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ABSTRACT 

In this paper, we propose a Sliding-Window approach, the SWMax algorithm, which could provide good performance for 

both mining maximal itemsets and incremental mining. Our SWMax algorithm is a two-passes partition-based approach. For 

incremental mining, if an itemset with size equal to 1 is not large in the original database, it could not be found in the updated 

database based on the SWF algorithm. Our SWMax algorithm will support incremental mining correctly. From our simulation, 

the results show that our SWMax algorithm could generate fewer number of candidates and needs less time than the SWF 

algorithm. 

Keywords:  data mining, association rules, maximal large itemsets, incremental mining, partition. 

 

INSTRUCTIONS 

Mining association rules, means a process of nontrivial extraction of implicit, previously and potentially useful information 

from data in database, which has recently attracted tremendous amount of attention in the database research community [5]. The 

most important task is to discover association rules. The computer can transform the processed data into the useful information 

and knowledge. Therefore, mining association rules has become a research area with increasing importance [8] [11]. 

Mining Maximal Large Itemsets 

Mining maximal large itemsets is a further work of mining association rules, which aims to find the set of all subsets of large 

(or frequent) itemsets that has representative of all large itemsets [2] [3] [9]. For example, there are three large itemsets, L1, L2 

and L3. L1= {{A},{B},{C},{D}}. L2= {{AB},{AC},{BC},{CD}}. L3= {{ABC}}.The maximal large itemsets are {ABC} and 

{CD}, which can cover L1, L2 and L3. The prototypical application is in market basket analysis, where the items represent 

products and records the point-of-sales data at large grocery or departmental stores. 

Previous algorithms to mining maximal large itemsets can be classified into two approaches: exhausted and shortcut. For 

example, the Apriori and AprioriTid [1], and Partition [12], SWF [7] algorithms belong to the exhausted approach. They find out 

all large itemsets and compare the resulting itemsets, Li. Then, the maximal large itemsets are found. The Max-Miner [2], 

MAFIA [3], Pincer-Search [9] algorithms belong to the shortcut approach. As compared with the exhausted approach, the 

shortcut approach could generate smaller number of candidate itemsets in every scan of the transaction database, resulting in 

better performance in terms of time and storage space. 

On the other hand, when updates to the transaction databases occur, one possible approach is to re-run the mining algorithm 

on the whole database. All the computation done at finding out the large itemsets are originally wasted and all large itemsets have 

to be computed again from scratch. The other approach is incremental mining, which aims for efficient maintenance of 

discovered association rules without re-running the mining algorithms when updates occur [11]. So, some people proposed a 

concept, negative border. The negative border is used to decide when to scan the whole database and it can be used in 

conjunction with any Apriori-like algorithm.  

Therefore, in this paper, we focus on the design of an algorithm which could provide good performance for both mining 

maximal itemsets and incremental mining. Based on some observations, for example, `` if an itemset is large, all its subsets must 

be large; therefore, those subsets need not to be examined further", we propose a Sliding-Window approach, the SWMax 
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algorithm, for efficiently mining maximal large itemsets and incremental mining. 

Our SWMax algorithm is a two-passes partition-based approach. We will find all candidate 1-itemsets (C1,) candidate 

3-itemsets (C3,) large 1-itemsets (L1), and large 3-itemsets (L3) in the first pass. We generate the virtual maximal large itemsets 

after the first pass. Then, we use L1 to generate C2, use L3 to generate C4, use C4 to generate C5, until there is no CK generated. In 

the second pass, we use the virtual maximal large itemsets to prune CK, and decide the maximal large itemsets. For incremental 

mining, we consider two cases: data insertion and data deletion. If an itemset with size equal to 1 is not large in the original 

database, it could not be found in the updated database based on the SWF algorithm. A missing case could occur in the 

incremental mining process of the SWF algorithm, while our SWMax algorithm could support incremental mining correctly.  

The rest of paper is organized as follows. Section 2 presents the proposed SWMax algorithm. In Section 3, we study the 

performance and make a comparison of the proposed algorithms, SWMax algorithm with some other previous proposed 

algorithms. Finally, Section 4 gives the conclusions. 

 

THE SWMax ALGORITHM  

In this section, we first describe some interesting observations, which have motivated us to design our SWMax algorithm. 

Next, we present the proposed SWMax algorithm. Then, based on some other observations, we present the approach of 

incremental mining in the SWMax algorithm. 

 

Interesting Observations for Mining Maximal Large Itemsets  

The Pincer-Search algorithm has presented an interesting observation: If an itemset is frequent, all its subsets must be 

frequent; therefore, those subsets need not to be examined further. The number of the 3-itemset subsets of a k-itemset should 

be
kC3 . In other words, if the number of 3-itemset subsets is smaller than kC3 , then such a k-itemset will not be frequent and 

should be discarded from the candidate of maximal large itemsets. 

Moreover, we find another interesting observation. Let's use the following example to show this observation. For each item in 

these 3-itemset subsets of the frequent 5-itemset {ABCDE}, we could find that the occurrence of each item is 6 (= 15

2

C ). For 

example, item A occurs 6 times among itemsets {ABC}, {ABD}, {ABE}, {ACD}, {ACE}, and {ADE}. That is, the number of 

the occurrence of item A in the 6 3-itemset subsets of the frequent 5-itemset {ABCDE} is 15

2

C . In general, the number of the 

occurrence of a certain item in these 
kC3  3-itemset subsets of a frequent k-itemset is 1

2

kC . We will make use of these two 

observations in our SWMax algorithm.  

 

Sketch of Our Algorithm  

From the above observations, we develop our SWMax algorithm for mining maximal large itemsets. We use an example 

database shown in Figure 1 to illustrate our algorithm which is a partition-based approach. Those 12 (= N) data records are 

divided into 3 (= PN) partition. Therefore, the number of transactions, NT, in each partition Pi is 12/3 = 4, 31  i . The global 

support for the total 12 transactions is s = 26%. When the number of transactions containing an itemset is greater than or equal to  

  4%26*12  , this itemset is  frequent.  

Figure 1: An example 

transaction 

database. 

Figure 2: The result of procedure 

gen_count_itemset after 

scanning P1. 

Figure 3: The OneI Table 
after scanning P1. 

Figure 4: The resulting checking 

table 

Figure 5: The resulti of procedure 

gen_VMLI after scanning P1. 

Figure 6: The result of 

procedure gen_count_itemset 

after scanning P2. 

Figure 7: The OneI Table after scanning P2. 

Figure 8: The resulting checking 

table 

Figure 9: The resulti of procedure 

gen_VMLI after scanning P2. 

Figure 10: The result of procedure 

gen_count_itemset after scanning 

P3. 

Figure 11: The result of 

procedure check_sum  

in P3. 
Figure 12: Figure 13: 

Figure 14: The virtual 

maximal large itemset. 

Figure 15: The result of candidate 

Figure 16: The final 

result. 
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In the first pass, we have to consider the local support number, LocalS, for candidates generated in partition Pi. The value of 

LocalS is equal to (number of transactions in partitions P1, P2, …, Pi) times s. For example, we have LocalS =   2%26*4   for 

candidate generated in partition P1, when we scan partition P1. We have LocalS =    3%26*8   in partition P1 and LocalS  =  

  2%26*4   in partition P2, when we scan partition P2. 

In pass 1, we aim to find all temporary large 1-itemsets and 3-itemsets. We scan the whole database by focusing on each 

partition Pi in sequence, PNi 1 . When we scan the item list of each transaction in partition P1, we will generate temporary 

candidate 1-itemsets and 3-itemsets, and record the result in variables Temp_C1I and Temp_C3I, respectively, by calling 

procedure gen_count_itemset. We add a temporary candidate X into Temp_C1I /Temp_C3I only if X does not occur in Temp_C1I 

/Temp_C3I. When a temporary candidate X is added to Temp_C1I /Temp_C3I, we also record its StartPID as PID, where 

StartPID means the starting PID in which the candidate is generated. Moreover, we increase the count of such a candidate by one. 

After all transactions in partition P1 is scanned, we call procedure check_sum. A temporary candidate X can become the 

formal candidate if X.count > LocalS, when LocalS is the local support of partition, X.PID. If a temporary candidate could not 

pass the checking step, it is removed from Temp_C1I/ Temp_C3I. The final results as shown in Figure 2 has removed all these 

itemsets which are marked with *. 

Up to this point, if the scanned partition is not the last partition, we will generate virtual maximal large itemsets, gen_VMLI, 

from Temp_C1I and Temp_C3I as shown in Figure 4. In procedure gen_VMLI, for each 3-itemset element X in Temp_C3I, we 

will check whether each of elements Y in X is in the table OneI or not. If it occurs the first time, we will add element Y to table 

OneI. Moreover, we will count the occurrence of each element Y. The result for this example is shown in Figure 3. After we get 

the count of each 1-item element occurring in candidate 3-itemset C3, we start to call procedure gen_check_table to create a 

checking table as shown in Figure 4, to help us determine the virtual maximal large itemset. In procedure gen_check_table(ND), 

we generate the values of kC3  and 1

2

kC , NDk 4 . The purpose of these values has been explained in our observations as 

described before. For this example, we have ND = 6, since the size of table OneI is 6, which implies the size of the possible 

virtual maximal large itemset is limited to 6. From Figure 3, the possible case is itemset {ABCDEG}. To decide whether itemset 

{ABCDEG} is the virtual maximal large itemset, we could make the decision based on these observations as mentioned in 

Section 3.1 : If an k-itemset is large, all its subsets must be frequent. That is , those kC3  3-itemsets subset of a frequent k-itemset 

should also be frequent. Moreover, all the k items will have 1

2

kC  occurrences among these frequent 3-itemsets. For example, if 

{ABCDEG} is a large itemset, it should have 6

3C  = 20 3-itemsets subsets of this 6-itemset {ABCDEG}. Moreover, item {A} will 

appear in {ABC}, {ABD}, {ABE}, {ABG}, {ACD}, {ACE}, {ACG}, {ADE}, {ADG} and {AEG}. That is, item A will occur 
5

2C  = 10 times. Item {B}, item {C}, item {D}, item {E} and item {G} will have the same case as item {A}. That is the reason 

why we dissolve the 3-itemset of Temp_C3I to get the individual items, and stored them and related counts in table OneI, as 

shown in Figure 3. 

Since ND = 6, in fact, there may exist 3 possibilities of the size of the virtual maximal large itemset, 4, 5, 6. Due to that the 

size of passed candidate C3, | Temp_C3I | = 11, the size of a virtual maximal large itemset could not be 6, since 11 < 6

3C  (= 20). 

Based on the same reason, the size of a virtual maximal large itemset could be 5, since 10 (=
5

3C ) 2011 (= 6

3C ). Therefore, we 

decide the size of the virtual maximal large itemset should be 5 by calling function CheckRange(W) with W = 6, due to Temp_C32 

(= 10)  | Temp_C3I|(= 11) < Temp_C33 (= 20). Moreover, we find the corresponding occurrence of each 1-item in such a virtual 

maximal large itemset with size = 5 should be 6 times. That is, we choose the one, Temp_I12 = 6, as the threshold, threshold1, for 

the times of the occurrence of 1-item in Temp_C3I, since Temp_C3j = Temp_C32 = 5

3C  = kC3  = 10, where k = 5 and j = 2. In the 

following for loop, we check whether the count of the 1-item stored in table OneI is greater than or equal to such a threshold, If 

element Y.count satisfies this condition, we then concatenate Y with in the string variable Z. In our example, element G does not 

satisfy this condition. Therefore, finally, we have the virtual maximal large itemset Z = {ABCDE} with StartPID = 2. We store 

this result in table Virtual_MLI. 

Similarly, transactions in partition P2 are scanned and procedure gen_count_itemset is called to generate new 1-itemsets and 

candidate 3-itemsets if it is possible. Then, we call procedure checksum to check whether candidate 1-itemsets/3-itemsets 

generated in partitions P1 and P2 could be the passed candidates or not. After passed candidate 1-itemsets/3-itemsets are 

determined, we try to generate the virtual maximal large itemset from the result scanned so far. We call procedure gen_VMLI to 

generate the checking table again. Similarly, we have to construct the OneI table first for the result stored in Temp_C3I. Then, the 

checking table is created as shown in Figure 8. At this time, we have 13 3-itemsets generated. Therefore, the threshold is 6 and 

the virtual maximal large itemset is {ABCDE} again as shown in Figure 9. Because the virtual maximal large itemset {ABCDE} 

is already generated in partition P1, it will not be added into Virtual_MLI at this time. 

Similarly, we scan transactions in partition P3, generate candidates as shown in Figure 10 and determine passed candidate 

1-itemsets/3-itemsets as shown in Figure 11. However, for partition P3, the last partition, we do not try to generate the virtual 

maximal large itemset. Because the virtual maximal large itemset generated in the last partition will scan the same number of 

partitions with candidate itemsets of Ck in the second scan. For example, if we have a virtual maximal large itemset, {ABCDE}, 

generated after scanning partition P3. We will record StartPID = 1, and proceed the second scan. After the second scan, we have 

the final count of both each itemset of Ck and {ABCDE}. Then, we just check the count of each itemset of Ck to find out the final 

result of MLI, because {ABCDE} will also be one itemset of Ck. Therefore, the virtual maximal large itemset {ABCDE} 

generated after scanning the last partition in the first pass is useless.      
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After finishing the first scan of the transaction database, we will generate all candidate k-itemsets. Before we generate 

candidate k-itemsets, we can check each itemset in Temp_C3I and TC1I. If there is any itemset with StartPID = 1, it means that 

these itemsets have been finished a complete scan of the transaction database. These itemsets are L1 or L3. Therefore, they do not 

need to be counted anymore, and we add them into MLI which represents the maximal large itemsets, as shown in Figure 12. The 

procedure gen_CK uses L1 joins L1 to generate C2, L3 joins L3 to generate C4, and C4 joins C4 to generate C5. Up to this point, 

since C5 joins C5 resulting in the empty set. We generate candidate k-itemsets by the join function. The basic idea of the join 

function is similar to that in the Apriori algorithm. That is, given itemsets {a1a2…axay} and {a1a2…axaz }, the result of joining the 

two itemsets is { a1a2…axayaz}. For example, {ABC} and {ABE} will generate {ABCE}. 

Then, the second scan of the transaction database is proceeded. We will check each itemset of Virtual_MLI for each partition. 

We can find an itemset of Virtual_MLI to be large as early as possible, such that some candidate itemsets can be reduced. 

Therefore, whether itemset {ABCDE} is the large itemset could be decided now after a complete scan of the transaction database, 

as shown in Figure 14. The count of the itemset {ABCDE} is 4 (> 12 * 26%), so the itemset {ABCDE} is large. Then, we call 

procedure findMLI to prune candidates by making use of the result {ABCDE} stored in findMLI.  

In procedure findMLI, we check the sum of each itemset in All_CKI. If an item X is large and has not occurred in MLI before, 

we call function remove  to remove all subsets Y of X from MLI. For example, MLI contains {{AB}, {CDE}}, and we want to add 

{ABC} into MLI. In addition to checking whether {ABC} has existed in MLI or not, we also will remove all the subsets of 

{ABC}, e.g., {AB} from MLI. Then, we add itemset X into MLI. Moreover, we remove itemset X from Virtual_MLI. Finally, we 

call procedure reduce to prune unnecessary candidates from All_CKI. A candidate X in All_CKI is unnecessary if there exists 

large itemset Y in MLI and X Y. Moreover, if an itemset X in All_CKI is large, we call function remove to remove all subsets of 

itemset X from MLI. Then, we add itemset X to MLI and remove it from All_CKL. The whole process of making use of large 

itemsets generated from Virtual_MLI to prune MLI, making use of those large itemsets in MLI to prune all candidates in All_CKI, 

and making use of large itemset from All_CKI to prune MLI for transaction data in partition Pi scanned so far. Therefore, we use 

itemset {ABCDE} to proceed procedures findMLI and then reduce, which removes all subsets of {ABCDE} in All_CKI. Then, 

we repeat the same steps, counting and pruning, for data in partitions 2 and 3. Finally, the second scan is finished, the result is 

shown in Figure 15. If All_CKI is not an empty set, we will make the last comparison by calling procedure reduce. The final 

content of MLI is shown in Figure 16, which contains all maximal large itemsets. 

 
 

 

Interesting Observations for Incremental Mining  

In this subsection, we discuss some interesting observation for incremental mining. Let's D- be the deleted database, D+ be the 

inserted database, and D’ is the unchanged part of the original database. 

Let's consider two cases when an updated to the database occurs: data insertion and data deletion. First, for data insertion, if 

an itemset with size equal to 1 is not large in the old database, it could not be found in the new database in the SWF algorithm. 

Second, for data deletion, if an itemset with size equal to 1 is not large in the old database, it could not be found in the new 

database on the SWF algorithm. Because the SWF algorithm has no way to update C1 from D’ when a data insertion occurs or a 

data deletion occurs. Therefore, a missing case could occur in the SWF algorithm. 

 

Incremental Mining Process  

We use the transaction database, as shown in Figure 17, to illustrate the incremental mining process. D- means the deleted 

partition database, and D+ means the added database. The SWMax algorithm reserves the candidate 3-itemsets, C3, and the 

candidate 1-itemsets, C1, for the incremental mining process. For the case of data deletion, we find out these itemsets X, where 

X.StartPID = 1, Y   D-, X   Y, and decrease their counts. The result is shown in Figure 18. 

For the case of data insertion, we scan D+ partition to generate new candidate itemsets and increase the corresponding counts 

of itemsets recorded in the reserved C1 and C3 by procedure gen_count_itemset. Then, we check C1 and C3 with the LocalS, and 

find out the L1 and L3. Therefore, we use L1 to generate C2, use L3 to generate C4, use C4 to generate C5, until there is no Ck 

generated. Then, we use Ck to scan the partitions P2, P3, and P4. All the iterations of the second scan are same as we have 

mentioned in the process of mining maximal large itemsets. Finally, we compare all candidate k-itemsets, Ck, and get the maximal 

large itemsets, as shown in Figure 21. 

Figure  

Figure 17: The example of the 
transaction database for the 
incremental mining process 

Figure 18: The result  
after scanning the 
deleted partition 

Figure 19: The result  after 
scanning the added 
partition. 

 

Figure 20: The result of 
procedure check_sum. 

Figure 21: The 
maximal large itemsets 
in the incremental 
mining process. 
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PERFORMANCE  

In this section, first, we show how to generate the synthetic data which will be used in the simulation. Then, we study the 

performance of the Pincer-Search algorithm, the SWF algorithm and our SWMax algorithm. Finally, we make a comparison 

between these three algorithms. 

Generation of Synthetic Data 

We generated several different transaction databases from a set of large itemset to evaluate the performance of algorithms for 

mining maximal large itemsets. The parameters used in the generation of the synthetic data are shown in Table 1 [4]. 

First, the length of a transaction is determined by Poisson Distribution with a mean which is equal to | T |. The size of a 

transaction is between 1 and | MT |. The transaction is repeatedly assigned items from a set of potentially maximal large itemsets 

F. Then, the length of an itemset in F is determined according to the Poisson Distribution with a mean which is equal to | I |. The 

size of each potentially large itemset is between 1 and | MI |. 

To model the phenomenon that large itemsets often have common items,we use an exponentially distributed random variable 

with a mean which is equal to the correlation level, to decide this fraction for each itemset. The correlation level was set to 0.5. 

The remaining items are chosen randomly. Each itemset in F has an associated weight that determines the probability that this 

itemset will be chosen. The weight is chosen from an exponential distribution with a mean equal to 1. The weights are normalized 

such that the sum of all weights equal to 1. These probabilities shown in Table 2 are then accumulated such that each value, 

which falls in these ranges, is used to select the itemsets. 

For each transaction, we generate a random real number which is between 0 and 1 to determine the ID of potentially large 

itemset. To model the phenomenon that all the items in a large itemset are not always bought together, we assign each itemset in 

F with a corruption level c. When adding an itemset to a transaction, we keep dropping an item from the itemset until a uniformly 

distributed random number between 0 and 1 is less than c. The corruption level for an itemset is fixed, which is obtained from a 

normal distribution with mean = 0.5 and variance = 0.1. Each transaction is stored in a text file with the form of <transaction ID, 

item>. 

Some different datasets were generated to be used in the simulation, Table 3 shows the parameters setting for each dataset. 

For all datasets, |N| was set to 1,000 and |L| was set to 2,000. 

Experiments 

Our experiments were performed on a Pentium 4 server with CPU clock rate of 1.5G MHz, 384MB of main memory, running 

Windows XP Service Pack 1. The transaction data is stored on a 40GB IDE 3.5" drive with a measured sequential throughput of 

10MB/second. The simulation program was coded in JAVA, and compiled by JDK 1.4.2. The data was stored in a text file on a 

local hard disk drive.  

Figure 22: A comparison of 
the execution time (Case 1). 

Figure 23: A comparison of 
the execution time (Case 2). 

Figure 24: A comparison of 
the execution time (Case 3). 

Figure 25: A comparison of 
the execution time (Case 5). 

Figure 26: A comparison of 
the execution time for 
incremental mining (Case 
5). 

Figure 27: A comparison of the 
total execution time for  mining  
maximal large itemsets and 
incremental mining (Case 5). 

Table1: Parameters used in the 
experiment.. 

Table2: The probabilities 
of itemsets after 
normalization.. 

Table3: Parameters values for 
synthetic databases. 
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A Comparison 

For the synthetic database of Case 1, Figure 22 shows a comparison of the execution time with different values of the support 

between the SWF and our SWMax algorithm. The execution time of our SWMax algorithm is always less than that of the SWF 

algorithm. When the support decreases, the execution time of our SWMax algorithm is less than that of the Pincer-Search 

algorithm.  

For the synthetic database of Case 2 and Case 3, these transaction databases are used to measure the influence of the 

correlation level. The results are shown in Figure 23 and Figure24. We find an interesting observation that the correlation level 

has no influence on the Pincer-Search algorithm, because the Pincer-Search algorithm uses Lk to generate Ck+1. However, our 

SWMax algorithm generates candidates from transactions. Therefore, in our SWMax algorithm, the correlation level increases, 

the candidates increases. However, when support   1%, the number of candidates of the Pincer-Search algorithm increases a lot, 

our SWMax algorithm needs shorter execution time than the Pincer-Search algorithm. 

For the synthetic database of Case 5, this transaction database has a small size of large k-itemsets. The candidate 2-itemsets 

generated from the SWF algorithm could keep the useful information efficiently. However, the counting approach in our SWMax 

algorithm works more efficiently than the one in the SWF algorithm. For the SWF algorithm, which uses a hash array to do 

counting and cannot count efficiently. Our SWMax algorithm uses the hash tree to do counting. Figure 26 shows a comparison of 

the execution time among the SWF, Pincer-Search and our SWMax algorithms. From the result shown in Figure 25, our SWMax 

algorithm always requires less execution time than the SWF algorithm. However, in Case 5, the Pincer-Search algorithm has the 

same times of scanning the transaction database. Table6 shows the number of checks in Case 5. It is obviously to see that our 

SWMax needs more number of checks than the other two algorithms. Therefore, our SWMax algorithm needs longer execution 

time than the Pincer-Search algorithm when support  1%. 

For the synthetic database of Case 4 and Case 5, we show the comparison of mining maximal large itemsets and incremental 

mining of mining maximal large itemsets among these three algorithms. Figure 26 shows the different small values of support to 

proceed incremental mining of mining maximal large itemsets. Figure 27 shows the total execution time for mining maximal 

large itemsets and incremental mining of mining maximal large itemsets. We know that if the support is small enough, the 

number of candidates of the Pincer-Search algorithm increases rapidly. Therefore, the time of re-running the mining approach 

takes longer time than the incremental mining approach. In other words, if the transaction database has large size of maximal 

large itemsets, e.g., Case 1, our SWMax algorithm needs shorter time to do incremental mining of mining maximal large itemsets 

than the Pincer-Search algorithm. However, the SWF algorithm reserved all the information of C2 in Case 5, so it needs so short 

time for incremental mining of mining maximal large itemsets. 

Obviously, when the support is small, our SWMax algorithm needs shorter execution time than the other two algorithms in all 

the cases. 

 

CONCLUSION 

In this paper, we have proposed the SWMax algorithm to efficiently support both mining maximal large itemsets and 

incremental mining. We have presented the concept of the virtual maximal large itemset. Our SWMax algorithm is a two-passes 

partition-based approach, and the virtual maximal large itemsets help us to reduce the number of candidate itemsets in the second 

scan. The simulation results have shown that the proposed SWMax algorithm outperforms the SWF algorithm in all relational 

database settings. How to extend our SWMax algorithm for distributed processing is our future work.  
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