
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2004 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-5-2004

Security Alert Management in E-Business Networks Security Alert Management in E-Business Networks

Allan Lam

Pradeep Ray

Follow this and additional works at: https://aisel.aisnet.org/iceb2004

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2004 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301390367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2004
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2004?utm_source=aisel.aisnet.org%2Ficeb2004%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 880

Security Alert Management in E-Business Networks

Allan Lam, Pradeep K. Ray
School of Information Systems, Technology and Management,

University of New South Wales, Sydney, Australia
p.ray@unsw.edu.au

ABSTRACT

Security management has become a major concern in today’s e-business systems due to ever-increasing attacks on
enterprise servers. This has led to the increasing sophistication of network security tools and systems in e-business
networks that involve a number of organizational entities cooperating over computer communication networks. Many
large organizations are outsourcing the management of e-business networks. This paper examines the problem of
security management in the context of an Management Service Provider (an organization that provides remote
management of e-business networks). Existing security tools (e.g., Intrusion Detection Systems (IDS)) assist us in
detecting attempts by unauthorized users to get access to networked information resources. However, the management
of IDSs offers some interesting challenges (e.g., false alerts). This paper presents a policy-based management
framework to solve this problem.

Keywords: Outsourced IT management, IDS Alerts, Management Service Provider

1. INTRODUCTION

E-business systems allow organizations to focus on
their core strengths, while outsourcing many aspects of
the business to business partners in a value chain. For
example, many e-businesses now outsource the
management of their IT networks to specialist
organizations [7]. The increasing ferocity of cyber-
attacks is making organizations think seriously of more
and more sophisticated security management solutions.
Organizations now have firewalls, anti-virus,
authentication, and Intrusion Detection Systems (IDS).
However, many of these facilities are either unused, or
under-utilised due to problems, such as false alarms in
IDS [1]. This paper presents a security management
strategy for large e-business networks from the
perspective of outsourced management.

The paper is organized as follows. The Section 2 starts
with a background of current intrusion detection
systems and the need for frequent management
interventions. This is followed in Section 3 by our
proposed architecture for Security Alert Management
(based on management policies) that helps reduce
frequent false alarms. Section 4 presents a case study
of the implementation of this architecture in a large
organization providing management services to e-
business networks in the Asia-pacific region. Finally,
Section 5 concludes the paper.

2. BACKGROUND

Many network security technologies require regular
human intervention in order to receive the best
protection. Consider firewalls and intrusion-detection
systems (IDSs). Typically, these devices are setup so
that they log information to a database. It is then up to
the security engineer to analyse these logs and to
identify network attacks or suspicious behaviour if, or

while, they are occurring. Unfortunately, this can be
very time consuming.

Logs are generated and typically contain information
for the following three events:
A packet that is allowed to pass through a firewall.
A packet that is blocked (denied access) at a firewall.
A packet that satisfies one of the signatures in the IDS
database.

Thresholding rules are then applied to the above events
to generate security alerts. Unfortunately, because they
work on data from firewalls and IDSs, they also inherit
the major problem with them, e.g., the generation of
numerous false positives [2].

This research reported in this paper aims to develop a
framework whereby security alerts, in particular false
or routine alerts, can be analysed and responded to
automatically, saving precious employee time and the
employer’s money. Routine alerts are those that we
wish to appear but which we do not want to analyse.
False and routine alerts are composed of many events.
Our proposed framework is called Security Alert
Management System (SAMS). This is a Policy-based
management framework as discussed in [4], [5] and [6].

3. SECURITY ALERT MANAGEMENT SYSTEM
(SAMS)

SAMS uses the term policy to refer to a particular rule
that defines a false or routine alert. Every policy is
instantiated from a policy type. A policy type
represents a set of policies that possess a similar
underlying idea/pattern. For example, consider the
following policy types:
• If pattern A appears at least Z% of the time in the

alert, then acknowledge this false/routine alert.
• If pattern A appears at least Z% of the time in the

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

881

alert, AND if a pattern B appears at least Y% of
the time in the alert, then acknowledge this
false/routine alert.

Figure 1: SAMS framework

The above policy types can be used to instantiate the
following policies:

• If the source IP address 127.0.0.1 appears 90% of
the time in the alert, then acknowledge this
false/routine alert.

• If the source IP address 127.0.0.1 appears 40% of
the time in the alert, AND the destination IP
address 234.22.12.120, then acknowledge this
false/routine alert.

The policy types then really have no constraints, other
than their realisation into code, which will be discussed

later.

3.1 SAMS Framework

The framework presented in Figure 3 provides a design
for the development of a system that analyses security
alerts. It is called the Security Alert Management
System (SAMS) framework. At a high level of detail,
SAMS will wait for an event or trigger to start the alert
analysis process. Once this event has been received, the
alerts are retrieved from an alerts store. Each alert is
then analysed with its corresponding policy, which is
determined by the domain that the alert belongs to.
Each policy will determine whether or not the alert is a
false alert or a routine alert. The policy will also
determine what action to carry out based on that
analysis.

The simple framework of SAMS reflects the nature of
the problem, which is to analyse and respond to
security alerts. However, its simplicity hides the
powerful inner workings of the policies. The more
verbose or complex your false or routine alerts, the
more complicated your policies become. As shown in
Figure 1, the framework is made up of three main
components, the Policy Enforcement System (PES),
the Policy Database and the Security Policy Manager
(SPM). These will be described in the following three
sections.

3.2 Policy Enforcement System (PES)

The PES does three things, as shown in Figure 2 with a

triangle:
A) Intercept an event/trigger. This event/trigger can be
a mouse click or a timed event and invokes the PES
process.
B) When the PES is invoked, alerts are read from
whatever format that they are stored as.
C) Each alert, based on its domain is then compared to
its corresponding policies found in the policy database.
If a policy is found that matches the alert then the
action for that alert is automatically carried out.

Figure 2: PES process

The PES ‘waits’ for the event/trigger to start the
process. Upon receiving this, it will ‘fetch alerts’ from
the alerts store. Finally, it will ‘get the policies’ for this
alert from the policy database. The policies that it
retrieves are based on the alert domain. The policies
are compared to the alerts and if one is found to
“match”, then the appropriate ‘actions’ are carried out.
The last step is actually a little more involved, which
will now be discussed. Recall from the beginning of
section 3 that we wish to define different policy types.
Each policy type will define a false or routine alert.
The PES will actually store the policy type definition,
represented as ‘Policy Type A’ and ‘Policy Type B’ in
the above diagram. The policy database will then store
the particulars for the policy type definitions. For
example, the PES may have the following as ‘Policy
Type A’:
If pattern A appears at least Z% of the time in the alert,
then acknowledge this false/routine alert.

The policy database may then have a table such as the
following:

alert_dom

ain
pattern_A percentage_Z

1 Shellcode.* 90

So if an alert that belongs to the alert_domain 1 is
encountered, then the corresponding pattern
(Shellcode.*) and percentage (90) will be replaced in
the policy type. Encountering such an alert will apply
this policy to it:
If pattern Shellcode.* appears at least 90% of the time
in the alert, then acknowledge this false/routine alert.
If the alert satisfies this policy, then it will be

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 882

acknowledged. Note that the pattern supports regular
expressions. By separating the policy type and its
specific details, we allow a policy to be applied to
various domains and alerts, without producing
repetitive policies. As the policy types need to be
coded, this also reduces code redundancy.

In summary, the PES has been designed so that it
stores the programming logic to analyse alerts. It in
fact contains the skeleton of the logic. The remainder
of the programming logic is obtained from the policy
database. The reason for this separation is that many
alerts have similar analysis. For example, many alerts
are analysed based on what event occurs the most often.
So, instead of replicating the code for this analysis
across all domains, we can save disk space and
redundancy by storing only the skeleton of the code
and storing the finer details in the database. Creating
new policy types therefore involve coding them into
the PES.

PES is the only component that integrates with a
current thresholding system.

3.3 Policy Database

This represents the database of policies. As described
in the previous section, it will store the details of the
policies in a policy table. Each domain is also
represented in the Policy Database. This only makes
sense since it is natural and easy to link domains with
their particular policies via table joins. A schema such
as the following can be employed for security alert
management systems developed from SAMS (Figure
3).

Figure 3: Policy Database schema

The table Domain will contain information about that
particular domain. Policy_Details will contain
information about all policies that have been created
for the system and Domain_Policies is a lookup table
matching the policies to the particular domains. So to
retrieve the details for a particular policy the following
query might be performed:
select p.detail1, p.detail2 from domain_policies d,
policy_details p where d.domain_ID=1 and
d.policy_ID=p.policy_ID.

The attributes returned from the above query can then
be substituted into the policy type definition defined in

the PES. The Policy_Types table helps with this task
by associating a policy instance in the table
Policy_Details to the policy type definition in the PES.

3.4 Security Policy Manager

The SPM is the GUI management tool that will allow
you to manage the Policy Database. It will allow you to
enable, disable or edit policies for your defined
domains. The SPM will present the information from
the database in an easy to read format allowing rapid
creation of the policies.

As discussed in the beginning of section , policies are
instantiated from policy types. Hence, when we enable
a policy, we are actually creating an instance of a
policy type. Every instance is created by inserting the
details for the policy into the policy database,
discussed in the previous section. The policy created is
then applied to a selected domain.

When we disable a policy, we are actually removing an
instance of the policy from the policy database. This
involves removing various rows from the policy
database to remove both the policy instance and its
association with a particular domain. Note that when
we disable a policy, we do not actually remove the
policy type definition from the PES. We are only
removing an instance of it, which is defined in the
policy database.

Editing a policy allows us to edit the details of a policy
instance. For example, consider the following policy:
If pattern Shellcode.* appears at least 90% of the time
in the alert, then acknowledge this false/routine alert.
The user could modify this policy by changing the
pattern or changing the percentage value. Note also
that editing a policy does not edit the policy type
definition. Editing a policy only edits a policy instance.
Editing a policy will perform a database ‘update’ query
on the policy_details table.

Note that whenever a new policy type is created in the
PES, the SPM must also be updated so that it
recognises it. The SPM must be updated so that one
can enable, disable and edit policies based on the new
policy type.

4. CASE STUDY

This section will use the SAMS framework to develop
a working system. The system will be used on a
thresholding system already in place at a company X.
The company has asked its name to be withheld. The
company is a leading IP networking and
communications solutions provider in the Asia-Pacific
region.

Of interest to this paper is the orginsation’s security
division. The security engineers, among other tasks,

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

883

monitor the alerts from various firewalls and IDSs for
various customers. The security division has
implemented a thresholding system, which analyses
events from firewalls and IDSs and based on
predefined thresholding levels will generate alerts.
These alerts are displayed to security engineers via an
internal intranet web page.

The SAMS framework helps design a system that
automatically acknowledges false and routine alerts
produced from the thresholding system. According to
the engineer, on average it takes one minute to analyse
one security alert. On an average day for the
organisation’s security division, they receive 300 alerts.
This means that every day, 300 minutes is used to
analyse false alerts. If there are 230 working days per
year, that equates to 1150 hours or 143 working days
that are spent on analysing alerts.

Figure 4: Current security architecture of

company X

4.1 Current Security Architecture

Before we design a SAMS system, we must first
analyse the current architecture to see where it fits in.
The following diagram shows the current data flow of
the organisation’s security division:
The data sources log their events to a PostgreSQL
database. The thresholding system rule base then
generates the alerts. Security engineers will analyse
these alerts and perform the required actions. As
indicated Figure 4, the security engineers are actually
using policies when they are analysing the alerts. That
is, the security engineers are applying certain rules for
the analysis that they carry out.

4.2 Design

This Section presents the design of the proposed
system based on SAMS (Figure 5). However, we first
need to identify how our alerts are being stored.

Figure 5: Proposed SAMS Architecture

The PES will therefore perform a similar task. It will
read in the alerts from a HTML file and In the case of
the organization’s thresholding system, the alerts are
stored as HTML files. Security engineers analyze alerts
by entering an intranet web site. This web site provides
the alerts and the events that make up in the alerts in a
tabular format. It is then up to the security engineer to
analyze these and acknowledge that they have been
analysed. PES will only acknowledge the alerts if the
policies in its database match the alerts.

The next step is to identify the domains. In the case of
thresholding system, these will be the customers. Since
the organisation manages customer networks, it is only
logical that we distribute policies according to this
domain. The existing database already has this
information in a table called ‘customers’. The schema
for this table is as follows:
customers(id, name, fullname, heat_id,

gnc_name, speech_name)

Hence for our SAMS system we will need to create these
tables:
policy_details(policy_id, description, …)
cust_policies(cust_id, policy_id)
policy_types(type_id, description)
The full schema of policy_details will be worked out later.

Our final step is to develop the SPM. Because the
existing thresholding system is web-based, the SPM
designed here will also be web-based. Similarly,
because the existing thresholding system is developed
in Perl, our SAMS system will also be developed in
Perl.

4.3 Implementation

After discussion with the organisation’s security staff,
it was determined that the main policy type that should
be created first, was one that specified a pattern that
was most prevalent. That is, in the analysis of every
alert, false and routine alerts tended to have a pattern
whereby certain elements would be repeated. As an
example of such an alert, refer to the following that has
been used throughout this report:
• If pattern Shellcode.* appears at least 90% of the

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 884

time in the alert, then acknowledge this
false/routine alert.

This is the first policy type that was coded into PES
and which the SPM will recognise. Hence, after this
decision was made, the schema for the table
policy_details is as follows:
policy_details(policy_id, devicetype_id, type_id,
details)

The important attributes are described here:
• type_id: this is a foreign key to the policy_types

table and associates a policy with its policy type.
• details: this will be a string that contains the details

for a policy. Since we are implementing the above
policy type, this string will contain the pattern to
look out for and the percentage that this pattern
appears in the alert. More precisely, it will contain
what specific details of an alert contain the pattern,
what the pattern is and the percentage value.

When the user is creating a policy, they must first
select which components of an alert make up the “key”.
The key is a combination of the attributes in the above
table that the policy type definition will concentrate on
when it is analysing it.

The SPM was then designed so that it could properly
manipulate the policy database. As mentioned, all
development work for this system was done in Perl.
The existing thresholding system was developed in
Perl, so for compatibility issues, it was logical to select
this as the development technology.

4.4 Results

A successful SAMS system was developed on the
development network. The following table shows how
many alerts could have been automatically
acknowledged if the SAMS system was put into
production.

Time
(for 26 November
2003)

Number of alerts that could
have been automatically
acknowledged

00:00 to 01:00 6
01:00 to 02:00 3
02:00 to 03:00 3
03:00 to 04:00 3

This is but a four-hour sample of the number of alerts
that could have been automatically acknowledged. It
would equate to 15 minutes of saved alert analysis time.
For another random sample:

Time
(for 27 November
2003)

Number of alerts that could
have been automatically
acknowledged

13:00 to 14:00 7
14:00 to 15:00 9
15:00 to 16:00 5
16:00 to 17:00 6

The above would have saved 27 minutes of alert time.
These alerts are all based on the same policy type
specified in the previous section. Due to the nature of
networks it is hard to predict how many alerts on
average could be automatically acknowledged with this
policy type. But it is clear from the above samples that
significant time can in fact be saved.

Future work will involve the creation of policy chains,
introduction of policy priorities and the development of
a policy type creator, since with the current framework,
it is quite cumbersome to add other policy types. Also
it is necessary to integrate the SAMS framework with
the network and systems management framework [3].

5. CONCLUSION

In this paper, we have proposed a new framework,
called SAMS, for the analysis of security alerts in e-
business networks. This framework incorporates
foundational concepts in policy-based management to
solve the problem of false alerts that threatens to render
many security tools (e.g., intrusion detection systems)
useless.

The framework that is proposed in this paper is free
from many constraints on the policy definitions, unlike
in the case of existing management policy frameworks.
In fact, policies defined in this framework are
constrained by the author’s ability to code them. This is
hopefully a first step towards a framework that may
become universally used in any system that generates
alerts.

The time and money wasted in analysing false and
routine alerts is great as sproven by our case study
figures. A system developed from SAMS can also be
viewed as an “engineer-in-a-box”. Because the security
engineer is telling the SAMS system what constitutes
false/routine alerts, the system is really acting like a
security engineer. As a consequence, if the security
engineer decides to leave the organization for which
he/she works, then the knowledge base of the engineer
will be retained.

Such policy-based management frameworks are likely
to be used more increasingly for security management
in future.

ACKNOWLEDGEMENT

This work was partially supported by the Australian

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

885

Research Council (ARC) SPIRT Grant #C00107103.

REFERENCES

1. Axelsson, S., “Intrusion Detection Systems: A
Survey and Taxonomy”, Technical Report of the
Department of Computer Engineering, Chalmers
University of Technology, Sweden, March 2000
2. Blackman,D., “Intrusion Detection is failing: Enter
Intrusion Management”, July 2002,
http://www.itsecurity.com/papers/pentasafe1.htm
3. Distributed Management Task Force, Inc. (DMTF),
“Common Information Model (CIM) Specification”,
version 2.2, June 14, 1999,
http://www.dmtf.org/spec/cims.html

4. N. Dulay et al. A Policy Deployment Model for
the Ponder Language (2001)
5. B. Moore, J. Strassner, E. Elleson, “Policy Core
Information Model -- Version 1 Specification”, Feb
2001, ftp://ftp.rfc-editor.org/in-notes/rfc3060.txt
6. Proctor,P., “The Practical Intrusion Detection
Handbook”, Prentice Hall, 2001
7. Ray, P., “Integrated Management from e-Business
Perspective: Concepts, Architectures and
Methodologies”, Kluwer Academic/ Plenum Publishers,
Januray 2003
8. P. Yarng, P.Ray and D. Maher, “Profiling Cyber
Attacks using Alert Regression Profiles”, IEEE
Globecom2003 Symposium on Network Security, San
Francisco, Nov 2003

	Security Alert Management in E-Business Networks
	Microsoft Word - EN018-paper.doc

