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Abstract

In several Web based applications (e-commerce, e-
learning, digital libraries, etc.) one needs to display a
dense array of information in a small amount of space
(such as a screen) in a manner that communicates clearly
and immediately. The information displayed is usually
aggregates of results obtained through analysis of large
amounts of data. We present a functional model that
supports the data analysis and aggregation process, and
a prototype that supports casual users in doing the fol-
lowing: (a) construct an analytic query visually, in an
interactive manner, (b) visualize the aggregate result in
a user selected mode (histogram, pie, etc.), (c) explore
the query result by providing equivalent representations
at different aggregation levels or for different parameter
values selected by the user.

Keywords: Data Analysis, Analytic Query, Data Visu-
alization, Visual Interaction

Introduction

In several Web based applications such as e-
commerce, e-learning, digital libraries, etc. one needs to
display a dense array of information in a small amount
of space (such as a screen) in a manner that communi-
cates clearly and immediately. The information displayed
is usually aggregates of results obtained through analysis
of large amounts of data.
For example, consider the case of a digital library, allowing
a community of users to share documents in digital form.
Each document resides in its owner’s (local) database, and
the digital library acts simply as a mediator allowing sub-
scribers to access documents transparently. To access a
desired document, a subscriber queries the library cata-
logue which stores each document’s URI together with a
description of the document that is the values of the doc-
ument’s attributes (language, topic, author, etc.). The
catalogue can be seen as a table (see Figure 1), and a
query against the catalogue is just a Boolean combination
of elementary conditions of the form “A = a”, where A is
an attribute appearing in the column headings and a is a
value of that attribute; for example, referring to Figure 1,
the following is a query asking for documents in French
on Poetry: (Language = French) and (Topic = Poetry).

The digital library administration needs to perform
usage analysis in order to plan the library’s activities.
Such analysis usually concerns the ranking of documents
along several dimensions (e.g. topic, author, language or
any combination thereof) according to certain indicators
(e.g. number of hits). However, the results of such anal-
ysis can be very large in size, and the only way to make

Figure 1: A table, representing a catalog of a digital li-
brary.

sense out of big volumes of data is to create summaries
and to display the summarized results to the analyst in
an appropriate visualization mode - ideally, one selected
by the analyst himself. Moreover, the analyst should be
able to perform exploratory analysis on the visualized re-
sults by changing the summarization level or by viewing
different, yet equivalent representations of the results that
might reveal new, interesting information. There are sev-
eral offerings today by software companies that allow an-
alyzing large volumes of data and visualizing the results
[1, 3], including some open source software [2]. However
all these tools are closely related to the relational model
and require some knowledge of the SQL constructs related
to data analysis (such as grouping sets, cube, roll up etc.).
In this paper, we present an approach that supports the
data analysis and aggregation process visually, at a min-
imum effort by the user. More precisely, we present a
simple data model allowing analysts to do the following:

1. construct an analytic query visually, in an interactive
manner;

2. visualize the aggregate result in a user selected mode
(histogram, pie, etc.);

3. explore the query result by viewing equivalent repre-
sentations at different aggregation levels or for differ-
ent parameter values selected by the user.

We also present the basic architecture of a prototype
that implements the above functionalities. A prominent
feature of our prototype is that the process of creating
a query, receiving results, analyzing them and exploring
them in several ways is well integrated, supported by intu-
itive actions: the entire process is very fluent and straight-
forward. In the remaining of the paper, we first give an
informal overview of our data model; then define the for-
mal model and give its mapping to the relational model.
Next we give the description of a prototype interface un-
der development, as well as the visual interaction between
the user and the interface. We conclude with remarks and
an outline of future work.

The 9th International Conference on Electronic Business, Macau, November 30 - December 4, 2009



A Functional Model for Data Analysis and Result Visualization 41

Figure 2: Example of an application represented by a graph, and a query evaluation.

Overview of the model
In this section we give an informal overview of our

model using an example. Consider a digital library in
which each document is identified by its URI and de-
scribed by two attributes:
Topic, whose values are keywords describing document
content (eg. drama, poetry, etc.)
Hits, whose values are integers representing the number
of accesses to the document.
Thus each document URI in the library is associated with
one keyword (its topic description) and one integer (its
number of hits).
Therefore we have two functional dependencies
t : URI → Topic and h : URI → Hits
(we need the labels t and h for later reference).
We can describe this application by a graph, as shown in
Figure 2.(a), where the attributes URI, Topic and Hits
are the nodes and the the functional dependencies t and h
are the edges. This graph is a first, rudimentary example
of what we call analytic schema (or simply “schema”). Its
origin is the attribute URI which also happens to be a
key (in this example). Roughly speaking, the origin of a
schema represents the objects of interest, while all other
nodes describe attributes of the objects.
In our approach, we interpret the edges
t : URI → Topic and h : URI → Hits
of the schema as function signatures and their extensions
as the (current) database. Figure 2.(b) shows an exam-
ple of (current) database. This database represents all
documents accumulated so far in the library. It contains
9 document URIs, each associated with its topic and its
number of hits through the functions t and h (for simplic-
ity, we represent URIs as integers); for example, docu-
ment 3 is associated with “Poetry” as topic and with 200
as number of hits (i.e. t(3) = Poetry and h(3) = 200).

Suppose now that we want to analyze document us-
age, say by finding the total number of hits by topic, that
is by evaluating the answer to the following query against
the current database:

Q1: ”total number of hits by topic.”

In our approach, in order to answer this query we pro-
ceed in three steps as follows:

Grouping: we invert the function t, thus grouping the
URIs by topic;
Measuring: in each group, we apply the function h to
each URI of the group to find the corresponding number
of hits;
Aggregation: in each group, we sum up the results of mea-
suring to have the total number of hits for that group.
The final result is shown in Figure 2.(c), and it is a func-
tion from Topic to a new attribute that we call TotalHits.
This function associates each topic with the total number
of hits for that topic. In other words the answer to Q1 is
the following function:

AnsQ1 : Topic → TotalHits, (1)

such that AnsQ1(x) is the total number of hits, for
each topic x. For example, AnsQ1(Drama) = 300 and
AnsQ1(Poetry) = 600.

This pattern of grouping a set of objects by invert-
ing a function defined on them, then measuring a
property in each group by applying a second function
also defined on them, and finally aggregating the mea-
sures in each group by applying an operation on the
measures constitutes the basic pattern of our approach.

It should be clear from the previous example that
the specification of query Q1 requires three parameters,
a function such as t for classifying the URIs by topic, a
function such as h for measuring the number of hits by
URI, and an operation such as “sum” for aggregating the
measured numbers of hits. Therefore Q1 can be specified
as a triple:

Q1 = 〈t, h, sum〉. (2)

Notice however that t and h have the origin of the
schema as their common domain of definition, and that
this condition is indispensable in order to compute the
answer. Moreover, notice that the operation “sum” is an
operation which is possible to apply over the range of h
(i.e. over the integers), and that this condition is also
indispensable in order to compute the answer.

In view of the previous discussion, in our approach,
we define an analytic query over a schema to be a triple
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Figure 3: Adding Author and Nationality.

Q = 〈c, m, op〉, where c and m are edges of the schema
having the origin as their common domain of definition,
and op is an operation which is possible to apply over the
range of m. We refer to the function c as the classifier or
the grouping function of Q and to the function m as the
measure.

It is interesting to note that, following the above
definition, one can interchange the roles of c and m to
obtain a different analytic query (provided of course that
the operation in the resulting query is possible to apply
over the range of the new measure). For example, one
can interchange the roles of t and h in query Q1 to obtain
the query Q′1 = 〈h, t, sum〉. However, this query is not
well formed since the operation “sum” cannot be applied
over the range of t (i.e. over Topic, as topics can’t be
summed). By the way, if one changes the operation from
“sum” to “count” then one obtains a well formed query,
namely

Q′′1 = 〈h, t, count〉, (3)

asking for the number of topics by number of hits.
Continuing with our example, suppose now that, in

addition to topic description and number of hits, each
document is also associated with an author. Then we ob-
tain a new schema as shown in Figure 3.(a), where we
added the edge a : URI → Author. We can now formu-
late the following query, asking for the total number of
hits per author:

Q2 = 〈a, h, sum〉. (4)

The answer will be a function from authors to
integers: AnsQ2 : Author → TotHits such that AnsQ2(x)

is the total number of hits, for each author x.

Now, however, it makes sense to also ask the following
query:

Q3: “total number of hits by topic-author pair”.

This time the grouping of URIs will be done accord-
ing to a function derived from t and a, which associates
each URI with a topic-author pair. This function is called

the pairing of t and a, it is denoted by t∧ a, and it is de-
fined as follows: t∧ a : URI → Topic×Author such that
(t ∧ a)(x) = 〈t(x), a(x)〉.
During evaluation of Q3, the pairing t ∧ a will group to-
gether all URIs having the same topic and the same au-
thor, and the answer will associate each topic-author pair
with a total number of hits. In other words, compared to
Q1, the only change is that the function t of Q1 is now
replaced by the function t ∧ a; other than that, the eval-
uation of Q3 proceeds in exactly the same way as for Q1.
Therefore, Q3 is specified as follows:

Q3 = 〈t ∧ a, h, sum〉. (5)

And its answer will be a function from topic-author
pairs to integers:

AnsQ3 : Topic×Author → TotHits, (6)

such that AnsQ3((x, y)) is the total number of hits,
for each topic-author pair (x, y).

As another example, suppose that we also add the
nationality of each author. Then we obtain a new schema
as shown in Figure 3.(b). We can now ask the following
analytic query:

Q4: “total number of hits by author’s nationality”.

This time, during evaluation, the grouping of URIs
will be done according to a function derived from a and
n using functional composition. The composition of a
and n, denoted n ◦ a, associates each URI with the corre-
sponding author’s nationality. During evaluation of Q4,
the function n ◦ a will group together all URIs having the
same author nationality, and the answer will associate
each author nationality with a total number of hits. In
other words, compared to query Q1, the only change is
that the function t of Q1 is now replaced by the function
n ◦ a; other than that, the evaluation of Q4 proceeds in
exactly the same way as for Q1. Therefore Q4 is specified
as follows:

Q4 = 〈n ◦ a, h, sum〉. (7)

And its answer will be a function from Nationality
to TotHits:

AnsQ4 : Nationality → TotHits, (8)

such that AnsQ4(x) is the total number of hits, for
each nationality x.

As a final example, we can ask the following analytic
query over the schema of Figure 3(b):

Q5: “total number of hits by topic-nationality pair”.

Again, all we have to do in order to evaluate this query
is to replace the function t of Q1 by the function c∧(n◦a).
Therefore Q5 is specified as follows:

Q5 = 〈c ∧ (n ◦ a), h, sum〉. (9)

And its answer will be a function from topic-
nationality pairs to integers:

AnsQ5 : Topic×Nationality → TotHits, (10)
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such that AnsQ5((x, y)) is the total number of hits,
for each topic-nationality pair (x, y).

Notice that, in all the above examples of queries (Q1

to Q5), we can also restrict any of the functions involved to
some desirable subset of its domain of definition, to form
new analytic queries. In fact, the set of all operations on
functions that we shall use to derive new functions from
old constitutes what we shall call the functional algebra
of a schema. These operations are quite elementary: com-
position, pairing, restriction and projection. Yet, as we
shall see, they allow us to associate each schema with a
powerful language of analytic queries.

The Formal Model
As we mentioned earlier, we view the schema as a set

of function signatures and a database as a set of (finite)
extensions, one for each function signature. In this sec-
tion, we keep with this view and we define a language in
which analytic queries can be formulated over the schema
and evaluated over the database. We shall illustrate the
concepts introduced by the following example that we
shall use as our running example for the rest of the paper.

Running example
A big catering company delivers various products to
retail stores over the whole country. The following data
appears on each delivery invoice:

• the invoice number

• the date of delivery

• the store identifier

• a type of product (e.g. ”Coca Light”)

• and the number of items delivered (from that type of
product)

These data are recorded in the database of the cater-
ing company, and accumulated over long periods of time
with the purpose of analyzing them in order to improve
the company’s delivery service. More specifically, the
analyses performed are:

• by date and by month

• by store, by city and by region

• by supplier and by product category

• by combinations thereof, such as by date and store,
or by month and region etc.

We assume that a supplier might supply products in
two or more categories and that a product category might
be supplied by two or more suppliers.
The schema concerning this application is shown in Fig-
ure 4, where O stands for “invoice number”, that is O
represents the set of all invoice numbers accumulated so
far. We shall use this schema in order to introduce the
basic concepts of the query language.

In our explanations we shall use the notation f : X →
Y to denote an edge with label f , source X and target Y ;
similarly, we shall talk of the source and the target of a
path.

Figure 4: The functional schema S of the running exam-
ple.

Functional database

Given a schema S, a database over S is a function δ
that associates :

• each node N of S with a finite subset δ(N) of
dom(N), and

• each arrow f : X → Y of S with a total function
δ(f) : δ(X) → δ(Y ).

In order to simplify notation, we shall omit the
symbol δ and we shall use the expression ”function
f : X → Y ” to mean ”function δ(f) : δ(X) → δ(Y )”.
We note that the fact that all functions in the database
are total imposes the following constraint:

referential constraint : for every pair of functions of
the form f : X → Y and g : Y → Z we must have
range(f) ⊆ def(g).

Roughly speaking, the schema is seen as a set of
function signatures and the database stores their exten-
sions.

Several remarks are in order here. First, in order
to simplify the presentation, we adopt the following
abuse of notation: we use an arrow label such as f to
denote both the arrow f and the function δ(f) assigned
to f by δ. Similarly, we use an attribute label such as X
to denote both the attribute X and the finite set δ(X)
assigned to X by δ. This should create no confusion, as
more often than not the schema will resolve ambiguity.
Second, the definition of a database requires that all
functions assigned by the database δ to the arrows of S
be total functions. This restriction could be relaxed, by
endowing each attribute domain with a bottom element
⊥ (meaning “undefined”) and requiring that for any
function f : X → Y we have (a) f(⊥) = ⊥, that is
“bottom can only map to bottom”, and (b) if x 6∈ def(f)
then f(x) = ⊥. Under these assumptions, the functions
can again be considered as total functions. However,
the resulting theory would be more involved and would
certainly obscure some of the important points that we
would like to bring forward concerning analytic queries.
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The Functional Algebra

In order to combine the function extensions in the
database of a schema, we need a set of operations on
functions that we call the functional algebra. The func-
tional algebra comprises four operations. Each operation
takes as input one or two functions and returns a new
function as a result:

Composition : takes as input two functions, f
and g, such that range(f) ⊆ def(g), and returns a
function g ◦ f : def(f) → range(g) defined by

g ◦ f(x) = g(f(x)), forallx ∈ def(f). (11)

Pairing : takes as input two functions, f and g, such that
def(f) = def(g), and returns a function f ∧ g : def(f) →
range(f)× range(g) defined by

f ∧ g(x) = 〈f(x), g(x)〉, (12)

for all x ∈ def(f).

Projection : it’s the usual operation on the cartesian
product of sets.

Restriction : takes as input a function f : X → Y and
a set E ⊆ def(f), and returns a function f/E : E → Y
defined by

f/E(x) = f(x), (13)

for all x ∈ E.

The following proposition states an important prop-
erty of the functional algebra.

Proposition 1
For every pair of functions f : X → Y and g : X → Z, we
have

f = πY ◦ (f ∧ g) and g = πZ ◦ (f ∧ g).

Nota : πY () and πZ() are the projection functions
over Y × Z, defined by: πY (y, z) = y and πZ(y, z) = z,
for all pairs (y, z) ∈ Y × Z.

Path expressions
Given a schema S, a path expression over S is a well
formed expression whose operands are arrows from S
and whose operations are those of the functional algebra.
Every path expression e is associated with a source and a
target, defined recursively, based on the notions of source
and target of the arrows in S. For example, if e1 = g2 ◦g1

then source(e1) = Store and target(e1) = Region;
similarly, if e2 = (g1 ◦ g) ∧ f then source(e2) = O and
target(e2) = City × Date (for a formal definition of a
path expression see [?]).

Given a path expression e and a database δ over S,
the evaluation of e with respect to δ is done in two steps,
as follows:

1. replace each arrow f appearing in e by the function
δ(f) that the database δ associates with f

2. perform the operations of the functional algebra as
indicated in e.

Note that the result of the evaluation is always a
function; therefore we have a closure property as in the
case of the relational algebra.

A particular kind of path expression will be of in-
terest, namely the one that corresponds to projection
over the empty set. To understand the nature of this
projection, recall that, given a Cartesian product of k
sets, say A1 × ... × Ak, there are as many projection
functions as there are subsets of the set A1, ..., Ak. The
projection function that corresponds to the empty set is
the one that we call the empty projection function, hence
we denote it by π∅. Clearly, following the definition
of a projection function, the function π∅ is a constant
function as it associates every tuple of A1 × ...×Ak with
the empty tuple; we shall denote the empty tuple by λ.
Therefore, π∅(t) = {λ}, for all t ∈ A1× ...×Ak (assuming
there is at least one such t). In view of our previous
discussion, we introduce a particular path expression, the
empty path expression, which will always be associated
with the empty projection function, in any database δ.
We denote the empty path expression by εX , where X
denotes the source of the empty path expression (its
target being always interpreted as {λ}). The empty path
expression with source O will be simply denoted by ε.

OLAP query

Given a schema S, an OLAP query over S is a triple

Q = 〈c, m, op〉, (14)

where:

- c and m are path expressions over S such that
source(c) = source(m) and
- op is an operation among those authorized over the tar-
get of m.
For example, in the schema S of our running example
(Figure 4) :

Q = (g ∧ (h2 ◦ h), n, sum) (15)

is an OLAP query over S, with
- c = g ∧ (h2 ◦ h), m = n and op = sum and we have
- source(g ∧ (h2 ◦ h)) = source(n) = O, and sum is
an authorized operation over the target of n (which is
Number, with dom(Number) = Int).

Given an OLAP query Q = 〈c, m, op〉, we call c the
classifier, m the measure and op the operation (or the
aggregator) of Q. Moreover, we call the target of c the
classification level (or the grouping level), and the target
of m the measurement level. Note that the classification
level, or the measurement level, might be composed
of other simpler levels, as is the case in our previous
example where target(c) = Store× Supplier.

Evaluation of an OLAP query

Given an OLAP query Q = 〈c, m, op〉 and a database
δ over S, the answer to Q with respect to δ is a function
ansQ,δ : range(c) → target(op) computed in two steps,
as follows:

1. Evaluate the path expressions c and m with respect
to δ.
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{This step returns two functions that we also denote
as c and m. Let’s call X the common domain of
definition of the functions c and m, that is X =
source(c) = source(m) ; and let Y = {y1, ..., yn}
be the set of values of c, that is Y = range(c) =
{y1, ..., yn}}

2. For each value y ∈ range(c) do
begin

(a) Grouping
compute the inverse c−1(y)
{let c−1(y) = {x1, ..., xr}}

(b) Measurement
for each x ∈ c−1(y) do compute m(x)
{this step returns a tuple
t(y) = 〈m(x1), ..., m(xr)〉}

(c) Aggregation
apply the operation op to the tuple t(y)
{call the result Res(y), that is Res(y) =
op(t(y))}

(d) Answer
define ansQ,δ, (y) = Res(y)

end

We note that the variable Res used in the evaluation
algorithm (step 2.(c)) does not appear as a node of the
schema; it is actually an auxiliary variable defined by the
user in order to receive the results of the computation.
Moreover, as δ is understood (it’s always the current
database), we shall drop δ from the notation of the
answer, and we shall use the symbol ansQ or ans(Q).

A particular form of OLAP query is the following
:

Q = 〈ε, m, op〉. (16)

During its evaluation, step 1 of the evaluation algo-
rithm returns a constant function with λ as its only value;
step 2.(a) (grouping) returns just one group c−1(λ) =
{X}; step 2.(b) (measurement) returns the images under
m of all elements of X; step 2.(c) (aggregation) applies the
operation on all images to obtain a single result Res(λ);
and step 2.(d) (answer) associates every element of X to
Res(λ). Therefore, the answer ansQ,δ, is itself a constant
function.
As an example, the query

Q = 〈ε, n, Sum〉 (17)

will return the total number of items delivered (i.e.
the total number of items present in the database).

When the target of the classifier c is a Cartesian
product, say A1×, ...,×Ak, then the representation of
the answer ansQ,δ : range(c) → target(op) by cross
tabulation is usually called a “data cube”. Recall that
two other representations of the answer are possible,
by graph and by binary table, and several tools for
”visualizing” and manipulating the answer are available
today.

A final but important remark on the definition and
evaluation of an OLAP query is in order here. As
the classifier and the measure of an OLAP query
Q = 〈c, m, op〉 both are path expressions, if we inter-
change them we obtain a different but valid OLAP query,
possibly with a different operation op. For example,
consider the query Q = 〈g, n, sum〉, which asks for
the total number of items delivered by store. If we
interchange g and n and use count instead of sum then
we obtain the query Q′ = 〈n, g, count〉, which asks for the
number of stores by number of units delivered (i.e. given
a number of items, how many stores had this number
delivered to them). Note that, in the query Q′, we used
“count” as an operation, since this is the only operation
allowed on the target of the measure g (which is a set of
store references).

Mapping to the relational model
The schema model that we presented in the previous

section can certainly be used as is to model an application
in order to perform data analysis. Moreover, a schema
database can be implemented using available open source
DBMS technology. For example, MonetDB [?] seems to
fit quite well for this purpose as its basic structure is the
binary table. However, given that the vast majority of
transactional databases and data warehouses today are
based on the relational model, it is important to have a
way of mapping the functional model to the relational
model. In this section we present a method for mapping
the schema model to the relational model.
Our method uses three mappings as follows :

• Mapping a schema to a relational star schema

• Mapping a path expression to a relational expression

• Mapping an OLAP query to an SQL query

Mapping a schema to a relational star schema
Given a functional schema S, there are several ways to
map it into a relational schema rel(S). The simplest way
is to represent each arrow of S by a binary table, and de-
fine the set of all binary tables to be the schema rel(S).
However, the evaluation of OLAP queries will then re-
quire the frequent use of joins. A more efficient mapping
is the one that produces a so called star schema. To sim-
plify the presentation we shall assume that the functional
schema is a tree (as in our running example). Under this
assumption, here are the tables and constraints in the cor-
responding star schema:
Tables :

• Define a table FT containing the root of S and all
its immediate successors as its attributes (these im-
mediate successors are the base attributes). Call this
table the fact table.

• For each base attribute B, if there is at least one suc-
cessor of B, define a table BT containing B and all its
descendants as attributes. Call this table the B-table.

Constraints :
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1. In each of the tables defined above, any arrow con-
necting two of its attributes becomes a functional de-
pendency of that table (hence it might be that some
tables are not in Boyce-Codd Normal Form).

2. There is a foreign key dependency from the fact table
to every other table BT : πB(FT ) ⊆ πB(BT ).

Example :
The star schema for our running example is the following
(underlined attributes form the key of each table) :

FT (O, Date, Store, Product, Num)
DateT (Date, Month),
— with πDate(FT ) ⊆ πDate(DateT )
StoreT (Store, City, Region),
— with πStore(FT ) ⊆ πStore(StoreT )
ProductT (Product, Category, Supplier),
— with πProduct(FT ) ⊆ πProduct(ProductT )

Note that the table StoreT is not in Boyce-Codd
Normal Form, and that the table DateT is not necessary
to store (as the month can be determined from the date).

Mapping a path expression to a relational
expression
The following algorithm maps a path expression e over
S to a relational expression rel(e) over the star schema
rel(S):
if the target of e contains only base attributes
then rel(e) = πtarget(e)(FT )
else rel(e) = πtarget(e)(FT ./ T1 ./ ... ./ Tk),
where T1, ..., Tk are all the tables each of which contains
at least one non base attribute appearing either in the
target of e, or in the definition of a restriction.

Example:
The path expressions :

e1 = g ∧ (h2 ◦ h) (18)

and

e2 = n (19)

map to the following relational expressions :

rel(e1) = πStore,Sup(FT ./ ProductT ) (20)

and

rel(e2) = πNum(FT ). (21)

Mapping an OLAP query to an SQL query
To map an OLAP query Q = 〈c, m, op〉 to a relational
query rel(Q) it is sufficient to replace the path expressions
c and m by rel(c) and rel(m), to obtain

rel(Q) = 〈rel(c), rel(m), op〉. (22)

The query rel(Q) is then evaluated using a “group
by” instruction. This is possible if one observes
that the “group by” instruction of SQL simply computes
inverses of a special kind of functions, namely projections.

Example :

Q = 〈g ∧ (h2 ◦ h), n, sum〉 (23)

maps to

rel(Q) = 〈πStore,Sup(FT ./ ProductT ),

πNum(FT ), sum〉 (24)

and rel(Q) is evaluated as follows:

select Store, Sup, sum(Num) as TotNum
from join(FT, ProductT )
group by (Store, Sup)

The previous SQL instruction computes the inverse
of the projection function πStore,Sup thus creating a par-
tition of the table join(FT, ProductT ) into sub-tables;
then in each sub-table T , it applies the function n to each
tuple of the sub-table to find the corresponding number;
and finally sums up the numbers found to return the
total number for each sub-table.

Result Visualization
Interactive visualization is a powerful technique to

slice a data set from various viewpoints using queries and
to find interesting trends from visual representations of
query results. To perform interactive OLAP visualiza-
tion, we need to construct many OLAP queries and dy-
namically map query results to appropriate visual repre-
sentations. For non-professional end users these tasks are
not so easy.

In our prototype, we follow a template-based approach
in the user interface to improve user’s experience with in-
teractive analysis tasks. By interacting with visual com-
ponents, called visualization templates, one can easily de-
fine both queries and visual representations of query re-
sults, simultaneously.

Moreover, our prototype also supports what we call
result exploration that is the possibility of visualizing the
query result at aggregation levels different than those
specified in the query; or the possibility of creating a para-
metric representation of the result for better visualization.

Visualization template

Broadly speaking, a visualization template is an in-
teractive component for defining a visual representation
of a designated (data) function. Figure 6 illustrates a
concept of visualization template. Visualization tem-
plate Tbar defines a bar chart representation of a function
fbar : xcoord → length. The function fbar is a variable
and we can bind it to a designated function in a data
schema or to the answer of a query (which is also a func-
tion).

Our prototype implements the following user inter-
action and automating mechanism to define a function
binding. To bind fbar, our prototype requires attribute
mappings from attributes in the data schema to the do-
main xcoord and the range length of fbar. For this
purpose, Tbar has visible slots [xcoord] and [length]

on its surface to map attributes to xcoord and length.
We can specify attribute mappings just by dragging at-
tributes from the visualized data schema and dropping
them into slots. When Tbar accepts attribute mappings
{A 7→ xcoord, B 7→ length} with attributes A and B in
data schema S, Tbar automatically binds fbar to a func-
tion retrieved by the following rule.
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Drag-and-drop

Visualized schemaTemplate library Visualization of query results

Slot[xcoord]
Figure 5: The prototype user interface

fbar; xcoord → lengthSlot [xcoord]Slot [le
ngth]

Template: Tbar

Q: City → sum(sales)Xcoord: Citylength: 
sum(sa
les)

Bar chart of total sales by CityAttribute mapping
Drag-and-drop
Slot [xcoord]

Figure 6: The concept of visual template

• If a schema function (or a derived function) f : A →
B exists in S, Tbar binds fbar to f . (If more than one
function of the form A → B exist in S, the system
shows a dialog for choosing one of them.)

• If no function of the form of A → B exists in S, Tbar

binds fbar to a query Q〈pA, pB , op〉 : A → op(B) such
that O is the root of S, pA : O → A and pB : O → B
are path expressions over S, and op is an operation
preset by users.

Our prototype provides a visualization template li-
brary containing a set of basic chart representations (bar
chart, pie chart, etc.) and layouts of multiple charts (e.g.,
grid layout). We can interactively define both, queries
and query result representations, by just choosing tem-
plates from the library and designing attribute mappings
through drag-and-drop manipulation.

Changing the aggregation level of the result

The user interaction and the automating mechanism
described above allow us to quickly change aggregation
levels of the result. Consider for example the query “Q:
Totals by Month”. Figure 5 shows the result of this query
in the form of a bar chart. The user can explore this result
further by asking the system to produce a visualization
at levels different than those specified in the query, for
example, by Date, by Product ; or by Category; or by
City, and so on, just by dragging an attribute for classifier
and dropping it into the slot associated with the X axis
of the bar chart.

Parametric Visualization

Product Category

City City City

Drink Food Non-consumable

Figure 7: The example of parametric visualization

When visualizing a result involving two or more ag-
gregation levels, it is often convenient to make a series

of small plots one for every category item. For exam-
ple, consider a query whose result involves two dimen-
sions, product category and city. We can make a series
of plots showing totals by cities for each product cate-
gory (as shown in Figure 7). This series of plots might
convey easily information difficult to grasp from a single
plot showing totals by product category and city. The
underlying idea here is that, as the answer to Q has the
signature Category × City → Totals, we can produce
an equivalent representation of the answer using the well
known “curry operation”: (Category×City → Totals) ≡
(Category → (City → Totals)), suggesting that we can
use Category as a “parameter” for producing as many
small plots City → Totals, as there are product cate-
gories. Alternatively, one can use City as a parameter
for producing as many small plots Category → Totals
as there are cities. This kind of exploration is basically
a repetition of a plot across a grid, where each plot has
one variable which changes. In other words, it is a grid
of multiple smaller plots driven around in a loop execut-
ing it once for every category item. Clearly, paramet-
ric visualization is not bound to a specific visualization
mode: every basic visualization mode can be parameter-
ized this way, whether it is scatter bar charts, heat maps,
line charts, whichever.

fgrid: row×column → cell

Slot [column]
Slot [ro
w]

Template: Tgrid
Slot [cell] Slot [cell]

Drag-anddrop
Template: Tbarfbar: xcoord → length

fgridOfBars: row×column → (xcoord → length)

Grid layout of bar charts

Figure 8: The concept of parametric visualization

Practically, parametric visualization is performed by
a combination of a chart template and a grid layout tem-
plate. Figure 8 shows an outline of grid layout tem-
plate Tgrid. Tgrid defines a grid layout of a visual rep-
resentation (called cell) to represent the function fgrid :
row × column → cell. The interesting feature of Tgrid is
that we can map a function instead of an attribute to the
range cell of fgrid. Tgrid has a special slot [cell] that
accepts any kind of visualization template. By dropping a
template into a slot [cell], we can define a grid layout of
the dropped visual representation, and map the function
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belonging to the dropped template to cell. For instance,
if we drop Tbar with function fbar : xcoord → length into
[cell], Tgrid produces a grid layout of bar charts to rep-
resent function fgridOfBars : row× column → (xcoord →
length).

Parametric visualization provides yet another, impor-
tant dimension of result exploration as the eye can grasp
more detailed information when visualizing a set of sim-
ple plots, in addition to the information obtained from a
single, higher dimensional (thus more complex) plot.

Concluding Remarks
We have seen a functional model for data analysis

and an interactive interface (based on that model) that
supports users in the following tasks:

• formulating an analytic query visually, in the form of
a click stream;

• visualizing the query result in a user selected mode
(histogram, pie, etc.);

• exploring the visualized result at different aggrega-
tion levels or for different parameter values selected
by the user;

The prominent features of our model are that it is simple
to grasp and easily amenable to visual interaction.
We are currently investigating the use of our model in an
important application area, namely log data analysis in
the context of the European project ”ASSETS: Advanced
Search Services and Enhanced Technological Solutions for
the European Digital Library”.

The basic idea is to import log data in the form of
a relational table with functional dependencies, and con-
struct a functional schema in which the base attributes
are those of the table, the analysis indicators (i.e. the
non-base attributes) are provided by the analyst, and the
edges are generated by the functional dependencies. We
note that log data analysis is a useful activity in such ar-
eas as e-learning, collaborative work or digital libraries, as
it provides valuable support to knowledge discovery from
past user activity. Future work will address two main
issues:

1. Combining change of aggregation level and paramet-
ric visualization. For example, one can visualize to-
tals by product, at different aggregation levels, using
different visualization modes for each store.

2. The application of our model to XML data ware-
houses for analyzing large collections of XML docu-
ments.

References
[1] IBM Cognos 8 BI Analysis http://www.ibm.com/software

/data/cognos/products/cognos-8-business intelleigence/
analysis.htm

[2] Mondrian. http://mondrian.pentaho.org/.

[3] Oracle BI Discoverer. http://www.oracle.com/technology/
products/discoverer/.

[4] P.A. Boncz and M. L. Kersten. MIL Primitives for Query-
ing a Fragmented World. The VLDB Journal, 8(2): 101-
119, Octorber 1999.

[5] N. Spyratos. A functional model for data analysis. In Flex-
ible Query Answering Systems, 7th International Confer-
ence, FQAS 2006, Proceedings, Milan, Italy, June 7-10
2006, Proceedings, pages 51-64. Springer, 2006.

The 9th International Conference on Electronic Business, Macau, November 30 - December 4, 2009


	A Functional Model for Data Analysis and Result Visualization
	tmp.1583784053.pdf.oqm9U

