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ABSTRACT 

A Bayesian network is a graphical model for representing probabilistic relationships among a set of variables. It is an 
important model for business analysis. Bayesian network learning methods have been applied to business analysis 
where data privacy is not considered. However, how to learn a Bayesian network over private data presents a much 
greater challenge. In this paper, we develop an approach to tackle the problem of Bayesian network induction on private 
data which may contain missing values. The basic idea of our proposed approach is that we combine randomization 
technique with Expectation Maximization (EM) algorithm. The purpose of using randomization is to disguise the raw 
data. EM algorithm is applied for missing values in the private data set. We also present a method to conduct Bayesian 
network construction, which is one of data mining computations, from the disguised data.  
 
Keywords: Bayesian network, randomization, EM algorithm, privacy. 
 

1. INTRODUCTION 
 
A Bayesian network is a high-level representation of a 
probability distribution over a set of variables that are 
used for constructing a model of the problem domain. It 
has been widely used in sales decision making, 
marketing systems, risk analysis, cost benefit factor 
inference in E-services, and other business applications. 
As Bill Gates mentioned, in Los Angeles Times on 
October 28, 1996, that Microsoft's competitive 
advantage was its expertise in Bayesian network. The 
Bayesian framework offers many advantages over 
alternative modeling approaches. A Bayesian network 
can be used to compute the predictive distribution on 
effects of possible actions since it is a model of the 
problem domain probability distribution. For instance, it 
can be used for the optimal procedure of making 
decision in risk analysis. Bayesian network model has 
been also found to be very robust to tolerate small 
alterations. Thus, it can be used for sales marketing 
systems since these systems need to be able to follow 
market changes rapidly without making much 
modification on the model. In addition, expert domain 
knowledge can be coded as prior distribution in 
Bayesian modeling. 
 
Over the last decade, the Bayesian network has been 
widely utilized and various techniques have been 
developed to learn Bayesian networks from data. 
Although the techniques that have been developed are 
effective, new techniques dealing with Bayesian 
network induction over private data are required. In 
other words, we need methods to learn a Bayesian 
network with data privacy preserved. In particular, we 
try to solve the following type of problem: To improve 
their services, business agents want to obtain certain 
information about their customers. For instance, the 
information of interest can be the probability that a 
customer buys butter given that she bought bread. In 

order to collect the information from its customers, a 
business agent sends out a survey containing a set of 
questions. Customers are expected to answer those 
questions and send their answers back. However, 
because the survey contains questions regarding private 
information, not every user feels comfortable to disclose 
her answers to those questions. To protect customers’ 
privacy, they need somehow mask their answers before 
sending them back to the agent. We observe that 
randomization can be used to hide customers' answers. 
This is because on one hand the raw data values of the 
original customer's information can be disguised via 
randomization, on the other hand, their probability 
distribution can be approximately estimated from the 
disguised data by agents for business analysis. In 
practice, even though randomization protection 
techniques are utilized, some customers still do not 
provide their data. Therefore, the collected data usually 
contain missing values. The challenge is how to conduct 
data mining from the disguised data with missing 
values?  
 
To address this challenge, we propose to combine the 
proposed Multi-Group Randomization technique with 
the Expectation Maximization (EM) algorithm [2]. The 
basic idea of multi-group randomization technique is to 
partition attributes of a data set into several groups and 
randomize data in each group independently so that 
business agents can't tell with probabilities better than a 
pre-defended threshold whether the data from a 
customer contain truthful information or false 
information. Although information from each individual 
customer is scrambled, if the number of customers is 
significantly large, the aggregate information of these 
customers can be estimated with decent accuracy. Such 
property is useful for building a Bayesian network, 
since it is based on aggregate values of a data set, rather 
than individual data items. The EM algorithm is a 
general iterative algorithm for parameter estimation by 
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maximum likelihood when some of the random 
variables involved are not completely observed. It 
formalizes an intuitive idea for obtaining parameter 
estimates when some of the data are missing. The term 
EM was introduced in [2] where proof of general results 
about the behavior of the algorithm was given as well as 
a large number of applications was introduced. 
 
The rest of the paper is organized as the follows:  We 
describe the background of Bayesian network in Section 
2. In Section 3, we briefly describe how multi-group 
randomized response technique works. Then in section 
4, we describe the EM algorithm. We give an algorithm 
to build a Bayesian network on disguised data with 
missing values in Section 5. In Section 6, we discuss 
related work. We give our conclusion in Section 7. 

 
2. BACKGROUND OF BAYESIAN NETWORKS 

 
A Bayesian network [10] is a representation of 
probabilistic conditional independence. The network 
model is a directed acyclic graph (DAC) in which a 
node represents a random variable and a directed link or 
an arrow denotes the conditional probability of a child 
node given its parent node with the arrow pointing from 
the parent to the child. Suppose a network 1BN have n 
nodes. Associated with each node (e.g., 

iX , 

],...,1[ ni ∈ ) is a conditional probability table (CPT) 
that shows the probabilistic dependency relationships 
between iX  and its parent nodes, )( iXParent , i.e., 

),,)(|( 1BNDpaXParentxXP iiii == , where D is 

the dataset, 1BN  is the network model, and ix  and 

ipa  are values of iX  and )( iXParent , 
respectively. An entry of the CPT is a network 
parameter.  
 
A Bayesian network may be inductively learnt from a 
data set [6]. As discussed in [6], inductive Bayesian 
learning involves the selection of network models and 
the estimation of parameters (e.g., the CPTs). Given a 
complete data set D, learning of the best Bayesian 
network model is carried out by computing the posterior 
probability )|( 1 DBNP for different 1BN , and 
selecting the one with the largest value. From the Bayes 
rule, )|( 1 DBNP is determined by the likelihood 

)|( 1BNDP , the prior )( 1BNP , and the data probability 
D:  

)(
)()|(

)|( 11
1 DP

BNPBNDP
DBNP

⋅
=  

 
Given the prior )( 1BNP , the model selection is 

determined by )|( 1BNDP . Assume the best model is 
denoted as BN. The network parameters are estimated 
with the data of D and the prior probability distribution 
of parameters. In this paper, we assume the Bayesian 

network model is known, and will mainly consider the 
induction of parameters or the conditional probability 
tables. Suppose the uniform prior is used. (See [6] for 
different prior probabilities.) The CPT entry associated 
with the values of ii xX = and 

ii paXParent =)(  is as 
follows: 
 

iii

iiii

iiii

XpaXParent
paXParentxX

BNDpaXParentxXP

+=
+==

=

==

))((#
1))(,(#

),,)(|( 1

  EQ.(1) 

for a complete data set D (i.e., D without missing value), 
where #(.) stands for the total number of the records that 
satisfies conditions in (.), and iX denotes the number 

of values that iX has. Divide both the numerator and 
the denominator of EQ.(1) by the total number of data 
records (|D|) to obtain 
  

||/||))((
||/1))(,(

||/||/))((#

/1/))(,(#

DXpaXParentP
DpaXParentxXP

DXDpaXParent

DDpaXParentxX

iii

iiii

iii

iiii

+=
+==

=

+=

+==

 

In this paper, we will use )( jj xXP = to denote the 

probability measure obtained from the frequency count 

DxX jj /)(# = .  

 
3. MULTI-GROUP RANDOMIZED RESPONSE 

TECHNIQUES 
 
Randomized Response techniques were firstly 
introduced in [11] as a technique to solve the following 
survey problem: to estimate the percentage of people in 
a population that has attribute A, queries are sent to a 
group of people. Since the attribute A is related to some 
confidential aspects of human life, respondents may 
decide not to reply at all or to reply with incorrect 
answers. To enhance the level of cooperation, instead of 
asking each respondent whether she has attribute A, the 
interviewer asks each respondent two related questions, 
the answers to which are opposite to each other [11]. 
For example, the questions could be like the following. 
If the statement is correct, the respondent answers “yes”; 
otherwise, she answers ``no''. 

1. I have the sensitive attribute A. 
2. I do not have the sensitive attribute A. 

 
Respondents use a randomizing device to decide which 
question to answer, without letting the interviewer know 
which question is answered. The randomizing device is 
designed in such a way that the probability of choosing 
the first question isθ , and the probability of choosing 
the second question is θ−1 . Although the interviewer 
learns the responses (e.g., ``yes" or ``no''), he does not 
know which question was answered by the respondents. 
Thus the respondents' privacy is preserved. Since the 
interviewer's interest is to get the answer to the first 
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question, and the answer to the second question is 
exactly the opposite to the answer for the first one, if the 
respondent chooses to answer the first question, we say 
that she is telling the truth; if the respondent chooses to 
answer the second question, we say that she is telling a 
lie. To estimate the percentage of people who has the 
attribute A, we have 
 

)1()()()(

)1()()()(
*

*

θθ

θθ

−⋅=+⋅===

−⋅=+⋅===

yesAPnoAPnoAP

noAPyesAPyesAP
 

 
where )(* yesAP = is the proportion of the ``yes''  

responses obtained from the survey data. )(* noAP = is 
the proportion of the “no” responses obtained from the 
survey data. P(A = yes) is the estimated proportion of 
the “yes” responses to the sensitive questions. P(A=no) 
is the estimated proportion of the “no” responses to the 
sensitive questions. Getting P(A = yes) and P(A = no) is 
the goal of the survey. By solving the above equations, 
we can get P(A = yes) and P(A = no) if 5.0≠θ .  
 
In this section, we develop a multi-group randomized 
response technique to deal with the problem of Bayesian 
network construction where multiple attributes are 
normally involved.  
 
3.1 Notations 
 
In this paper, we assume data are binary. Suppose there 
are N attributes ( NAA ,,1 L ) in a data set. Let L 
represent any logical expression based on those 
attributes (e.g., )0()1( 21 =∧== AAL ; let 

_

L  denote the 
logical expression that reverses the 1's in L to 0's and 0's 

to 1's; we call 
_

L  the opposite of L in value 
assignments. For example, for the L in the previous 

example, )10( 21

_

=∧== AAL . Let )(* LP be the 
proportion of the records in the whole disguised data set 
that satisfy L = true. Let P(L) be the proportion of the 
records in the whole undisguised data set that satisfy L 
= true (the undisguised data set contains the true data, 
but it does not exist). )(* LP can be observed directly 
from the disguised data, but P(L), the actual proportion 
that we are interested in, cannot be observed from the 
disguised data because the undisguised data set is not 
available to anybody; we have to estimate P(L). Our 
goal is to find a way to estimate P(L) from )(* LP . In 
our multi-group scheme, we also divide each expression 
L into multiple sub-expressions.  For example, in a 
m-group scheme, we write mLLLLL L321= , where 

iL contains only the attributes in the group i. 
 
3.2 One-Group Scheme 
 
In the one-group scheme, all the attributes are put in the 
same group, and all the attributes are either reversed 

together or keeping the same values. In other words, 
when sending the private data to the central database, 
users either tell the truth about all their answers to the 
sensitive questions or tell the lie about all their answers. 
The probability for the first event is θ , and the 
probability for the second event is θ−1 . The general 
model for the one-group scheme is described in the 
following: 
 

)1()()()(

)1()()()(
__

*

_
*

θθ

θθ

−⋅+⋅=

−⋅+⋅=

LPLPLP

LPLPLP  

 
L denotes any logic expression among the attributes, for 
instance, L could be )0,0,1,0( 4321 ==== AAAA  and 
represents the case when attribute 1 is 0, attribute 2 is 1, 
attribute 3 is 0, and attribute 4 is 0. The above model 
can be simplified. Let 1M denote the coefficients 

matrix of the above equations, and let θ=p and 

),1( θ−=q then 
 









=












)1(
)0(

)1(

)0(
1*

*

BarP
BarP

M
BarP

BarP
    Eq. (3) 

Where 0Bar = L, 1Bar =
_

L , and 
 









=

pq
qp

M 1
 

 
3.3 Two-Group Scheme 
 
In the one-group scheme, if the interviewer somehow 
knows whether the respondents tell a truth or a lie for 
one attribute, she can immediately obtain all the true 
values for all other attributes of a respondent's response. 
To improve the privacy level, data providers divide all 
the attributes into two groups (All the data providers 
should group the attributes in the same way, e.g., if one 
user lets attribute 1A and 2A be in group 1, then other 

users also let attribute 1A and 2A be in group 1). They 
then apply the randomized response techniques for each 
group independently. For example, the users can tell the 
truth for one group while telling the lie for the other 
group. With this scheme, even if the interviewers know 
information about one group, they will not be able to 
derive the information for the other group because they 
are disguised independently.  
 
To show how to estimate )( 21LLP , we look at all the 
contributions to )( 21

* LLP . There are four parts that 

contribute to )( 21
* LLP : 

1. )( 21LLP : users tell the truth about all the answers for 

both groups; the probability for this event is 2θ .  
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2. )(
_

21 LLP : users tell the truth about all the answers for 
group 1 and tell the lie about all the answers for group 2; 
the probability for this event is )1( θθ −⋅ .  

3. )( 2

_

1 LLP : users tell the lie about all the answers for 
group 1 and tell the truth about all the answers for group 
2; the probability for this event is )1( θθ −⋅ . 

4. )(
_

2

_

1 LLP : users tell the lie about all the answers for 
both groups; the probability of this event is 2)1( θ− . 
 
We then have the following equation: 

2
_

2

_

12

_

1

_

21
2

2121
*

)1()()1()(

)1()()()(

θθθ

θθθ

−⋅+−⋅

+−⋅+⋅=

LLPLLP

LLPLLPLLP  

There are four unknown variables in the above equation 

))(),(),(),((
_

2

_

12

_

1

_

2121 LLPLLPLLPLLP . To solve the 
above equation, we need three more equations. We can 
derive them using the similar method. The final 
equations are described in the following: 
 
















⋅=

















)2(
)1(
)0(

)2(

)1(

)0(

2

*

*

*

BarP
BarP
BarP

M

BarP

BarP

BarP

 

where 210 LLBar = , 
2

_

1

_

211 LLLLBar += , 
_

2

_

12 LLBar = , 

2M  is the coefficients matrix, and let θ=p and 
θ−= 1q , then, 

















+=
22

22

22

2 22

ppqq

pqqppq

qpqp

M  

By solving the above equations, we can get 
)0()( 21 BarPLLP =  

 
 
3.5 Multi-Group Scheme 
 
Similar techniques can be employed to extend the above 
schemes to three-group scheme, four-group scheme, and 
so on. In the following, we will give a general formula 
for the m-group scheme, where we apply randomized 
response techniques for each group independently. 
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Where  

,0 321 mLLLLBar L=
_

212

_

11 mm LLLLLLBar LLL ++=

,… ,
__

3

_

2

_

1 mLLLLmBar L=  and mM is the 

coefficients matrix. Let θ=p and θ−= 1q , then  
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The coefficiency matrix is different for different group 
scheme. The values of ija can be derived as we did for 

two-group scheme. After we derive the coefficiency 
matrix, we can solve the above equation and obtain 

)0()( 21 BarPEEEP n =L since ),0(* BarP )1(* BarP , … , 

),(* nBarP can be obtained from the randomized data. 
 

4. EM ALGORITHM 
 
The Expectation Maximization (EM) algorithm [2, 8] is 
a general algorithm for maximum likelihood estimation 
where the data are incomplete or the likelihood function 
involves hidden variables. The EM algorithm starts with 
randomly assigned values to all the parameters to be 
estimated. It then iteratively alternates between two 
steps, called the expectation step (i.e., the E-step) and 
the maximization step (i.e., the M-step), respectively. In 
the E-step, it computes the expected likelihood for the 
complete data (Q-function) where the expectation is 
taken with regards to the computed conditional 
distribution of the hidden variables given the current 
settings of parameters and our observed data. In the 
M-step, it re-estimates all the parameters by maximizing 
the Q-function. Once we have a new generation of 
parameter values, we can repeat the E-step and M-step. 
The above process continues until the likelihood 
converges.  
 
Assume that the joint probability for hidden data Y and 
observed data Z is parameterized using µ , 
as )|,( µzyP . The marginal probability for Z is 
then ∑=

y

zyPzP )|,()|( µµ . Given observed data z, we 

want to find the value of µ that maximizes the log 
likelihood, )|(log)( µµ zPL = . The procedures of the 
EM algorithm are as follows: 
 
1. Initialize )0(µ  randomly or heuristically according 
to prior knowledge about what the optimal parameter 
value might be.  
2. Iteratively improve the estimate of µ by alternating 
between the following two steps:  

(a) E-step: Compute a distribution 
)(~ t

P over the range Y 
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such that  ).,|( 1
)(~

−= t
t

zyPP µ   

(b) M-step: Set )(tµ to the µ that maximizes 

)).|,((log)(~
µzyPE t

p

 

3. Stop when the algorithm converges to a local 
maximum. 
 
5. CONSTRUCTION OF A BAYESIAN NETWROK 

 
The problem of learning Bayesian networks comes in 
several varieties. The structure of the network can be 
either known or unknown, and the variables in the 
network can be either fully observable or with missing 
values. In this paper, we consider the case of known 
structure and with missing values. Since the structure is 
known, construction requires only the computation of 
the CPT for each node. We will describe how to 
compute the CPTs when data set is complete, and then 
present an algorithm to deal with Bayesian network 
construction when the data set D is disguised and 
incomplete. Let parent nodes of the ith node 
be pYY ,,1 L . To obtain CPT entries of node i, we 

need to compute the two terms:  
),,,( 11 ppii yYyYxXP === L  and ),,( 11 pp yYyYP == L  

 Since 
 

||/||),,(

||/1),,,(

),,)(|(

11

11

DXyYyYP

DyYyYxXP

BNDpaXParentxXP

ipp

ppii

iiii

+==

+===
=

==

L
L . 

 
When data set D is undisguised and complete, these two 
terms can be easily computed.  But, it is not the case if 
D is disguised and incomplete. We provide the 
following algorithm to deal with Bayesian network 
construction when the data set D is disguised and 
incomplete.  
 
Step I: Estimate missing values 
Use EM algorithm to estimate the missing values in the 
disguised data set and obtain a complete data set CD. 
Please note that the distribution of randomized data  
very likely differs from the data distribution before 
randomization. Therefore, we need test the data 
distribution after randomization and apply proper EM 
algorithm.  
 
Step II: Compute CPTs 
Apply the estimation model of the randomized 
technique described in Section 3 to estimate those terms 
needed for the CPT entries. Consider the Wet-grass 
example, where wet-grass (W) can be caused by either 
rain (R) or sprinkling (S). The particular CTP of grass 
being wet, given rain and sprinkling is as follows. 
 

CDWtRtSP

CDtRtStWP

BNCDtRtStWP

/),(

/1),,(

),,,|(

+==

+===
=

===
 

 
(|CD| denotes the total number of records in the 
complete data set.) Assume the data set is disguised 
using one-group scheme. We compute 

),,(* tRtStWP ===  and ),,(* fRfSfWP ===  on 
the data set CD. We then apply one-group estimation 
model to compute P(W=t, S=t, R=t). 
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===
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),,(
1*

*

fRfSfWP
tRtSrWP

M
fRfSfWP
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where 







−

−
=

θθ
θθ

1
1

1M . Similarly, P(S=t, R=t) can be 

computed. Hence, we can calculate P(W=t | S=t, R=t). 
With a similar calculation, other CPTs can be obtained. 
 
 

6. PREVIOUS WORK 
 
There are two existing approaches to solve privacy 
preserving data mining problems. One is the 
perturbation approach, the other is the secure 
multi-party computation approach. Agrawal and Srikant 
proposed a scheme for privacy-preserving data mining 
using random perturbation [3]. In their scheme, a 
random number is added to the value of a sensitive 
attribute. For example, if ix is the value of a sensitive 

attribute, rxi + , rather than ix , will appear in the 
database, where r is a random value drawn from some 
distribution. The paper shows that if the random number 
is generated with some known distribution (e.g., 
uniform or Gaussian distribution), it is possible to 
recover the distribution of the values of that sensitive 
attribute. With the independence assumption of the 
attributes, the paper then shows that a decision tree 
classifier can be built with the knowledge of distribution 
of each attribute. Du and Zhan [4] proposed to use 
randomized response techniques [11] to tackle 
privacy-preserving data mining problem. In their 
scheme, they do not assume the independence of the 
attributes. Rizvi and Haritsa presented a scheme called 
MASK to mine associations with secrecy constraints in 
[9], and Evfimievski et al. proposed an approach to 
conduct privacy preserving association rule mining 
based on randomization techniques [1]. Kargupta et al. 
further analyze the effectiveness of randomization 
approach in [5]. Several SMC-based privacy preserving 
data mining schemes have been proposed [7, 7, 13]. 
These studies mainly focused on two-party distributed 
computing, and each party usually contributes a set of 
records.  In our proposed research, we focus on 
centralized computing, and each participant only has 
certain number of records to contribute. All records are 
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combined together into a central database before the 
computation begins.  
 

7. CONCLUSION AND FUTURE WORK 
 

As mentioned, Bayesian network learning is proven to 
be valuable to the business world. In this paper, we have 
combined multi-group randomized response techniques 
with EM algorithm for constructing Bayesian networks 
over disguised data set where some data values are 
missing. In our future work, we will continue refining 
our technique to handle various risk-analyses in 
business. We will also extend our solution to data sets 
consisting of non-binary data types. 
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