2,692 
articles.  

Our coding procedure is as follows: First, we conducted a keyword search (using the terms, 
“survey,” “questionnaire,” and “panel”) of all articles published in these journals from 2008-2017.  
We included all papers with surveying as the principal method for data collection and primary data 
used for analysis (i.e., data obtained and managed by the authors).  We excluded papers with 
surveying as subordinate to some other method (e.g., an experimental study that uses a follow-up 

                                                      

1 Note: as data analysis is still ongoing, please recognize that many of the statistics presented in this research-in-progress 
submission may not be finalized. Nonetheless, the figures reported here should be close to the final results, barring 
additional cleanup work.  
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survey) or data gathered from an archived source (e.g., papers that use data from Gallup surveys). 
This provided a final sample of 419 articles for coding. Some articles used more than one sample, 
thus the total number of surveys coded was 430. 

All articles were coded using the 5-C framework described earlier. Our primary concern was 
whether the data quality procedures were discussed in each paper and what procedures were 
enacted. Specifically, we examined each article’s method section and coded the following items: 
sample size (actual responses received); final sample size (used in analysis); procedural remedies 
(e.g., screening questions, reverse-coded items, attention-check questions), invalid or impossible 
responses, inattention (e.g. straight-lining, patterned responses, overly fast responses), missing 
data, outliers, normality, non-response bias, and common method bias. We coded whether each 
of these items was discussed in the paper, how many responses were removed because of each 
item, and the criteria/procedure utilized for each item. 

Preliminary Results 

One priority in our investigation is understanding how many, and why, cases were removed from 
survey results. In coding the surveys, we sought to identify the initial sample size, the final sample 
size, and how many cases were removed due to data quality procedures. The initial results are 
provided in Tables 2 and 3. 

Table 2. Average Number of Cases Removed in Survey Research 

Description Value 
Initial Sample Size 434.25 
Final Sample Size 390.47 

Difference 43.78 

 

Of the 430 surveys analyzed thus far, 201 (46.7%) reported removing cases as a part of data quality 
procedures. The remaining 229 surveys either reported no cases removed or did not discuss in the 
text of the paper whether or how many cases were removed. Notably, we discovered articles that 
merely listed the number of “usable” or “valid” cases, without mentioning the initial sample size, 
thereby preventing the reader from knowing how many cases were removed. 

Table 3. Data Quality Procedure Mentions 

Data Quality Procedure Mentioned Not Mentioned Percentage 
Sample Frame 105 325 24.4 

Inattention 22 408 5.1 
Impossible Responses 5 425 1.2 

Missing Data 159 271 37.0 
Univariate Outliers 21 409 4.9 

Multivariate Outliers 21 409 4.9 
Normality 150 280 34.9 

Common Method Bias 308 122 71.6 
Non-Response Bias 217 213 50.5 

Regarding procedures, we looked for any mention of the data quality procedures mentioned in 
Table 3, whether or not they resulted in any cases removed. For example, a survey was coded 
affirmatively if the article discusses inattention even if no inattention was found. Surveys were 
coded negatively if there was no mention of the procedure in the entire text of the paper. 
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Immediately evident from this analysis is that our field has placed an emphasis on checking for 
Common Method Bias (71.6%) and Non-Response Bias (50.5%). Of the procedures analyzed, 
these were the only two discussed in more than half of the surveys analyzed. Common Method 
Bias seems increasingly emphasized, as its discussion in articles has grown over time, displayed 
in Figure 1. Non-Response Bias is somewhat consistent over time in its frequency of discussion. 

   

Figure 1. Mentions of Method Bias Over Time 

Further analysis from Table 3 reveals some areas that are discussed far less often in published 
articles. For example, only 159 (37.0%) of the surveys analyzed mentioned missing data in the 
paper. Even lower frequencies were noted for inattention, outliers, and normality. Because these 
data quality procedures are not mentioned in many of the papers, it is unclear whether checks were 
even made. Furthermore, concerning Ph.D. students, if data quality procedures are not discussed 
in articles, as is evident for many of these procedures, students cannot learn best practices and 
norms cannot be established.  

Going forward, our plan is to finalize our coding and dive deeper into data analysis. We will analyze 
not only the mentioning of data quality procedures, but also the methods used for each procedure. 
For example, early indications reveal that a large majority of papers that found missing data utilized 
casewise deletion, where the entire case is removed from analysis. This runs counter to the 
recommendations of some experts, who offer more advanced techniques that can prevent entire 
cases from being removed (e.g. Newman, 2014).  

IV. NEXT STEPS 

Utilizing the 5-C Framework, we will examine current research on data quality procedures to 
develop a set of prescriptive guidelines for researchers. The guidelines will address how best to 
enact data quality procedures, as well as how to communicate those procedures in written form. 
For example, regarding the “Completeness” category of the framework, we will provide guidance 
on how researchers can improve the completeness of their data during data collection, how they 
can account for missing data during analysis, and how such procedures should be communicated 
once the study is documented.  

The guidelines will serve three aims. First, we aim to provide future researchers with a set of best 
practices on how to address each category of data quality procedures and improve data quality to 
the extent possible. This should ease the burden on researchers in deciding how to tackle this 
difficult issue and ensure that best practices become codified in the IS knowledge base. Second, 
we aim to provide a standard method for communicating data quality procedures in written form. It 
is our hope that we can remove some of the mystery surrounding when, how, and why to 
communicate the procedures enacted to improve data quality. Third, for Ph.D. students, we aim to 
identify opportunities for incorporating these guidelines into the Ph.D. curricula. This should 
alleviate the anxiety experienced by Jane, and students like her, described in our opening vignette.  
More importantly, it will help the field in its endeavors to train a new generation of IS scholars to 
produce knowledge that we can all have confidence in. 
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V. IMPACT FOR PH.D. CURRICULA 

In the opening vignette, we described a common problem facing Ph.D. students conducting survey 
research. Early results from our review indicate that little guidance is being provided through 
published research regarding how to enact data quality procedures. It is imperative that the 
curricula in our Ph.D. programs fill in these gaps. Through a finalized review of current research 
and the completion of our data quality guidelines, we aim to offer the following implications for 
improving data quality education in our field: 

 First, the presentation of the 5-C framework should provide a foundation on which to build 
Ph.D. curricula. The current ambiguous nature of data quality procedures necessitates a 
guiding framework. Through our categorization of correspondence, completeness, 
carelessness, composition, and credibility, professors will be better equipped to discuss 
data quality procedures and students will have a way of easily recalling the primary facets 
of data quality. 

 Second, through our review of data quality procedures in current research, we will highlight 
areas in which our field may be deficient. Improvements in curricula cannot be made until 
we fully understand where the problems lie.  

 Third, using the 5-C framework, we will offer guidance regarding some best practices for 
each of the categories of data quality procedures. While an exhaustive discussion of each 
category would be overly cumbersome, our aim is to summarize contemporary insights 
and provide a roadmap for Ph.D. students eager to dive deeper into proper methods. 

 Finally, more generally, we hope that this study serves to shine a light on some of the 
seemingly neglected aspects of data quality in survey research. It is imperative that we 
work together to establish norms surrounding how best to both enact and communicate 
data quality procedures. This has implications not only for Ph.D. students, but for all 
researchers in our field.  

In sum, while this study has implications that extend beyond Ph.D. curricula, there are many ways 
in which it can be helpful for those who teach Ph.D. students. We hope to help our fictionalized 
Jane with the uncertainty she faces over the proper treatment of her data set.  
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