
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2007 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-2-2007

A Sliding-Window Approach to Mining Maximal Large Itemsets for A Sliding-Window Approach to Mining Maximal Large Itemsets for

Large Databases Large Databases

Ye-In Chang

Chen-Chang Wu

Jiun-Rung Chen

Yuan-Feng Chang

Follow this and additional works at: https://aisel.aisnet.org/iceb2007

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2007 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301389265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2007
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2007?utm_source=aisel.aisnet.org%2Ficeb2007%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Chang, Wu, Chen & Chang

22

Proceedings of The Seventh International

 Conference on Electronic Business, Taipei,

 Taiwan, December 2-6, 2007, pp.22-28

A SLIDING-WINDOW APPROACH TO MINING MAXIMAL LARGE ITEMSETS FOR LARGE

DATABASES

Ye-In Chang, National Sun Yat-Sen University, Taiwan, changyi@cse.nsysu.edu.tw

Chen-Chang Wu, National Sun Yat-Sen University, Taiwan, wucc@db.cse.nsysu.edu.tw

Jiun-Rung Chen, National Sun Yat-Sen University, Taiwan, chenjr@db.cse.nsysu.edu.tw

Yuan-Feng Chang, National Sun Yat-Sen University, Taiwan, changyf@db.cse.nsysu.edu.tw

ABSTRACT

In this paper, we propose a Sliding-Window approach, the SWMax algorithm, which could provide good performance for

both mining maximal itemsets and incremental mining. Our SWMax algorithm is a two-passes partition-based approach. For

incremental mining, if an itemset with size equal to 1 is not large in the original database, it could not be found in the updated

database based on the SWF algorithm. Our SWMax algorithm will support incremental mining correctly. From our simulation,

the results show that our SWMax algorithm could generate fewer number of candidates and needs less time than the SWF

algorithm.

Keywords: data mining, association rules, maximal large itemsets, incremental mining, partition.

INSTRUCTIONS

Mining association rules, means a process of nontrivial extraction of implicit, previously and potentially useful information

from data in database, which has recently attracted tremendous amount of attention in the database research community [5]. The

most important task is to discover association rules. The computer can transform the processed data into the useful information

and knowledge. Therefore, mining association rules has become a research area with increasing importance [8] [11].

Mining Maximal Large Itemsets

Mining maximal large itemsets is a further work of mining association rules, which aims to find the set of all subsets of large

(or frequent) itemsets that has representative of all large itemsets [2] [3] [9]. For example, there are three large itemsets, L1, L2

and L3. L1= {{A},{B},{C},{D}}. L2= {{AB},{AC},{BC},{CD}}. L3= {{ABC}}.The maximal large itemsets are {ABC} and

{CD}, which can cover L1, L2 and L3. The prototypical application is in market basket analysis, where the items represent

products and records the point-of-sales data at large grocery or departmental stores.

Previous algorithms to mining maximal large itemsets can be classified into two approaches: exhausted and shortcut. For

example, the Apriori and AprioriTid [1], and Partition [12], SWF [7] algorithms belong to the exhausted approach. They find out

all large itemsets and compare the resulting itemsets, Li. Then, the maximal large itemsets are found. The Max-Miner [2],

MAFIA [3], Pincer-Search [9] algorithms belong to the shortcut approach. As compared with the exhausted approach, the

shortcut approach could generate smaller number of candidate itemsets in every scan of the transaction database, resulting in

better performance in terms of time and storage space.

On the other hand, when updates to the transaction databases occur, one possible approach is to re-run the mining algorithm

on the whole database. All the computation done at finding out the large itemsets are originally wasted and all large itemsets have

to be computed again from scratch. The other approach is incremental mining, which aims for efficient maintenance of

discovered association rules without re-running the mining algorithms when updates occur [11]. So, some people proposed a

concept, negative border. The negative border is used to decide when to scan the whole database and it can be used in

conjunction with any Apriori-like algorithm.

Therefore, in this paper, we focus on the design of an algorithm which could provide good performance for both mining

maximal itemsets and incremental mining. Based on some observations, for example, `` if an itemset is large, all its subsets must

be large; therefore, those subsets need not to be examined further", we propose a Sliding-Window approach, the SWMax

Chang, Wu, Chen & Chang

23

algorithm, for efficiently mining maximal large itemsets and incremental mining.

Our SWMax algorithm is a two-passes partition-based approach. We will find all candidate 1-itemsets (C1,) candidate

3-itemsets (C3,) large 1-itemsets (L1), and large 3-itemsets (L3) in the first pass. We generate the virtual maximal large itemsets

after the first pass. Then, we use L1 to generate C2, use L3 to generate C4, use C4 to generate C5, until there is no CK generated. In

the second pass, we use the virtual maximal large itemsets to prune CK, and decide the maximal large itemsets. For incremental

mining, we consider two cases: data insertion and data deletion. If an itemset with size equal to 1 is not large in the original

database, it could not be found in the updated database based on the SWF algorithm. A missing case could occur in the

incremental mining process of the SWF algorithm, while our SWMax algorithm could support incremental mining correctly.

The rest of paper is organized as follows. Section 2 presents the proposed SWMax algorithm. In Section 3, we study the

performance and make a comparison of the proposed algorithms, SWMax algorithm with some other previous proposed

algorithms. Finally, Section 4 gives the conclusions.

THE SWMax ALGORITHM

In this section, we first describe some interesting observations, which have motivated us to design our SWMax algorithm.

Next, we present the proposed SWMax algorithm. Then, based on some other observations, we present the approach of

incremental mining in the SWMax algorithm.

Interesting Observations for Mining Maximal Large Itemsets

The Pincer-Search algorithm has presented an interesting observation: If an itemset is frequent, all its subsets must be

frequent; therefore, those subsets need not to be examined further. The number of the 3-itemset subsets of a k-itemset should

be
kC3 . In other words, if the number of 3-itemset subsets is smaller than kC3 , then such a k-itemset will not be frequent and

should be discarded from the candidate of maximal large itemsets.

Moreover, we find another interesting observation. Let's use the following example to show this observation. For each item in

these 3-itemset subsets of the frequent 5-itemset {ABCDE}, we could find that the occurrence of each item is 6 (= 15

2

C). For

example, item A occurs 6 times among itemsets {ABC}, {ABD}, {ABE}, {ACD}, {ACE}, and {ADE}. That is, the number of

the occurrence of item A in the 6 3-itemset subsets of the frequent 5-itemset {ABCDE} is 15

2

C . In general, the number of the

occurrence of a certain item in these
kC3 3-itemset subsets of a frequent k-itemset is 1

2

kC . We will make use of these two

observations in our SWMax algorithm.

Sketch of Our Algorithm

From the above observations, we develop our SWMax algorithm for mining maximal large itemsets. We use an example

database shown in Figure 1 to illustrate our algorithm which is a partition-based approach. Those 12 (= N) data records are

divided into 3 (= PN) partition. Therefore, the number of transactions, NT, in each partition Pi is 12/3 = 4, 31 i . The global

support for the total 12 transactions is s = 26%. When the number of transactions containing an itemset is greater than or equal to

 4%26*12 , this itemset is frequent.

Figure 1: An example

transaction

database.

Figure 2: The result of procedure

gen_count_itemset after

scanning P1.

Figure 3: The OneI Table
after scanning P1.

Figure 4: The resulting checking

table

Figure 5: The resulti of procedure

gen_VMLI after scanning P1.

Figure 6: The result of

procedure gen_count_itemset

after scanning P2.

Figure 7: The OneI Table after scanning P2.

Figure 8: The resulting checking

table

Figure 9: The resulti of procedure

gen_VMLI after scanning P2.

Figure 10: The result of procedure

gen_count_itemset after scanning

P3.

Figure 11: The result of

procedure check_sum

in P3.
Figure 12: Figure 13:

Figure 14: The virtual

maximal large itemset.

Figure 15: The result of candidate

Figure 16: The final

result.

Chang, Wu, Chen & Chang

24

In the first pass, we have to consider the local support number, LocalS, for candidates generated in partition Pi. The value of

LocalS is equal to (number of transactions in partitions P1, P2, …, Pi) times s. For example, we have LocalS = 2%26*4 for

candidate generated in partition P1, when we scan partition P1. We have LocalS = 3%26*8 in partition P1 and LocalS =

 2%26*4 in partition P2, when we scan partition P2.

In pass 1, we aim to find all temporary large 1-itemsets and 3-itemsets. We scan the whole database by focusing on each

partition Pi in sequence, PNi 1 . When we scan the item list of each transaction in partition P1, we will generate temporary

candidate 1-itemsets and 3-itemsets, and record the result in variables Temp_C1I and Temp_C3I, respectively, by calling

procedure gen_count_itemset. We add a temporary candidate X into Temp_C1I /Temp_C3I only if X does not occur in Temp_C1I

/Temp_C3I. When a temporary candidate X is added to Temp_C1I /Temp_C3I, we also record its StartPID as PID, where

StartPID means the starting PID in which the candidate is generated. Moreover, we increase the count of such a candidate by one.

After all transactions in partition P1 is scanned, we call procedure check_sum. A temporary candidate X can become the

formal candidate if X.count > LocalS, when LocalS is the local support of partition, X.PID. If a temporary candidate could not

pass the checking step, it is removed from Temp_C1I/ Temp_C3I. The final results as shown in Figure 2 has removed all these

itemsets which are marked with *.

Up to this point, if the scanned partition is not the last partition, we will generate virtual maximal large itemsets, gen_VMLI,

from Temp_C1I and Temp_C3I as shown in Figure 4. In procedure gen_VMLI, for each 3-itemset element X in Temp_C3I, we

will check whether each of elements Y in X is in the table OneI or not. If it occurs the first time, we will add element Y to table

OneI. Moreover, we will count the occurrence of each element Y. The result for this example is shown in Figure 3. After we get

the count of each 1-item element occurring in candidate 3-itemset C3, we start to call procedure gen_check_table to create a

checking table as shown in Figure 4, to help us determine the virtual maximal large itemset. In procedure gen_check_table(ND),

we generate the values of kC3 and 1

2

kC , NDk 4 . The purpose of these values has been explained in our observations as

described before. For this example, we have ND = 6, since the size of table OneI is 6, which implies the size of the possible

virtual maximal large itemset is limited to 6. From Figure 3, the possible case is itemset {ABCDEG}. To decide whether itemset

{ABCDEG} is the virtual maximal large itemset, we could make the decision based on these observations as mentioned in

Section 3.1 : If an k-itemset is large, all its subsets must be frequent. That is , those kC3 3-itemsets subset of a frequent k-itemset

should also be frequent. Moreover, all the k items will have 1

2

kC occurrences among these frequent 3-itemsets. For example, if

{ABCDEG} is a large itemset, it should have 6

3C = 20 3-itemsets subsets of this 6-itemset {ABCDEG}. Moreover, item {A} will

appear in {ABC}, {ABD}, {ABE}, {ABG}, {ACD}, {ACE}, {ACG}, {ADE}, {ADG} and {AEG}. That is, item A will occur
5

2C = 10 times. Item {B}, item {C}, item {D}, item {E} and item {G} will have the same case as item {A}. That is the reason

why we dissolve the 3-itemset of Temp_C3I to get the individual items, and stored them and related counts in table OneI, as

shown in Figure 3.

Since ND = 6, in fact, there may exist 3 possibilities of the size of the virtual maximal large itemset, 4, 5, 6. Due to that the

size of passed candidate C3, | Temp_C3I | = 11, the size of a virtual maximal large itemset could not be 6, since 11 < 6

3C (= 20).

Based on the same reason, the size of a virtual maximal large itemset could be 5, since 10 (=
5

3C) 2011 (= 6

3C). Therefore, we

decide the size of the virtual maximal large itemset should be 5 by calling function CheckRange(W) with W = 6, due to Temp_C32

(= 10) | Temp_C3I|(= 11) < Temp_C33 (= 20). Moreover, we find the corresponding occurrence of each 1-item in such a virtual

maximal large itemset with size = 5 should be 6 times. That is, we choose the one, Temp_I12 = 6, as the threshold, threshold1, for

the times of the occurrence of 1-item in Temp_C3I, since Temp_C3j = Temp_C32 = 5

3C = kC3 = 10, where k = 5 and j = 2. In the

following for loop, we check whether the count of the 1-item stored in table OneI is greater than or equal to such a threshold, If

element Y.count satisfies this condition, we then concatenate Y with in the string variable Z. In our example, element G does not

satisfy this condition. Therefore, finally, we have the virtual maximal large itemset Z = {ABCDE} with StartPID = 2. We store

this result in table Virtual_MLI.

Similarly, transactions in partition P2 are scanned and procedure gen_count_itemset is called to generate new 1-itemsets and

candidate 3-itemsets if it is possible. Then, we call procedure checksum to check whether candidate 1-itemsets/3-itemsets

generated in partitions P1 and P2 could be the passed candidates or not. After passed candidate 1-itemsets/3-itemsets are

determined, we try to generate the virtual maximal large itemset from the result scanned so far. We call procedure gen_VMLI to

generate the checking table again. Similarly, we have to construct the OneI table first for the result stored in Temp_C3I. Then, the

checking table is created as shown in Figure 8. At this time, we have 13 3-itemsets generated. Therefore, the threshold is 6 and

the virtual maximal large itemset is {ABCDE} again as shown in Figure 9. Because the virtual maximal large itemset {ABCDE}

is already generated in partition P1, it will not be added into Virtual_MLI at this time.

Similarly, we scan transactions in partition P3, generate candidates as shown in Figure 10 and determine passed candidate

1-itemsets/3-itemsets as shown in Figure 11. However, for partition P3, the last partition, we do not try to generate the virtual

maximal large itemset. Because the virtual maximal large itemset generated in the last partition will scan the same number of

partitions with candidate itemsets of Ck in the second scan. For example, if we have a virtual maximal large itemset, {ABCDE},

generated after scanning partition P3. We will record StartPID = 1, and proceed the second scan. After the second scan, we have

the final count of both each itemset of Ck and {ABCDE}. Then, we just check the count of each itemset of Ck to find out the final

result of MLI, because {ABCDE} will also be one itemset of Ck. Therefore, the virtual maximal large itemset {ABCDE}

generated after scanning the last partition in the first pass is useless.

Chang, Wu, Chen & Chang

25

After finishing the first scan of the transaction database, we will generate all candidate k-itemsets. Before we generate

candidate k-itemsets, we can check each itemset in Temp_C3I and TC1I. If there is any itemset with StartPID = 1, it means that

these itemsets have been finished a complete scan of the transaction database. These itemsets are L1 or L3. Therefore, they do not

need to be counted anymore, and we add them into MLI which represents the maximal large itemsets, as shown in Figure 12. The

procedure gen_CK uses L1 joins L1 to generate C2, L3 joins L3 to generate C4, and C4 joins C4 to generate C5. Up to this point,

since C5 joins C5 resulting in the empty set. We generate candidate k-itemsets by the join function. The basic idea of the join

function is similar to that in the Apriori algorithm. That is, given itemsets {a1a2…axay} and {a1a2…axaz }, the result of joining the

two itemsets is { a1a2…axayaz}. For example, {ABC} and {ABE} will generate {ABCE}.

Then, the second scan of the transaction database is proceeded. We will check each itemset of Virtual_MLI for each partition.

We can find an itemset of Virtual_MLI to be large as early as possible, such that some candidate itemsets can be reduced.

Therefore, whether itemset {ABCDE} is the large itemset could be decided now after a complete scan of the transaction database,

as shown in Figure 14. The count of the itemset {ABCDE} is 4 (> 12 * 26%), so the itemset {ABCDE} is large. Then, we call

procedure findMLI to prune candidates by making use of the result {ABCDE} stored in findMLI.

In procedure findMLI, we check the sum of each itemset in All_CKI. If an item X is large and has not occurred in MLI before,

we call function remove to remove all subsets Y of X from MLI. For example, MLI contains {{AB}, {CDE}}, and we want to add

{ABC} into MLI. In addition to checking whether {ABC} has existed in MLI or not, we also will remove all the subsets of

{ABC}, e.g., {AB} from MLI. Then, we add itemset X into MLI. Moreover, we remove itemset X from Virtual_MLI. Finally, we

call procedure reduce to prune unnecessary candidates from All_CKI. A candidate X in All_CKI is unnecessary if there exists

large itemset Y in MLI and X Y. Moreover, if an itemset X in All_CKI is large, we call function remove to remove all subsets of

itemset X from MLI. Then, we add itemset X to MLI and remove it from All_CKL. The whole process of making use of large

itemsets generated from Virtual_MLI to prune MLI, making use of those large itemsets in MLI to prune all candidates in All_CKI,

and making use of large itemset from All_CKI to prune MLI for transaction data in partition Pi scanned so far. Therefore, we use

itemset {ABCDE} to proceed procedures findMLI and then reduce, which removes all subsets of {ABCDE} in All_CKI. Then,

we repeat the same steps, counting and pruning, for data in partitions 2 and 3. Finally, the second scan is finished, the result is

shown in Figure 15. If All_CKI is not an empty set, we will make the last comparison by calling procedure reduce. The final

content of MLI is shown in Figure 16, which contains all maximal large itemsets.

Interesting Observations for Incremental Mining

In this subsection, we discuss some interesting observation for incremental mining. Let's D- be the deleted database, D+ be the

inserted database, and D’ is the unchanged part of the original database.

Let's consider two cases when an updated to the database occurs: data insertion and data deletion. First, for data insertion, if

an itemset with size equal to 1 is not large in the old database, it could not be found in the new database in the SWF algorithm.

Second, for data deletion, if an itemset with size equal to 1 is not large in the old database, it could not be found in the new

database on the SWF algorithm. Because the SWF algorithm has no way to update C1 from D’ when a data insertion occurs or a

data deletion occurs. Therefore, a missing case could occur in the SWF algorithm.

Incremental Mining Process

We use the transaction database, as shown in Figure 17, to illustrate the incremental mining process. D- means the deleted

partition database, and D+ means the added database. The SWMax algorithm reserves the candidate 3-itemsets, C3, and the

candidate 1-itemsets, C1, for the incremental mining process. For the case of data deletion, we find out these itemsets X, where

X.StartPID = 1, Y D-, X Y, and decrease their counts. The result is shown in Figure 18.

For the case of data insertion, we scan D+ partition to generate new candidate itemsets and increase the corresponding counts

of itemsets recorded in the reserved C1 and C3 by procedure gen_count_itemset. Then, we check C1 and C3 with the LocalS, and

find out the L1 and L3. Therefore, we use L1 to generate C2, use L3 to generate C4, use C4 to generate C5, until there is no Ck

generated. Then, we use Ck to scan the partitions P2, P3, and P4. All the iterations of the second scan are same as we have

mentioned in the process of mining maximal large itemsets. Finally, we compare all candidate k-itemsets, Ck, and get the maximal

large itemsets, as shown in Figure 21.

Figure

Figure 17: The example of the
transaction database for the
incremental mining process

Figure 18: The result
after scanning the
deleted partition

Figure 19: The result after
scanning the added
partition.

Figure 20: The result of
procedure check_sum.

Figure 21: The
maximal large itemsets
in the incremental
mining process.

Chang, Wu, Chen & Chang

26

PERFORMANCE

In this section, first, we show how to generate the synthetic data which will be used in the simulation. Then, we study the

performance of the Pincer-Search algorithm, the SWF algorithm and our SWMax algorithm. Finally, we make a comparison

between these three algorithms.

Generation of Synthetic Data

We generated several different transaction databases from a set of large itemset to evaluate the performance of algorithms for

mining maximal large itemsets. The parameters used in the generation of the synthetic data are shown in Table 1 [4].

First, the length of a transaction is determined by Poisson Distribution with a mean which is equal to | T |. The size of a

transaction is between 1 and | MT |. The transaction is repeatedly assigned items from a set of potentially maximal large itemsets

F. Then, the length of an itemset in F is determined according to the Poisson Distribution with a mean which is equal to | I |. The

size of each potentially large itemset is between 1 and | MI |.

To model the phenomenon that large itemsets often have common items,we use an exponentially distributed random variable

with a mean which is equal to the correlation level, to decide this fraction for each itemset. The correlation level was set to 0.5.

The remaining items are chosen randomly. Each itemset in F has an associated weight that determines the probability that this

itemset will be chosen. The weight is chosen from an exponential distribution with a mean equal to 1. The weights are normalized

such that the sum of all weights equal to 1. These probabilities shown in Table 2 are then accumulated such that each value,

which falls in these ranges, is used to select the itemsets.

For each transaction, we generate a random real number which is between 0 and 1 to determine the ID of potentially large

itemset. To model the phenomenon that all the items in a large itemset are not always bought together, we assign each itemset in

F with a corruption level c. When adding an itemset to a transaction, we keep dropping an item from the itemset until a uniformly

distributed random number between 0 and 1 is less than c. The corruption level for an itemset is fixed, which is obtained from a

normal distribution with mean = 0.5 and variance = 0.1. Each transaction is stored in a text file with the form of <transaction ID,

item>.

Some different datasets were generated to be used in the simulation, Table 3 shows the parameters setting for each dataset.

For all datasets, |N| was set to 1,000 and |L| was set to 2,000.

Experiments

Our experiments were performed on a Pentium 4 server with CPU clock rate of 1.5G MHz, 384MB of main memory, running

Windows XP Service Pack 1. The transaction data is stored on a 40GB IDE 3.5" drive with a measured sequential throughput of

10MB/second. The simulation program was coded in JAVA, and compiled by JDK 1.4.2. The data was stored in a text file on a

local hard disk drive.

Figure 22: A comparison of
the execution time (Case 1).

Figure 23: A comparison of
the execution time (Case 2).

Figure 24: A comparison of
the execution time (Case 3).

Figure 25: A comparison of
the execution time (Case 5).

Figure 26: A comparison of
the execution time for
incremental mining (Case
5).

Figure 27: A comparison of the
total execution time for mining
maximal large itemsets and
incremental mining (Case 5).

Table1: Parameters used in the
experiment..

Table2: The probabilities
of itemsets after
normalization..

Table3: Parameters values for
synthetic databases.

Chang, Wu, Chen & Chang

27

A Comparison

For the synthetic database of Case 1, Figure 22 shows a comparison of the execution time with different values of the support

between the SWF and our SWMax algorithm. The execution time of our SWMax algorithm is always less than that of the SWF

algorithm. When the support decreases, the execution time of our SWMax algorithm is less than that of the Pincer-Search

algorithm.

For the synthetic database of Case 2 and Case 3, these transaction databases are used to measure the influence of the

correlation level. The results are shown in Figure 23 and Figure24. We find an interesting observation that the correlation level

has no influence on the Pincer-Search algorithm, because the Pincer-Search algorithm uses Lk to generate Ck+1. However, our

SWMax algorithm generates candidates from transactions. Therefore, in our SWMax algorithm, the correlation level increases,

the candidates increases. However, when support 1%, the number of candidates of the Pincer-Search algorithm increases a lot,

our SWMax algorithm needs shorter execution time than the Pincer-Search algorithm.

For the synthetic database of Case 5, this transaction database has a small size of large k-itemsets. The candidate 2-itemsets

generated from the SWF algorithm could keep the useful information efficiently. However, the counting approach in our SWMax

algorithm works more efficiently than the one in the SWF algorithm. For the SWF algorithm, which uses a hash array to do

counting and cannot count efficiently. Our SWMax algorithm uses the hash tree to do counting. Figure 26 shows a comparison of

the execution time among the SWF, Pincer-Search and our SWMax algorithms. From the result shown in Figure 25, our SWMax

algorithm always requires less execution time than the SWF algorithm. However, in Case 5, the Pincer-Search algorithm has the

same times of scanning the transaction database. Table6 shows the number of checks in Case 5. It is obviously to see that our

SWMax needs more number of checks than the other two algorithms. Therefore, our SWMax algorithm needs longer execution

time than the Pincer-Search algorithm when support 1%.

For the synthetic database of Case 4 and Case 5, we show the comparison of mining maximal large itemsets and incremental

mining of mining maximal large itemsets among these three algorithms. Figure 26 shows the different small values of support to

proceed incremental mining of mining maximal large itemsets. Figure 27 shows the total execution time for mining maximal

large itemsets and incremental mining of mining maximal large itemsets. We know that if the support is small enough, the

number of candidates of the Pincer-Search algorithm increases rapidly. Therefore, the time of re-running the mining approach

takes longer time than the incremental mining approach. In other words, if the transaction database has large size of maximal

large itemsets, e.g., Case 1, our SWMax algorithm needs shorter time to do incremental mining of mining maximal large itemsets

than the Pincer-Search algorithm. However, the SWF algorithm reserved all the information of C2 in Case 5, so it needs so short

time for incremental mining of mining maximal large itemsets.

Obviously, when the support is small, our SWMax algorithm needs shorter execution time than the other two algorithms in all

the cases.

CONCLUSION

In this paper, we have proposed the SWMax algorithm to efficiently support both mining maximal large itemsets and

incremental mining. We have presented the concept of the virtual maximal large itemset. Our SWMax algorithm is a two-passes

partition-based approach, and the virtual maximal large itemsets help us to reduce the number of candidate itemsets in the second

scan. The simulation results have shown that the proposed SWMax algorithm outperforms the SWF algorithm in all relational

database settings. How to extend our SWMax algorithm for distributed processing is our future work.

ACKNOWLEDGEMENT

This research was supported in part by the National Science Council of Republic of China under Grant No.

NSC-93-2213-E-110-003 and National Sun Yat-Sen University. The authors also like to thank "Aim for Top University Plan"

project of NSYSU and Ministry of Education, Taiwan, for partially supporting the research.

REFERENCES

[1] Agrawal, R. and Srikant, R. (1994) “Fast Algorithms for Mining Association Rules”, Proc. of the 20th Int. Conf. on

Very Large Data Bases.

[2] Bayardo, R.J. (1998) “Efficiently Mining Long Patterns from Databases”, Proc. of Int. Conf. on Data Eng., pp. 85-93.

[3] Burdick, D., and Calimlim, M. and Gehrke, J. (2001) “MAFIA: A Maximal Frequent Itemset Algorithm for

Transactional Databases”, Proc. of Int. Conf. on Data Eng, pp. 443-452.

[4] Chang, Y.I. and Hsieh, Y.M. (2002) “SETM*-Lmax: An Efficient SET-Based Approach to Find Maximal Large

Itemsets”, Proc. of Int. Conf. on Computer Symposium: Workshop on Software Eng. and Database Systems.

[5] Chen, M.S., Han, J. and Yu, P.S. (1996) “Data Mining: An Overview from A Database Perspective”, IEEE Trans. on

Knowledge and Data Eng., Vol. 8, No. 5, pp. 866-882.

[6] Cheung, D.W., Han, J., Ng, V.T. and Wong, C.Y. (1996) “Maintenance of Discovered Association Rules in Large

Databases: An Incremental Updating Technique”, Proc. of the 12th IEEE Int. Conf. on Data Eng.

[7] Lee, C. H., Lin, C. R. and Chen, M. S. (2001) “Sliding-Window Filtering: An Efficient Algorithm for Incremental

Mining”, Proc. of the 10th ACM Int. Conf. on Information and Knowledge Management, pp. 263-270

[8] Lian, W., Cheung D.W. and Yiu, S.M. (2007) “Maintenance of Maximal Frequent Itemsets in Large Databases”, Proc.

of ACM Symp. on Applied Computing, pp. 388-392.

Li & Yuan

28

[9] Lin, D. I. and Kedem, Z. M. (2002) “Pincer-Search: An Efficient Algorithm for Discovering the Maximum Frequent

Set”, IEEE Trans. on Knowledge and Data Eng, Vol. 14, No. 3.

[10] Pudi, V. and Haritsa, J. R. (2002) “Quantifying The Utility of The Past in Mining Large Databases”, Information

Systems, Vol. 25, No. 5, pp. 323-343.

[11] Sarda, N.L. and Srinivas, N.V. (1998) “An Adaptive Algorithm for Incremental Mining of Association Rules”, Proc.

of the 9th Int. Workshop on Database and Expert Systems Applications, pp. 240-246.

[12] Savasere, A., Omiecinski, E. and Navath, S. (1995) “An Efficient Algorithm for Mining Association Rules in Large

Databases”, Proc. of the 21st VLDB Conf., pp. 432-444.

[13] Tsay, Y.J. and Chang-Chien, Y.W. (2004) “An Efficient Cluster and Decomposition Algorithm for Mining Association

Rules”, Information Sciences, Vol. 160, pp. 161-171.

[14] Zhang, M., Kao, B., Cheung, D. and Yip, C. L. (2002) “Efficient Algorithms for Incremental Update of Frequent

Sequences”, Proc. of the 6th Pacific-Asia Conf. on Knowledge Discovery and Data Mining, pp. 186-197.

	A Sliding-Window Approach to Mining Maximal Large Itemsets for Large Databases
	tmp.1582714744.pdf.H52za

